完整word版,苏州大学历年考研数学分析及高等代数答案
- 格式:doc
- 大小:3.30 MB
- 文档页数:42
考研高等代数真题答案一、选择题1. 根据线性空间的定义,下列哪个选项不是线性空间的子空间?- A. 所有零向量组成的集合- B. 线性空间中的非零向量集合- C. 线性空间中的任意向量集合- D. 线性空间中满足特定线性组合的向量集合答案:B2. 矩阵A的特征值是λ1, λ2, ..., λn,矩阵B的特征值是μ1,μ2, ..., μn。
若AB=BA,那么矩阵A+B的特征值是什么?- A. λ1+μ1, λ2+μ2, ..., λn+μn- B. λ1*μ1, λ2*μ2, ..., λn*μn- C. λ1+μ1, λ1+μ2, ..., λn+μn(无规律)- D. 不能确定答案:A二、填空题1. 若线性变换T: V → W,其中V和W是有限维向量空间,且dim(V) = n,dim(T(V)) = r,则T的核的维数是_________。
答案:n-r2. 设A是一个3×3的矩阵,且|A| = 2,矩阵A的特征多项式为f(λ)= (λ-1)^2(λ-3),则矩阵A的迹是_________。
答案:4三、解答题1. 证明:若矩阵A可逆,则A的伴随矩阵A*的行列式等于|A|^(n-1),其中n是A的阶数。
证明:设矩阵A是一个n×n的可逆矩阵,其伴随矩阵记为A*。
根据伴随矩阵的定义,我们有:A * A* = |A| * I,其中I是单位矩阵。
两边同时乘以A的逆矩阵A^(-1),得到:A^(-1) * A * A* = |A| * A^(-1) * I,即 A* = |A|^(n-1) * A^(-1)。
由此可知,A*的行列式是|A|^(n-1)。
2. 解线性方程组:x + 2y + 3z = 14x + 5y + 6z = 27x + 8y + 9z = 3解:首先写出增广矩阵:[1 2 3 | 1][4 5 6 | 2][7 8 9 | 3]通过初等行变换,将增广矩阵化为行最简形式:[1 0 -1 | -1][0 1 3 | 4][0 0 0 | 0]根据行最简形式,我们可以得到y = 4 - 3z,x = 1 + z。
苏州大学2001年数学分析试题解答[)[)[)1.(15)(),1lim ()(),2(),lim ()lim ()lim ()(,()2,,,()()x x x x f x a f x f x a f x a f x f x f x A A M x M f x A x x M x x f x f x εδ→+∞→+∞→+∞→+∞+∞+∞+∞=>-<'''''''''∀>-<-设在上连续()若存在且有极限,证明:在上一致连续()若在上一致连续,存在吗?回答并说明理由。
证明:(1)由于存在且有极限,设有限)所以存在当时,有且则[)[][)[)()()22(),()(),,lim ()lim x x f x A f x A f x M f x f x a a f x x εεε→+∞→∞'''≤-+-<+=+∞+∞+∞=从而在上一致连续,由在a,M 上一致连续所以在上一致连续(2)不一定。
例如:f(x)=x,显然f(x)在上一致连续但不存在[][][][][][][][][]00000002.(10),(,),,,(),(,),,(),()()()0,()()0,,)0()f a b f a b a b x a b f x x a b f a b a b f a b f a a f b bF a f a a F b f b b x a b x f x x ⊃∈=⊃<>=-<=->∈==设是上的连续函数,且证明:存在使得证明:令F(x)=f(x)-x,F(x)在上连续由于且在上连续则因此从而由连续函数的介值定理知,存在使得F(即111111113.(15)()11,1111,11111ln )()xn x a a xn n xn x x xn n n S x na b a n n n n nnn n n∞=∞∞==∞=∞∞∞====+∞∀><+∞∀∈<>+∞'''==-∀∈∑∑∑∑∑∑∑证明函数在(,)内无穷可微证明:且a<b,x [a,b]因为而时,在[a,b]上收敛,从而在[a,b]上一致收敛由a,b 的任意性知,在(,)上一致收敛所以S(x)连续且可导S (x)=(x 12121121ln ln (1)ln ln 1(0),lim lim 01ln ()()1ln ()(1)ln ln x a n n a n k k xn k x n na n nn na n nn n n nS x S x n x nn n αααααα++→∞→∞∞∞+=∞=≤>=+>==∈''+∞∀=-∀∈≤∑∑∑n=1(k)[a,b],有令而收敛x [a,b], 因此 收敛从而在[a,b]上一致收敛,由a,b 的任意性知,在(,)内连续可微k>0,S x [a,b],有1(1)ln ()(1)11ka k kx n na nn x n ∞=>=-+∞+∞∑(k)用上所证,S 在(,)上一致收敛从而S(x)在(,)内无穷可微2222224.(10),02{,2222,0SVS I x dydz y dzdx z dxdy S z h h z hS x dydz y dzdx z dxdy x y zdxdydz x y zdxdydz r hθ--Ω+=++=+≤≤+===Ω=+++=++=++≤≤⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰122211S 求曲面积分其中为锥面z x y 在部分的下侧。
1、设)(x f 是以T 为周期的周期函数且⎰=TC x f T 0)(1,证明⎰+∞∞→=n n C dx x x f n 2)(lim 。
证明:由⎰=T C x f T 0)(1,得到⎰=-Tdx C x f T 00])([1,从而有⎰=-T dx C x f 00])([ (*)本题即证明⎰+∞∞→=-n n dx x C x f n 0)(lim 2(此因⎰+∞=n n dx x112) 注意到21x 是递减的正函数,应用积分第二中值定理,对ξ∃>∀,n A 介于n 与A 之间,使⎰⎰-=-A n n dx C x f n dx xC x f n ξ])([1)(2 k ∃为非负整数使T kT n <--<ξ0,于是由(*),dx C x f dx C x f dx C x f dx C x f kTn kTn kTn nn⎰⎰⎰⎰+++-=-+-=-ξξξ])([])([])([])([于是有dxC x f n dx C x f n dx C x f n dx x C x f nTkT n kT n An⎰⎰⎰⎰-≤-≤-=-++02)(1)(1])([1)(ξξ令∞→A 有dx C x f n dx xC x f nTn⎰⎰-≤-∞+02)(1)( 故⎰+∞∞→=-nn dx x C x f n0)(lim 2,即⎰+∞∞→=n n C dx x x f n 2)(lim 。
2、设函数f(x)在整个实数轴有连续的三阶导数,证明存在实数a 使0)()()()(''''''≥a f a f a f a f 。
证明:由于f 的三阶导数连续,故若'''''',,,f f f f 有一个变号的话,利用根的存在性原理便知,使a ∃0)()()()(''''''=a f a f a f a f ,结论得证。
05数分答案2证明:反证法,假设()f x 在[]0,1上有无穷多个零点,不妨设{}n x ⊂[]0,1,()0,1,2,n f x n ==,则存在一个{}n x 的子列{}kn x 使得0()k n x x k →→+∞,且()0k n f x =,000'0000()()()()()limlim 0k n x x x x f x f x f x f x f x x x x x →→--===--与题设条件矛盾,故()f x 在[]0,1上只有有限个零点.3证明:1).由条件2)()()f x f y L x y -≤-则∀0,,,x y R x y Lεεδδ>∃=∀∈-<有()().f x f y L x y L Lεε-≤-≤=故()f x 在R 上一致连续当然在R 上连续.2).令[]200,2()max (),()0M x f x f x f x dx ππ∈==⎰,由于积分中值定理得存在[]22000010,2,()()2()()02x f x dx f x f x f x dx πππππ∈=∴==⎰⎰讨论a)当0M x x =时,0()()0M f x f x ==当然有[]0,2max ()0x f x L ππ∈=≤b)当0M x x >,由()f x 的周期,得000002()()()()(2)()()(2)2M M M M M f x f x f x f x f x f x L x x L x x Lπππ-=-++-≤-++-=c)0M x x <时由周期性000002()()()()(2)()()(2)2M M M M f x f x f x f x f x f x L x x L x x Lπππ-=-++-≤-++-=综合a)b)c)结论可得.4解:作极坐标变换cos ,sin ,cos sin u u x u y u u x r y r r x r y r x yθθθθ∂∂∂∂∂∂∂===+=+∂∂∂∂∂∂∂ ① (sin )cos u u x u y u ur r x y x yθθθθθ∂∂∂∂∂∂∂=+=-+∂∂∂∂∂∂∂ ② 由① ②可得?,?u u x y ∂∂==∂∂,然后代入就得0uθ∂=∂5证明:1)(i )当L=0时1()nn n f x a x∞==∑在(-1,1)上有定义(ii )L ≠0时11lim 1n n nn n a x x a x ++→∞=<(1,1)x ∴∈-,即()f x 的定义域(-1,1) 2)11111lim(1)()lim(()())lim()n n n n x x x n x f x f x xf x a x a x ---∞+→→→=-=-=-∑=111111111111101111lim()lim()lim(())n n n n n n n n n n x x x n n n n n a x a xa x a x xa x a a x ---∞∞∞∞∞++++++++→→→=====-=+-=+-=∑∑∑∑∑11111()lim()n n n n n a a a a a L ∞++→∞=+-=-=∑6解:本题需要讨论,答案省略。
08071. 06求下列极限:(1).(1)lim n n n αα→∞⎡⎤+-⎣⎦,其中01α;(2)224cos arcsin 0limx x ex x --→2.设函数f(x)= 1sin ,00,0m x x x x ⎧≠⎨=⎩。
讨论m=1,2,3时f(x)在x=0处的连续性,可微性及导函数的连续性。
3.设u=f(x,y+z)二次可微。
给定球变换cos sin x ρθϕ=,sin sin y ρθϕ=,cos z ρϕ=.计算22,u u ϕθ∂∂∂∂。
4.设f(x)二次可导,'()f a ='()f b =0。
证明(,)a b ξ∃∈,使2''4()()()()b a f f a f b ξ-≥-。
5.设函数项级数1()n n u x ∞=∑在区间I 上一致收敛于s(x),如果每个()n u x 都在I 上一致连续。
证明s(x)在I上一致连续。
6.设f(x,y)是2上的连续函数,试交换累次积分2111(,)x x xdx f x y dy +-+⎰⎰的积分次序。
7.设函数f(x)在[0,1]上处处可导,导函数'()()()f x F x G x =-,其中()F x ,()G x 均是单调函数,并且'()f x >0,[0,1]x ∀∈。
证明 0c ∃>,使'()f x c ≥,[0,1]x ∀∈。
8.设三角形三边长的和为定值P 。
三角形绕其中的一边旋转,问三边长如何分配时旋转体的体积最大?051.(20')1)11(2)lim(),()0,()()()()()()()0,()n n n n x aa b bbf a f a f x f a x a f a x a f a f a →<≤≤=='''-≠'---''''''≠求下列极限()而因此其中存在解:由于存在,从而f(x)=f(a)+f (a)(x-a)+f (a)222222(())211()()(()())lim()lim()()()()()(()())()()()()()((()))2lim(()()()((()))2limx a x a x a x o x a x a f a f x f a f x f a x a f a f x f a x a f a x a x a f a o x a x a x a f a o x a →→→+-'----=''-----''''--+-=-''''-+-=f (a)(x-a)+f (a)f (a)(x-a)+f (a)22222()(())2()()()((()))21()()2lim ()2[()]()(()(())2a x a x a o x a x a x a f a o x a f a f a x a f a f a f a o x a →→-''+--''''-+-''-''==--'''''++--f (a)f (a)(x-a)+f (a)f (a)000002.(18')()[01]()()0()0.()[0,1]()[0,1]}[0,1],()0,1,2}{},()()0()0()limx x f x f x f x x f x f x f n x k f f x f x →='≠⊂==→→∞=='=k k k n n n n n n 设在,上可微,且的每一个零点都是简单零点,即若则f 证明:在上只有有限个零点。
苏州大学历年高等数学考研真题08年考研真题07年考研真题化二次型()123122313,,222f x x x x x x x x x =-+为标准型,并给出所用的非退化线性替换.一, 求三阶矩阵1261725027-⎛⎫⎪ ⎪⎪--⎝⎭的Jordan 标准型. 二, 设,nR αβ∈且长度为2,矩阵T T n A E ααββ=++求A 的特征多项式.三, 设A 是n 阶反对称矩阵,n E 为单位矩阵.证明:a E A +可逆设,()()1Q=E+A b E A --设 求证Q 是正交阵.四, 设A 是3阶对称矩阵,且A 的各行元素之和都是3,向量()()0,1,1,1,2,1TTαβ=-=--是0AX =的解,求矩阵A 的特征值,特征向量,求正交阵Q 和矩阵B 使得TQ BQ A =五, 设P是一个数域,()P x 是[]P x 中次数大于0的多项式,证明:如果对于任意的()f x ,()g x ,若有()()()|P x f x g x ()()()()||p x f x p x g x ⇒或者,那么()P x 是不可约多项式. 六, 设欧氏空间中有12,0.n βαααβ≠ ,,,,()112,,,,n W L ααα= ()212,,,,n W L βααα= 证明:如果,0i βα=,那么21dim dim W W ≠设σ是n 维欧氏空间中的一个对称变换,则()ker VV σσ=⊕.苏州大学2007年硕士研究生入学考试《高等代数》试题解答1. 解 所给二次型的矩阵为011101110A ⎛⎫⎪=- ⎪ ⎪-⎝⎭其特征多项式为2()||(1)(2)f E A λλλλ=-=-+.故特征值为121,2λλ==-.11λ=,解对应的特征方程()0E A X -=得1(110)T X =,2(101)T X =.22λ=-,解对应的特征方程(2)0E A X --=得3(111)T X =-.以123,,X X X 作为列向量作成矩阵C .则C 可逆,且TC AC 为对角阵. 这时做非退化线性替换1122133123y x x y x x y x x x=+⎧⎪=+⎨⎪=-++⎩得222123123(,,)2f y y y y y y =+-.■ 2. 解 1261725027E A λλλλ+--⎛⎫ ⎪-=--- ⎪ ⎪+⎝⎭,将其对角化为210001000(1)(1)λλ⎛⎫⎪ ⎪ ⎪+-⎝⎭.故A 的若当标准形为100110001-⎛⎫ ⎪- ⎪ ⎪⎝⎭.■ 3. 解 A 的特征多项式为()||n f E A λλ=- (1)T Tn E λααββ=--- (1)()TT n E αλαββ⎛⎫=--⎪⎝⎭22(1)(1)()T n T E αλλαββ-⎛⎫=--- ⎪ ⎪⎝⎭22(1)(1)T T n T TE αααβλλβαββ-⎛⎫=--- ⎪⎝⎭21(1)1T T n T Tλαααβλβαλββ----=--- 222(1)(1025())n T λλλαβ-=--++.■ 4. 证 ⑴ A 是反对称实矩阵,故其特征值为零或纯虚数.其实,假定λ是A 的特征值,ξ是相应的特征向量.则()()()T T T T TT T T A A A A A ξλξξλξλξξξξξξξλξξ=⇒==⇒=-=-=-,又T TA ξξλξξ=,故λλ=-,这说明λ是零或纯虚数.由此得||0E A +≠,因而E A +可逆.⑵ 由⑴知E A -可逆,这说明Q 有意义.而1()()T Q E A E A -=+-,因此11()()()()T Q Q E A E A E A E A --=+-+- 11()()()()E A E A E A E A --=++--E =.故Q 是正交矩阵. ■5. 解 依题意有011003121003111003A -⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭因而1003011111003121111003111111A --⎛⎫⎛⎫⎛⎫⎪⎪ ⎪=-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭其特征多项式为2()||(3)f E A λλλλ=-=-.故特征值为120,3λλ==.⑴10λ=,解特征方程0AX -=得()11,0,1TX =-,()21,1,0TX =-.特征向量为1122l X l X +. ⑵23λ=,解特征方程(3)0E A X -=得()31,1,1T X =.特征向量为33l X .以上123,,l l l R ∈.把向量12,X X 正交并单位化得111(,0,)22η=-,2333,,22222η⎛⎫=-- ⎪ ⎪⎝⎭.把向量3X 单位化得3111,,333η⎛⎫=⎪⎝⎭.以123,,ηηη作为列向量作成矩阵P ,则P 为正交矩阵且000000003T P AP B ⎛⎫⎪== ⎪ ⎪⎝⎭.1102233322222111333T Q P ⎛⎫- ⎪ ⎪ ⎪==-- ⎪ ⎪ ⎪⎪⎝⎭,则Q 满足T Q BQ A =.■ 6. 证 假设()p x 可约,不妨设12()()()p x p x p x =,其中120((),())(())p x p x p x <∂<∂.这时显然有12()|()()p x p x p x ,但不可能有1()|()p x p x 或者2()|()p x p x .这与题设矛盾,故假设错误.因而()p x 不可约. ■7. 证 依题显然有12W W ⊂,假设21dim dim W W =,则12W W =.于是1W β∈ ,这说明β可被12,,,n ααα 线性表出.记1122n n l l l βααα=+++ 给上式两边同时计算,ββ得,0ββ=,于是0β=,与题设矛盾,故假设错误, 原命题21dim dim W W ≠成立. ■8. 证 对于任意的ker ασ∈及任意的V σβσ∈,有,,0ασβσαβ==,于是有ker V σσ⊥,因而ker {0}V σσ= .又dim ker dim V n σσ+=,于是dim(ker )V n σσ+=,故ker V V σσ=⊕.■06年考研真题用正交线性替换将实三元二次型222123112132233(,,)44282f x x x x x x x x x x x x =-+-+-变成标准形,并写出所用的非退化线性变换。