[初中数学]一次函数复习课教案人教版
- 格式:pdf
- 大小:71.18 KB
- 文档页数:7
2019年第十届初中青年教师优秀课展示与培训活动教案课题第十九章一次函数(复习课)授课人杨兴建指导教师王学先人教版八年级数学下册第十九章第十九章一次函数(复习课)授课教师:云南财经大学附属中学杨兴建教学的实质是以教材中提供的素材或实际生活中的一些问题为载体,通过一系列探究互动过程,渗透分类讨论、数形结合和方程的思想方法,达到学生知识的构建、能力的培养、情感的陶冶、意识的创新.一、教材及教学内容分析(一)教材的地位和作用分析一次函数是人教版八年级下册第十九章的内容.本节课是在前面学习了一次函数的相关知识的基础上,通过复习构建完整的知识网络,巩固已经学过的知识,研究一次函数在实际问题中的应用,渗透数形结合、函数模型等重要思想方法,它既是前面所学知识的延伸,也是后面学习二次函数、反比例函数的重要知识储备,我们常常利用它来解决生活中的实际问题,因此本节课具有承上启下的重要作用.本节课通过“复习—探究—归纳—巩固—反馈”的过程,进一步培养学生的观察能力、分析能力、逻辑推理能力和归纳能力,因此,本堂课无论在知识上,还是在对学生能力的培养及情感教育等方面都有着十分重要的意义和作用.(二)教学内容的分析本节课是一次函数的复习课,在掌握一次函数的图象和性质的基础上着重探究其应用”。
在教学的过程中,通过举贴近学生生活的国庆小长假租共享汽车出游的实例,结合一次函数的实际应用,让学生感知生活中处处有数学,感受生活中的数学美;通过学生感兴趣的问题情景引入复习课,提高学生的学习乐趣;通过发现问题、提出问题、分析问题和解决问题的教学过程让学生回顾一次函数的知识点;通过开展小组讨论等活动,探究发现一次函数的图象和性质,渗透数形结合的思想方法.本节课的设计上,尽量把一次函数的知识与生活实际有机地结合起来,经历知识的“再发现”过程,从而提高学生的学习兴趣,在探究活动的过程中发展创新思维能力.在例题的选取上,注重联系实际,激发学生学习兴趣,让学生主动用数学知识解决实际问题,同时渗透数形结合和函数模型的数学思想方法,让学生形成属于自己的数学思维和能力.二、目标及其解析(一)教学目标知识技能1.了解正比例函数与一次函数的定义,进一步认识待定系数法;2.经历复习探究一次函数的图象和性质的过程,理解一次函数的图象和性质;3.掌握数形结合的思想方法,能运用数形结合的思想方法解决生活中的实际问题.数学思考经历复习一次函数的过程,体会探究的必要性,理解数形结合的数学思想,强化数学的建模意识,提高利用演绎和归纳进行复习的能力.解决问题1.能运用数形结合的思想方法解决生活中的实际问题,发展学生数学的应用能力,获得解决问题的经验;2.在小组活动和探究过程中,学会与人合作,体会与他人合作的重要性.情感态度与价值观1. 经历“复习—探究—归纳—巩固—反馈”的过程,体验数学活动充满着探究性和创造性,感受数形结合的必要性、数学推理的严谨性以及结论的确定性,并有克服困难和运用知识解决问题的成功体验,建立学好数学的自信心,通过对零散知识点的系统整理,让学生认识到事物是有规律可循的,同时帮助他们提高复习的效果,增进数学学习的兴趣;2. 经历运用数形结合思想解决实际问题的过程,认识数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用;3. 在独立思考的基础上,通过小组合作,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解,在交流中获益;(二)教学重点:一次函数的图象和性质及其应用.(三)教学难点:运用一次函数数形结合的思想分析、解决实际问题..(四)解析本堂课是一次函数的复习课,所以对于本堂课的知识目标的定位,主要考虑如下:1.了解正比例函数与一次函数的定义,认识求一次函数解析式的方法待定系数法,在本节课中要达到如下要求:(1)了解正比例函数与一次函数的定义,知道正比例函数与一次函数的区别与联系;(2)知道求一次函数解析式的方法是待定系数法,并会用待定系数法求一次函数解析式;2.经历复习探究一次函数的图象和性质的过程,掌握一次函数的图象和性质;在上课的过程中让学生参与一次函数的图象和性质的复习和探索,鼓励学生用规范的数学言语表述解题过程,发展学生的数学语言能力;3.掌握数形结合的思想方法,能运用数形结合的思想方法解决生活中的实际问题,本节课要达到以下要求:掌握一次函数的图象和性质及数形结合的思想方法,会利用数形结合的思想方法解决生活中的实际问题.三、问题诊断分析八年级的学生思维活跃并且已初步具备自主探索及归纳的能力,逻辑思维较强.对于授课班级的学生来说,他们总体层次较好,接受能力较强,基本上掌握了一次函数的概念、表示方法和解法,在学习了一次函数的图象和性质后,已经初步具有了数形结合和函数模型的意识.但从实际问题中发现相关问题并提出问题建立数学模型还是存在一定困难.因此,在本节课的教学中同时要注意培养和提高学生分析问题与解决问题的能力.在教学中我采用先解决实际问题,再对数学知识和思想方法进行归纳,最后再运用学知识和数学思想方法解决其他实际问题的流程,为学生搭一个台阶,从而更好地解决这个难点.在设计问题时,我注重挑选与数形结合联系比较紧密的实际问题,让学生主动运用数学知识解决实际问题,通过练习渗透数形结合和函数模型的数学思想方法,发展学生应用数学的意识,提高学生分析问题与解决问题的能力,培养学生学习数学的兴趣.四、教法、学法:(一)教法:常言道:“教必有法,教无定法”.所以我针对八年级学生的心理特点和认知能力水平,大胆应用生活中的素材,并作了精心的安排,充分体现数学是源于实践又运用于生活.因此,本堂课的教学中,我以学生为主体,让学生积极思维,勇于探索,主动地获取知识.同时,采用了现代化教学技术,激发学生的学习兴趣,使整个课堂“活”起来,提高课堂效率.本堂课以生活中的一些例子为中心,让学生亲自尝试,接受问题的挑战,充分展示自己的观点和见解,给学生创设一个宽松愉快的学习氛围,让学生体验成功的快乐,为终身学习和发展打打下坚实的基础.本堂课的设计是以新课程标准和教材为依据,采用复习探究式教学.遵循因材施教的原则,坚持以学生为主体,充分发挥学生的主观能动性.教学过程中,注重学生探究能力的培养.还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维.同时,注意加强对学生的启发和引导,鼓励培养学生主动学习的意识.(二)学法:学生都渴望与他人交流,合作探究可使学生感受到合作的重要和团队的精神力量,增强集体意识,所以本课采用小组合作的学习方式,让学生遵循“复习—探究—归纳—巩固—反馈”的主线进行学习.让学生从活动中去复习、探究、归纳知识,沿着知识发生,发展的脉络,学生经过自己亲自思考、提出问题、解决问题,形成自己的经验,产生对结论的感知,实现对知识意义的主动构建.这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会自主学习,学会探索问题的方法.五、教学支持条件分析在本堂课中,利用常规教学用具、多媒体动画演示、几何画板、智慧课堂等方法再探究一次函数的图象和性质,渗透数形结合的思想方法,并且借助多媒体信息技术加强对学生所学知识的理解和运用,通过数据分析及时准确地掌握学生学习的情况.六、教学基本流程(第2题图) (第3题图)(第2题图)附:板书设计:。
一次函数复习课教学设计【教材分析】本课的内容是人教版八年级上册第11章复习课,是对本章关于一次函数重点内容的复习。
本章中关于一次函数的知识结构如图通过本课的学习使学生巩固一次函数图象的画法和一次函数的性质,并对一次函数进行拓展,是今后继续学习其它函数的基础,本章起着承上启下的作用。
本节教学内容还是学生进一步学习“数形结合”这一数学思想方法的很好素材。
【学情分析】本节课主要是复习巩固一次函数的图象与性质,是在学完一次函数之后,并初步了解了如何研究一个具体函数的图象与性质的基础上进行的。
原有知识与经验对本节课的学习有着积极的促进作用,在复习巩固的过程中,学生进一步理解知识,促进认知结构的完善,进一步体验研究函数的基本思路,而这些目标的达成要求教学必须发挥学生的主体作用,给予学生足够的活动、探究、交流、反思的时间与空间,不以老师的讲演代替学生的探索。
【教学目标】知识技能:1、进一步理解一次函数和正比例函数的意义;2、会画一次函数的图象,并能结合图象进一步研究相关的性质;3、巩固一次函数的性质,并会应用。
过程与方法:1、通过先基础在提升的过程,使学生巩固一次函数图象和性质,并能进一步提升自己应用的能力;2、通过习题,使学生进一步体会“数形结合”、“方城思想”、“分类思想”以及“待定系数法”。
情感态度:1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。
教学重点难点教学重点:复习巩固一次函数的图象和性质,并能简单应用。
教学难点:在理解的基础上结合数学思想分析、解决问题。
【教法学法】1、教学方法依据当前素质教育的要求:以人为本,以学生为主体,让教最大限度的服务与学。
因此我选用了以下教学方法:1、自学体验法——让学生通过作图经历体验并发现问题,分析问题,进一步解决问题。
第 19章一次函数复习——一次函数的图像与性质一【教课目的】知识技术1.使学生稳固一次函数的定义、图像和性质.2.能够依据实质意义正确地求出一次函数的分析式并画出函数图像.3.进一步领会一次函数在现实生活中的应用.数学思虑1.经过画函数图像解决实质问题的活动,使学生面对实质问题时,能主动试试着从数学的角度运用所学知识和方法追求解决问题的策略,进一步发展学生解决问题的能力.2.让学生经历从实质问题中抽象出的一次函数的数学模型的过程,领会一次函数根源实质,体验到数学与生活的联系.解决问题领会数形联合思想,逐渐学会利用数形联合思想剖析问题、解决问题.感情态度1.经过利用一次函数解决实质问题的过程,使学生在数学活动中获取成功体验,成立自信心,加强学生应用数学的意识.2.认识到数学是解决现实问题的重要工具,提升学习数学的自信心.二【教课要点】1.一次函数的图像和性质 .2.待定系数法求函数分析式的步骤.三【教课难点】1.成立函数模型解决简单的实质问题.2.理解函数与方程(组)及不等式的内在联系.四【教课环节与活动】一、复习考大纲求:1、联合详细情境领会一次函数的意义,能依据已知条件确立一次函数的表达式。
2、会利用待定系数法确立一次函数的表达式。
3 、能画出一次函数的图像,依据一次函数的图像和表达式y = kx + b (k≠0),探究并理解k > 0 和 k< 0 时,图像的变化状况。
4、理解正比率函数。
15 、领会一次函数与二元一次方程的关系。
6 、能用一次函数解决简单实质问题。
〖设计企图〗让学生理解一次函数在中考取的有关要求,有的放矢。
二、知识点复习和应用考点一:正比率函数的定义:形如y = kx ( k 是常数, k ≠0)的函数,叫做正比率函数,其 中 k 叫比率系数。
1.以下函数中是正比率函数的是().A. y 8C .y5x 26 D . y 1 x2. 若正比率函数 y = kx 的图象经过点( 1, 2),则 k 的值为() .A .1B .2C . 1D .222〖设计企图〗让学生从最简单的正比率函数下手,简单唤醒学生已学的知识。
人教版数学八年级下册19.2《一次函数图象与性质》教案一. 教材分析《一次函数图象与性质》是初中数学的重要内容,通过本节课的学习,使学生能够理解一次函数的图象和性质,能够运用一次函数解决实际问题。
本节课的内容在教材中起到承上启下的作用,为后续学习二次函数、反比例函数等函数内容奠定基础。
二. 学情分析八年级的学生已经学习了函数的基本概念和一次函数的定义,对函数有了初步的认识。
但学生在理解一次函数的图象和性质方面还存在一定的困难,需要通过实例分析,引导学生深入理解一次函数的图象和性质。
三. 教学目标1.了解一次函数的图象特征,能够描述一次函数图象的形状和位置。
2.理解一次函数的性质,能够解释一次函数图象的变换。
3.能够运用一次函数解决实际问题,提高学生的数学应用能力。
四. 教学重难点1.一次函数的图象特征和性质的理解。
2.一次函数图象的实际应用。
五. 教学方法采用问题驱动法、案例分析法、小组合作学习法等,激发学生的学习兴趣,引导学生主动探究,培养学生的数学思维能力。
六. 教学准备1.教学课件:制作一次函数图象和性质的相关课件,便于学生直观理解。
2.实例材料:准备一些实际问题,用于引导学生运用一次函数解决实际问题。
3.学生活动材料:准备一些练习题,用于学生在课堂上进行练习。
七. 教学过程1.导入(5分钟)通过复习一次函数的定义,引导学生回顾一次函数的基本概念,为新课的学习做好铺垫。
2.呈现(10分钟)利用课件展示一次函数的图象,引导学生观察图象的形状和位置,总结一次函数图象的特征。
3.操练(15分钟)通过实例分析,让学生动手操作,改变一次函数的斜率和截距,观察图象的变化,引导学生理解一次函数的性质。
4.巩固(10分钟)让学生分组讨论,总结一次函数图象和性质的关系,每个小组派代表进行汇报,教师点评并总结。
5.拓展(10分钟)让学生运用一次函数解决实际问题,如线性规划、成本计算等,提高学生的数学应用能力。
(4)图像平行于直线y=-4x+3(5)图像与y轴交点在x轴下方2.如图,直线l1的解析表达式为:y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,求出点P的坐标(四)小结教师引导学生进行小结:1.看图应先看横轴和纵轴所表示的意义。
2.“数”用“形”表示,由“形”想到数,数与形结合,是我们数学学习中一种很重要的思想方法,这就是数形结合法。
3.函数图象不仅与函数解析式有关,还直接与自变量的取值范围有关(五)课下作业布置教材97-101页复习题学生认真听讲,并仔细体会学生课下独立完成课堂达标检测题如图,直线l1的解析表达式为:y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,求出点P的坐标板书设计一次函数一、知识网络概念函数的表示方法函数图像函数概念一次函数的图像、性质一次函数解析式的确定一次函数与一元一次方程的关系与二元一次方程(组)的关系应用教学反思本节课设计思路:1.没有提示用1分钟时间回忆本章内容2.根据课本目录提示用1分钟时间回忆本章内容3.根据自己做的知识网络图复习本章内容4.直接看课本复习本章内容5.老师引领复习本章内容6.练习7.小结8.作业本节课优点:思路清晰,前五步是复习本章知识点,每一步都为下一步做准备,下一步又都在为上一步查漏补缺,经过一个这样的过程,学生就会知道自己对各部分知识的掌握程度,找到自己以后的努力方向。
在练习题的设置上,我用尽量少的题去涵盖尽量多的知识点,综合性较强,能够起到拔高的作用。
并且在出示题后,鼓励学生大胆去做,对一部分同学能起到克服恐惧数学的作用。
一次函数复习课(1)教学目标1.理解一次函数概念;能用“待定系数法”确定一次函数解析式;2.会画一次函数图像,并借助图像理解一次函数的性质;能以运动的观点来了解两条平行直线的表达式之间的关系;3.会应用数形结合的方法处理有关一次方程、一次不等式的问题。
4.通过复习进一步领会方程思想、数形结合思想、运动变化的唯物辩证观点,提升数学修养,提高解决问题的能力。
教学重点及难点重点:一次函数图像与性质;难点:学会运用图像与性质建立一次函数的模型。
复习过程:一.知识点“扫描”1.一次函数的概念、定义域、待定系数法、正比例函数、常值函数2.一次函数的图像、直线的平移、与一元一次方程(不等式)的关系3.一次函数的性质4.一次函数的应用二.出错点“杀毒”1.判断下列函数是否一次函数⑴()⑵()⑶()⑷()⑸()⑹()2.(组)函数的自变量的取值范围是____________.(B组)已知等腰三角形的周长为12,设它的腰长为x,底边长为y,那么y关于x的解析式是_____________ ,并指出函数的定义域_______________ Array 3.①画一次函数的图像②画一次函数的图像③再画一次函数的图像(通过画图像,加深对一次函数性质以及图像平移的认识。
)4.(组)如果函数的图像一定经过第二象限,则m的取值范围是()A.m>0B.m≥0C.m<0D.m≤0(B 组)如果函数的图像一定不经过第二象限,则m的取值范围是()A.m >0B.m≥0C.m <0D.m≤0(B 组)如果关于x 的函数y=(mx-2)x+m (m2)的图像不经过第三象限,求m 的取值范围 5.(组)直线,当x 时,y >2.(组)若直线y=4x+2上的点不在x 轴上方,求x 的取值范围 (B 组)一次函数的图像如图所示,则由图像可知关于x 的方程kx+b=0的解为,当x <0时,y 6.(组)若直线经过点(2,1),求b 的值。
(组)如图,该直线是某函数的图像,求这个函数的解析式;并求(B 组)一次函数与直线y=2x平行,且与反比例函数交于点(a ,1),求这个一次函数的解析式。
人教版八下第19章一次函数复习课(第1课时)教学设计教学内容解析教学流程图地位与作用函数是反映现实世界中数量关系和变化规律的常见数学模型之一,一次函数作为学生接触的第一种函数模型,是数学中最简单、最基本的函数,也是学生今后学习二次函数、反比例函数的基础.本章学习了函数与一次函数的定义和图象,结合图象研究了一次函数的性质,探讨了一次函数与一元一次方程、一元一次不等式、二元一次方程组之间的关系;其中,对一次函数的图象和性质的研究思路和方法,将对其他函数的研究起到很好的铺垫作用.一次函数是初中数学研究的一类最基本、最简单的函数,其中函数的定义、一次函数的定义、图象和性质是本章的主要基础知识;会根据问题的条件写出一次函数的解析式,会画一次函数的图象,是学习本章后应具备的基本技能.通过复习,加深学生利用函数观点对数学问题的理解.概念解析在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值都有唯一确定的y值与其对应,那么我们就说x是自变量,y是x的函数.函数的定义中包括了对应值的存在性和唯一性两重意思.单值对应是函数概念的关键词,是函数概念的核心所在.变量y要成为变量x的函数需满足两个条件:一是在同一变化过程中有两个变量x和y;二是对于变量x的每一个确定值,变量y都有唯一确定的值与之对应.一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数.一次函数与正比例函数之间的关系是一般与特殊的关系,当一次函数中常数b=0时,一次函数就是正比例函数.思想方法本章从实际问题出发,研究变量与变量之间的一种对应关系,提出了函数的概念,给出了三种刻画函数的表示形式;学习了利用待定系数法求函数解析式的方法;结合函数图象研究了函数的性质,利用函数的性质也解释了函数的图象,接着研究了一次函数与一元一次方程、一元一次不等式、二元一次方程组之间的关系.这个过程不仅是知识的形成过程,更体现了数学建模、方程、数形结合、由特殊到一般等数学思想.知识类型本课时复习内容既有概念性知识,又有像正比例函数、一次函数的图象与性质等关于有理与规则的知识,更有数学抽象、数学建模、数形结合等关于数学思想方法的知识.由知识的类型决定,教学中应由具体事例出发,引导学生回顾知识,逐步完善知识结构,并注意对有关技能给予强化训练.教学重点一次函数的图象和性质,及三个“一次”之间的关系.教学目标解析教学目标1.掌握一次函数及其相关知识;并能运用这些知识解决相关的数学问题.2.通过具体实例,进一步体会数学中的数学建模、方程思想、数形结合、待定系数法等重要的数学思想和方法.目标解析达成目标1的标志是:能辨别函数及一次函数,会用描点法画函数的图象,能说出一次函数的性质,并能利用一次函数图象和性质解决相关的数学问题.达成目标2的标志是:能分析实际问题中变量之间的关系,将实际问题抽象为函数问题,能利用待定系数法求出一次函数解析式,能依据一次函数性质或图象解决有关问题.教学问题诊断分析具备的基础学生已经学完了本章的内容,对函数的定义、一次函数的图象和性质、一次函数与方程不等式的关系有了一定的理解,另外学生已掌握一元一次方程、二元一次方程组的解法,具备了一定的化归能力,积累了一定的数形结合解决问题的经验.与本课目标的差距分析学习本节内容,需要学生在学习过函数、一次函数相关知识的基础上,深入理解函数的概念,熟练准确调用一次函数的性质,并能结合函数的图象解决相关问题.在解决问题的过程中需要学生具备解方程的技能和较强的运算能力.存在的问题函数的概念较为抽象,掌握其本质——任给一x值都有唯一的y值和其对应,还需要一段时间消化;对一次函数的解析式中k≠0容易忽略,对一次函数与方程、不等式关系的理解和运用还需要进一步强化.应对策略(1)注意引导学生对相关概念、性质的理解;(2)通过呈现不同的题目,引导学生主动辨别概念和隐含条件;(3)通过解题反思和分享,引导学生熟练利用一次函数及其性质解决问题;(4)通过练习思考,逐步积累学习的经验,加深对相关概念和性质的理解.教学难点一次函数的图象及性质的综合应用.教学支持条件分析函数概念之中体现的是“变化与对应”的思想,教学中可以充分利用信息技术手段,用思维导图帮助学生完善本章的知识体系,运用几何画板、Geogebra等动态几何软件画出函数图象、利用其中的电子表格功能分析数量关系。
第十一章一次函数复习课
一变量:
自变量:自己变化的量;在一个变化的过程中,我们称数值变化的量是自变量.
常量:有些量的数值是始终不变的量叫常量.
函数:被变量是自变量的函数.
函数值:当自变量确定一个值,被变量随之确定的一个值.
被变量:自变量的变化引起另一个量的变化,另一个量是被变量.
二一次函数和正比例函数的概念
1.概念:
若两个变量
x ,y 间的关系式可以表示成
y=kx+b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当
b=0时,称y 是x 的正比例函数.
(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.
(2)一次函数y=kx+b (k ,b 为常数,k ≠0)中的“一次”和一元一次方程、一元一次不等
式中的“一次”意义相同,即自变量
x 的次数为1,一次项系数
k 必须是不为零的常数,
b 可
为任意常数.
变化的世界
函数一次函数
一元一次方程一元一次不等式二元方程组
性
质
图像
★判断一个等式是否是一次函数先要化简
(3)当b=0,k ≠0时,y= kx 仍是一次函数.(正比例函数) (4)当b=0,k=0时,它不是一次函数
.
2. 函数的表示方法:1)解析法,2)列表法,3)图象法.
列表法直观但不完全
解析法准确完全但不直观
图象法直观形象但不够准确也不太完全
图象的画法:一列表二描点三连线(顺次用平滑的曲线)
解析式的列法:一)实际问题,确定自变量的取值二)符合题意
三函数的图象
把一个函数的自变量x 与所对应的
y 的值分别作为点的横坐标和纵坐标在直角坐标系内
描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:
列
表、描点、连线.一次函数的图象
由于一次函数y=kx+b (k ,b 为常数,k ≠0)的图象是一条直线,所以一次函数y=kx+b
的图象也称为直线
y=kx+b .
由于两点确定一条直线,描出适合关系式的两点,再连成直线,一般选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点(-k
b ,0).画正比例函数y=kx 的图象时,只
要描出点(0,0),(1,k )即可.
四一次函数性质
1. 一次函数y=kx+b (k ,b 为常数,k ≠0)的性质
(1)k的正、负决定直线的倾斜方向;
①k>0时,y的值随x值的增大而增大;
②k﹤O时,y的值随x值的增大而减小.
(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x轴相交的锐角度数越大(直线陡),|k|越小,直线与x轴相交的锐角度数越小(直线缓);
(3)b的正、负决定直线与y轴交点的位置;
①当b>0时,直线与y轴交于正半轴上;
②当b<0时,直线与y轴交于负半轴上;
③当b=0时,直线经过原点,是正比例函数.
(4)由于k,b的符号不同,直线所经过的象限也不同;
函数k b 经过的象限Y随x的变化图象
k>0 b>0 一,二三Y随x的增大而增大
y=kx+b
(b≠0)
k>0 b<0 一三四Y随x的增大而增大
y=kx+b
(b≠0)
k<0 b>0 一二四Y随x的增大而减小
y=kx+b
(b≠0)
k<0 b<0 二三四Y随x的增大而减小
y=kx+b
(b≠0)
(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它
们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.
2. 正比例函数y=kx(k≠0)的性质
(1)正比例函数y=kx的图象必经过原点;
(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;
(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.
点P(x0,y0)与直线y=kx+b的图象的关系
(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;
(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.
例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l 的图象上.
确定正比例函数及一次函数表达式的条件
(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y 的值或一个点)就可求得k的值.
(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个
关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.
五一次函数与方程
1. 一元一次方程、一元一次不等式及一次函数的关系
一次函数及其图像与一元一次方程及一元一次不等式有着密切的关系,函数y=ax+b (a≠0,a,b为常数)中,函数的值等于0时自变量x的值就是一元一次方程ax+b=0(a≠0)
的解,所对应的坐标(-b
a
,0)是直线y=ax+b与x轴的交点坐标,反过来也成立;?直线y=ax+b
在x轴的上方,也就是函数的值大于零,x的值是不等式ax+b>0(a≠0)的解;在x轴的下方也就是函数的值小于零,x的值是不等式ax+b<0(a≠0)的解.
2. 坐标轴的函数表达式
函数关系式x=0的图像是y轴,反之,y轴可以用函数关系式x=0表示;?函数关系式y=0的图像是x轴,反之,x轴可以用函数关系式y=0表示.
y=kx (k>0) y=kx (k<0)
3. 一次函数与二元一次方程组的关系
一般地,每个二元一次方程组,都对应着两个一次函数,于是也就是对应着两条直线,从“数”的角度看,解方程相当于考虑自变量为何值时两个函数的值相等,以及这两函数值是何值;从形的角度考虑,解方程组相当于确定两条直线的交点坐标,所以一次函数及其图像与二元一次方程组有着密切的联系.4. 两条直线的位置关系与二元一次方程组的解
(1)二元一次方程组
1122
y k x b y
k x b 有唯一的解直线y=k 1x+b 1不平行于直线y=k 2x+b 2
k 1≠k
2.(2)二元一次方程组
1122
y k x b y
k x b 无解直线y=k 1x+b 1∥直线y=k 2x+b 2k 1=k 2,
b 1≠b
2.(3)二元一次方程组
1122
y k x b y
k x b 有无数多个解直线y=k 1x+b 1与y=k 2x+b 2重合
k 1=k 2,b 1=b 2.
5. 待定系数法
先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组)
,求出未
知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:
函数y=kx+b 中,k ,b 就是待定系数.
用待定系数法确定一次函数表达式的一般步骤:一设,二代,三解,四代入(1)设函数表达式为
y=kx+b ;
(2)将已知点的坐标代入函数表达式,解方程(组);
(3)求出k 与b 的值;
(4)将k 、b 的之带入y=kx+b ,得到函数表达式。
例如:已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式.
解:设一次函数的关系式为
y =kx+b (k ≠0),
由题意可知,
,
3
,21b k
b k 解
.
3
5,3
4b k
∴此函数的关系式为
y=
3
53
4x
.
六知识规律小结
1.常数k ,b 对直线y=kx+b(k ≠0)位置的影响.①当b >0时,直线与y 轴的正半轴相交;当b=0时,直线经过原点;
当b ﹤0时,直线与y 轴的负半轴相交.
②当k ,b 异号时,即-
k
b >0时,直线与x 轴正半轴相交;
当b=0时,即-
k
b =0时,直线经过原点;
当k ,b 同号时,即-
k
b ﹤0时,直线与x 轴负半轴相交.
③当k >O ,b >O 时,图象经过第一、二、三象限;当k >0,b=0时,图象经过第一、三象限;当b >O ,b <O 时,图象经过第一、三、四象限;当k ﹤O ,b >0时,图象经过第一、二、四象限;当k ﹤O ,b=0时,图象经过第二、四象限;当k <O ,b <O 时,图象经过第二、三、四象限.
2.直线y=kx+b (k ≠0)与直线y=kx(k ≠0)的位置关系.直线y=kx+b(k ≠0)平行于直线y=kx(k ≠0)
当b >0时,把直线y=kx 向上平移b 个单位,可得直线
y=kx+b ;
当b ﹤O 时,把直线y=kx 向下平移|b|个单位,可得直线y=kx+b .
3.直线y1=k1x+b1与直线y2=k2x+b2(k1≠0 ,k2≠0)的位置关系.①k 1≠k 2
y 1与y 2相交;
②
2
1
21b b k k y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2);
③
2
1
21,b b k k y 1与y 2平行;④
2
1
21,b b k k y 1与y 2重合.。