高考数学难点突破_难点37__数形结合思想
- 格式:doc
- 大小:502.00 KB
- 文档页数:6
解读高考中的数学思想——数形结合篇数形结合是一种重要的数学思想方法,其应用大致可以分为两种情形:一是借助形的生动和直观来表明数之间的联系,即“以形助数”;二是借助于数的精确和严密来阐明形的某些属性,即“以数辅形”.这种思想方法在求解选择题和填空题的时候非常有用,对寻找解答题的求解思路也很有帮助.以下举例说明.一、用数形结合思想解决集合问题处理集合与集合的关系,借助图形进行直观思考,不仅可以使各集合之间的相互关系直观明了,而且也便于将各元素的归属确定下来,使抽象的集合问题,形象直观的得解. 例1 设22{()|(1)1}{()|0}A x y x y B x y x y m =+-==++,,,≥,则使A B ⊆成立的实数m 的取值范围是_____.解析:由于集合A ,B 都是点的集合,故可结合图形进行分析.集合A 是圆22(1)1x y +-=上的点的集合,集合B 是不等式0x y m ++≥表示的平面区域内的点的集合,要使A B ⊆,则应使圆被平面区域所包含(如图1),知直线0x y m ++=应与圆相切或相离且在圆的下方,即0m >.1=,解得1m =,故m的取值范围是1m . 评述:如果所给集合是点的集合,那么在研究它们之间的关系时,可以借助数形结合思想,将问题转化为函数图象或曲线之间的关系求解.二、用数形结合思想解决方程问题在研究某些方程的根的个数问题、根的大小问题以及根的取值范围等问题时,都可以将方程进行恰当的变形,通过引进函数,转化为两个或几个函数图象之间的关系来解决. 例2 已知函数()()()2()f x x a x b a b =--+<,若()αβαβ<,是方程()0f x =的两个根,则实数a b αβ,,,之间的大小关系是( ).(A )a b αβ<<< (B )a b αβ<<<(C )a b αβ<<< (D )a b αβ<<<解析:若令()()()g x x a x b =--,显然函数()g x 的两个零点是a 、b ,函数()f x 的两个零点是αβ,,而函数()f x 的图象是由函数()g x 的图象沿y 轴向上平移两个单位得到的,结合图象可知a b αβ<<<,故应选(B ).例3 若方程240x x m --=恰有4个不同的实数根,则实数m 的取值范围为_____. 解析:将方程化为24x x m -=,构造函数2()4()f x x x g x m =-=,,则方程240x x m --=恰有4个不同的实数根,亦即两个函数()f x 与()g x 的图象恰好有4个不同的交点,如图2,易知当-4<m <0时方程有4个根.三、用数形结合思想解决函数问题我们学过的一些初等函数,如:正比例、反比例函数、一次函数、二次函数、指数函数、对数函数、三角函数等都蕴含着丰富的数形结合的思想,因此,在处理函数问题时,要充分联系函数图象.例4 (2006年辽宁高考题)已知函数11()(sin cos )sin cos 22f x x x x x =+--,则()f x 的值域是( ).(A )[11]-, (B)12⎡⎤-⎢⎥⎣⎦(C )12⎡-⎢⎣⎦, (D)12⎡--⎢⎣⎦, 解析:cos (sin cos )11()(sin cos )sin cos sin (sin cos )22x x x f x x x x x x x x ⎧=+--=⎨<⎩≥,,,即等价于min {sin cos }x x ,,因此在同一坐标系下分别画出函数sin cos y x y x ==,的图象,在两个图象的每两个交点之间取位于下方的图象,就是函数()f x 的图象,从而容易得到()f x 的值域是12⎡-⎢⎣⎦,,故答案为(C ). 四、数形结合思想解决数列问题由于数列的通项公式和前n 项和公式都可以看成n 的函数,因此,许多数列问题可以借助函数的图象解决.例5 设{}()n a n *∈N 是公差为d 的等差数列,n S 是前n 项的和,且56678S S S S S <=>,,则下列结论错误的是( ). (A )0d < (B )70a =(C )95S S > (D )6S 和7S 均为n S 的最大值解析:可以把等差数列的前n 项和2122n d d S n a n ⎛⎫=+- ⎪⎝⎭看成是关于n的二次函数,结合图形可知,答案为(C ).例6 已知在等差数列{}n a 中,312a =,前n 项和为n S ,且121300S S ><,.则当n S 取到最值时,n 等于( )(A )6 (B )7 (C )12 (D )13解析:由于121300S S ><,,所以130a <,而3120a =>,所以数列的公差d <0,即数列是递减数列.则2(0)n S an bn a b a =+∈<R ,,,如图3,可以把n S看成关于n 的二次函数,其图象是一条抛物线,经过原点,开口向下,又121300S S ><,,所以若设抛物线和x 正半轴的交点为(0)M m ,,则12<m <13,于是抛物线的对称轴为(66.5)2m x =∈,,因此当n =6时n S 取到最大值,选(A ). 编者注:数列的有关问题用函数的观点来解决是一种较好的方法,但要注意,他们并非真正意义上的一次、二次函数!五、用数形结合思想解决不等式问题例7 如图4,请你观察图形以及图形中线段的位置关系及其数量关系,说明如何通过该图形来说明不等式2a b +成立.你还能构造另外的图形来说明这个不等式成立吗?解析:在圆O 中,AB 是一条直径,M 是圆上任意一点,过M 点作MC ⊥AB 交AB 于C ,令CA =a ,CB =b ,则容易得到2a b MC MO +==,由于在Rt △MCO 中,MO 是斜边,MC是直角边,所以有2a b +>C 点与O点重合时,有2a b +=2a b +.由于问题的本质上是在Rt △AMB 中处理问题,所以可构造类似的图形如图5所示(注:CN a BN b ==,.). 评述:几何图形的直观解释和证明,真正体现了代数和几何的有机统一,可谓“无字的证明”.六、用数形结合思想解决最值或范围问题例8 已知a 、b 、c 是某一直角三角形的三边的长,其中c 为斜边,若点(m ,n )在直线ax +by +2c=0上,则22m n +的最小值等于_____.解析:令d ==d 表示点(m ,n )与坐标原点之间的距离.由于点(m ,n )在直线ax +by +2c =0上,所以d 的最小值就是坐标原点到直线ax +by +2c =022c c==,即22m n +的最小值等于4. 例9 在区间[01],上给定曲线2y x =,试在此区间内确定点t的值,使图6中的阴影部分的面积1S 与2S 之和最小.解:1S 面积等于边长为t 与2t 的矩形的面积去掉曲线2y x =与x 轴、直线x t =围成的面积,即22312023tS t t x dx t S =-=⎰;的面积等于曲线2y x =与x 轴、1x t x ==,围成的面积去掉矩形面积,矩形边长分别为2(1)t t -,,即12232221(1)33t S x dx t t t t =--=-+⎰. 所以阴影部分面积S 为:321241(01)33S S S t t t =+=-+≤≤ 由21()42402S t t t t t ⎛⎫'=-=-= ⎪⎝⎭,得 t =0,或12t =. 经验证知,当12t =时,S 最小.。
重点重点难点36 函数方程思想函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多.函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决.●重点重点难点磁场1.(★★★★★)关于x的不等式2•32x–3x+a2–a–3>0,当0≤x≤1时恒成立,则实数a的取值范围为.2.(★★★★★)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.已知函数f(x)=ax2+(b+1)x+(b–1)(a≠0)(1)若a=1,b=–2时,求f(x)的不动点;(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围;(3)在(2)的条件下,若y=f(x)图象上A、B两点的横坐标是函数f(x)的不动点,且A、B关于直线y=kx+ 对称,求b的最小值.●案例探究[例1]已知函数f(x)=logm(1)若f(x)的定义域为[α,β],(β>α>0),判断f(x)在定义域上的增减性,并加以说明;(2)当0<m<1时,使f(x)的值域为[logm[m(β–1)],logm[m(α–1)]]的定义域区间为[α,β](β>α>0)是否存在?请说明理由.命题意图:本题重在考查函数的性质,方程思想的应用.属★★★★级题目.知识依托:函数单调性的定义判断法;单调性的应用;方程根的分布;解不等式组.错解分析:第(1)问中考生易忽视“α>3”这一关键隐性条件;第(2)问中转化出的方程,不能认清其根的实质特点,为两大于3的根.技巧与方法:本题巧就巧在采用了等价转化的方法,借助函数方程思想,巧妙解题.解:(1)x<–3或x>3.∵f(x)定义域为[α,β],∴α>3设β≥x1>x2≥α,有当0<m<1时,f(x)为减函数,当m>1时,f(x)为增函数.(2)若f(x)在[α,β]上的值域为[logmm(β–1),logmm(α–1)]∵0<m<1, f(x)为减函数.∴即即α,β为方程mx2+(2m–1)x–3(m–1)=0的大于3的两个根∴∴0<m<故当0<m<时,满足题意条件的m存在.[例2]已知函数f(x)=x2–(m+1)x+m(m∈R)(1)若tanA,tanB是方程f(x)+4=0的两个实根,A、B是锐角三角形ABC的两个内角.求证:m≥5;(2)对任意实数α,恒有f(2+cosα)≤0,证明m≥3;(3)在(2)的条件下,若函数f(sinα)的最大值是8,求m.命题意图:本题考查函数、方程与三角函数的相互应用;不等式法求参数的范围.属★★★★★级题目.知识依托:一元二次方程的韦达定理、特定区间上正负号的充要条件,三角函数公式.错解分析:第(1)问中易漏掉Δ≥0和tan(A+B)<0,第(2)问中如何保证f(x)在[1,3]恒小于等于零为关键.技巧与方法:深挖题意,做到题意条件都明确,隐性条件注意列.列式要周到,不遗漏. (1)证明:f(x)+4=0即x2–(m+1)x+m+4=0.依题意:又A、B锐角为三角形内两内角∴<A+B<π∴tan(A+B)<0,即∴∴m≥5(2)证明:∵f(x)=(x–1)(x–m)又–1≤cosα≤1,∴1≤2+cosα≤3,恒有f(2+cosα)≤0即1≤x≤3时,恒有f(x)≤0即(x–1)(x–m)≤0∴m≥x但xmax=3,∴m≥xmax=3(3)解:∵f(sinα)=sin2α–(m+1)sinα+m=且≥2,∴当sinα=–1时,f(sinα)有最大值8.即1+(m+1)+m=8,∴m=3●锦囊妙计函数与方程的思想是最重要的一种数学思想,要注意函数,方程与不等式之间的相互联系和转化.考生应做到:(1)深刻理解一般函数y=f(x)、y=f–1(x)的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质,这是应用函数思想解题的基础.(2)密切注意三个“二次”的相关问题,三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系.掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略.●歼灭重点重点难点训练一、选择题1.(★★★★★)已知函数f(x)=loga[–(2a)2]对任意x∈[,+∞]都有意义,则实数a 的取值范围是( )A.(0,B.(0, )C.[,1D.( , )2.(★★★★★)函数f(x)的定义域为R,且x≠1,已知f(x+1)为奇函数,当x<1时,f(x)=2x2–x+1,那么当x>1时,f(x)的递减区间是( )A.[,+∞B.(1,C.[,+∞D.(1, ]二、填空题3.(★★★★)关于x的方程lg(ax–1)–lg(x–3)=1有解,则a的取值范围是.4.(★★★★★)如果y=1–sin2x–mcosx的最小值为–4,则m的值为.三、解答题5.(★★★★)设集合A={x|4x–2x+2+a=0,x∈R}.(1)若A中仅有一个元素,求实数a的取值集合B;(2)若对于任意a∈B,不等式x2–6x<a(x–2)恒成立,求x的取值范围.6.(★★★★)已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x–1)=f(3–x)且方程f(x)=2x有等根.(1)求f(x)的解析式;(2)是否存在实数m,n(m<n=,使f(x)定义域和值域分别为[m,n]和[4m,4n],如果存在,求出m、n的值;如果不存在,说明理由.7.(★★★★★)已知函数f(x)=6x–6x2,设函数g1(x)=f(x), g2(x)=f[g1(x)], g3(x)=f [g2(x)], …gn(x)=f[gn–1(x)],…(1)求证:如果存在一个实数x0,满足g1(x0)=x0,那么对一切n∈N,gn(x0)=x0都成立;(2)若实数x0满足gn(x0)=x0,则称x0为稳定不动点,试求出所有这些稳定不动点;(3)设区间A=(–∞,0),对于任意x∈A,有g1(x)=f(x)=a<0, g2(x)=f[g1(x)]=f(0)<0,且n≥2时,gn(x)<0.试问是否存在区间B(A∩B≠),对于区间内任意实数x,只要n≥2,都有gn(x)<0.8.(★★★★)已知函数f(x)= (a>0,x>0).(1)求证:f(x)在(0,+∞)上是增函数;(2)若f(x)≤2x在(0,+∞)上恒成立,求a的取值范围;(3)若f(x)在[m,n]上的值域是[m,n](m≠n),求a的取值范围.参考答案●重点重点难点磁场1.解析:设t=3x,则t∈[1,3],原不等式可化为a2–a–3>–2t2+t,t∈[1,3].等价于a2–a–3大于f(t)=–2t2+t在[1,3]上的最大值.答案:(–∞,–1)∪(2,+∞)2.解:(1)当a=1,b=–2时,f(x)=x2–x–3,由题意可知x=x2–x–3,得x1=–1,x2=3.故当a=1,b=–2时,f(x)的两个不动点为–1,3.(2)∵f(x)=ax2+(b+1)x+(b–1)(a≠0)恒有两个不动点,∴x=ax2+(b+1)x+(b–1),即ax2+bx+(b–1)=0恒有两相异实根∴Δ=b2–4ab+4a>0(b∈R)恒成立.于是Δ′=(4a)2–16a<0解得0<a<1故当b∈R,f(x)恒有两个相异的不动点时,0<a<1.(3)由题意A、B两点应在直线y=x上,设A(x1,x1),B(x2,x2)又∵A、B关于y=kx+ 对称.∴k=–1.设AB的中点为M(x′,y′)∵x1,x2是方程ax2+bx+(b–1)=0的两个根.∴x′=y′= ,又点M在直线上有,即∵a>0,∴2a+ ≥2 当且仅当2a= 即a= ∈(0,1)时取等号,故b≥–,得b的最小值–.●歼灭重点重点难点训练一、1.解析:考查函数y1= 和y2=(2a)x的图象,显然有0<2a<1.由题意得a= ,再结合指数函数图象性质可得答案.答案:A2.解析:由题意可得f(–x+1)=–f(x+1).令t=–x+1,则x=1–t,故f(t)=–f(2–t),即f(x)=–f(2–x).当x>1,2–x<1,于是有f(x)=–f(2–x)=–2(x–)2–,其递减区间为[,+∞).答案:C3.解析:显然有x>3,原方程可化为故有(10–a)•x=29,必有10–a>0得a<10又x= >3可得a>.答案:<a<104.解析:原式化为.当<–1,ymin=1+m=–4 m=–5.当–1≤≤1,ymin= =–4 m=±4不符.当>1,ymin=1–m=–4 m=5.答案:±5二、5.解:(1)令2x=t(t>0),设f(t)=t2–4t+a.由f(t)=0在(0,+∞)有且仅有一根或两相等实根,则有①f(t)=0有两等根时,Δ=0 16–4a=0 a=4验证:t2–4t+4=0 t=2∈(0,+∞),这时x=1②f(t)=0有一正根和一负根时,f(0)<0 a<0③若f(0)=0,则a=0,此时4x–4•2x=0 2x=0(舍去),或2x=4,∴x=2,即A中只有一个元素综上所述,a≤0或a=4,即B={a|a≤0或a=4}(2)要使原不等式对任意a∈(–∞,0]∪{4}恒成立.即g(a)=(x–2)a–(x2–6x)>0恒成立.只须<x≤26.解:(1)∵方程ax2+bx=2x有等根,∴Δ=(b–2)2=0,得b=2.由f(x–1)=f(3–x)知此函数图象的对称轴方程为x=–=1得a=–1,故f(x)=–x2+2x. (2)f(x)=–(x–1)2+1≤1,∴4n≤1,即n≤而抛物线y=–x2+2x的对称轴为x=1∴n≤时,f(x)在[m,n]上为增函数.若满足题设条件的m,n存在,则又m<n≤,∴m=–2,n=0,这时定义域为[–2,0],值域为[–8,0].由以上知满足条件的m、n存在,m=–2,n=0.7.(1)证明:当n=1时,g1(x0)=x0显然成立;设n=k时,有gk(x0)=x0(k∈N)成立,则gk+1(x0)=f[gk(x0)]=f(x0)=g1(x0)=x0即n=k+1时,命题成立.∴对一切n∈N,若g1(x0)=x0,则gn(x0)=x0.(2)解:由(1)知,稳定不动点x0只需满足f(x0)=x0由f(x0)=x0,得6x0–6x02=x0,∴x0=0或x0=∴稳定不动点为0和.(3)解:∵f(x)<0,得6x–6x2<0 x<0或x>1.∴gn(x)<0 f[gn–1(x)]<0 gn–1(x)<0或gn–1(x)>1要使一切n∈N,n≥2,都有gn(x)<0,必须有g1(x)<0或g1(x)>1.由g1(x)<0 6x–6x2<0 x<0或x>1由g1(x)>0 6x–6x2>1故对于区间( )和(1,+∞)内的任意实数x,只要n≥2,n∈N,都有gn(x)<0.8.(1)证明:任取x1>x2>0,f(x1)–f(x2)=∵x1>x2>0,∴x1x2>0,x1–x2>0,∴f(x1)–f(x2)>0,即f(x1)>f(x2),故f(x)在(0,+∞)上是增函数.(2)解:∵≤2x在(0,+∞)上恒成立,且a>0,∴a≥在(0,+∞)上恒成立,令(当且仅当2x= 即x= 时取等号),要使a≥在(0,+∞)上恒成立,则a≥.故a的取值范围是[,+∞).(3)解:由(1)f(x)在定义域上是增函数.∴m=f(m),n=f(n),即m2–m+1=0,n2–n+1=0故方程x2–x+1=0有两个不相等的正根m,n,注意到m•n=1,故只需要Δ=( )2–4>0,由于a>0,则0<a<.重点难点37 数形结合思想数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合.应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决.运用这一数学思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征.●重点难点磁场1.曲线y=1+ (–2≤x≤2)与直线y=r(x–2)+4有两个交点时,实数r的取值范围.2.设f(x)=x2–2ax+2,当x∈[–1,+∞)时,f(x)>a恒成立,求a的取值范围.●案例探究[例1]设A={x|–2≤x≤a},B={y|y=2x+3,且x∈A},C={z|z=x2,且x∈A },若C B,求实数a的取值范围.命题意图:本题借助数形结合,考查有关集合关系运算的题目.属★★★★级题目.知识依托:解决本题的关键是依靠一元二次函数在区间上的值域求法确定集合C.进而将C B 用不等式这一数学语言加以转化.错解分析:考生在确定z=x2,x∈[–2,a]的值域是易出错,不能分类而论.巧妙观察图象将是上策.不能漏掉a<–2这一种特殊情形.技巧与方法:解决集合问题首先看清元素究竟是什么,然后再把集合语言“翻译”为一般的数学语言,进而分析条件与结论特点,再将其转化为图形语言,利用数形结合的思想来解决. 解:∵y=2x+3在[–2, a]上是增函数∴–1≤y≤2a+3,即B={y|–1≤y≤2a+3}作出z=x2的图象,该函数定义域右端点x=a有三种不同的位置情况如下:①当–2≤a≤0时,a2≤z≤4即C={z|z2≤z≤4}要使C B,必须且只须2a+3≥4得a≥与–2≤a<0矛盾.②当0≤a≤2时,0≤z≤4即C={z|0≤z≤4},要使C B,由图可知:必须且只需解得≤a≤2③当a>2时,0≤z≤a2,即C={z|0≤z≤a2},要使C B必须且只需解得2<a≤3④当a<–2时,A= 此时B=C= ,则C B成立.综上所述,a的取值范围是(–∞,–2)∪[,3].[例2]已知acosα+bsinα=c, acosβ+bsinβ=c(ab≠0,α–β≠kπ, k∈Z)求证:.命题意图:本题主要考查数学代数式几何意义的转换能力.属★★★★★级题目.知识依托:解决此题的关键在于由条件式的结构联想到直线方程.进而由A、B两点坐标特点知其在单位圆上.错解分析:考生不易联想到条件式的几何意义,是为瓶颈之一.如何巧妙利用其几何意义是为瓶颈之二.技巧与方法:善于发现条件的几何意义,还要根据图形的性质分析清楚结论的几何意义,这样才能巧用数形结合方法完成解题.证明:在平面直角坐标系中,点A(cosα,sinα)与点B(cosβ,sinβ)是直线l:ax+by=c与单位圆x2+y2=1的两个交点如图.从而:|AB|2=(cosα–cosβ)2+(sinα–sinβ)2=2–2cos(α–β)又∵单位圆的圆心到直线l的距离由平面几何知识知|OA|2–( |AB|)2=d2即∴.●锦囊妙计应用数形结合的思想,应注意以下数与形的转化:(1)集合的运算及韦恩图(2)函数及其图象(3)数列通项及求和公式的函数特征及函数图象(4)方程(多指二元方程)及方程的曲线以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法.以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合.●歼灭重点难点训练一、选择题1.(★★★★)方程sin(x–)= x的实数解的个数是( )A.2B.3C.4D.以上均不对2.(★★★★★)已知f(x)=(x–a)(x–b)–2(其中a<b ,且α、β是方程f(x)=0的两根(α<β,则实数a、b、α、β的大小关系为( )A.α<a<b<βB.α<a<β<bC.a<α<b<βD.a<α<β<b二、填空题3.(★★★★★)(4cosθ+3–2t)2+(3sinθ–1+2t)2,(θ、t为参数)的最大值是.4.(★★★★★)已知集合A={x|5–x≥},B={x|x2–ax≤x–a},当A B时,则a的取值范围是.三、解答题5.(★★★★)设关于x的方程sinx+ cosx+a=0在(0,π)内有相异解α、β.(1)求a的取值范围;(2)求tan(α+β)的值.6.(★★★★)设A={(x,y)|y= ,a>0},B={(x,y)|(x–1)2+(y–3)2=a2,a>0},且A∩B≠,求a的最大值与最小值.7.(★★★★)已知A(1,1)为椭圆=1内一点,F1为椭圆左焦点,P为椭圆上一动点.求|PF1|+|PA|的最大值和最小值.8.(★★★★★)把一个长、宽、高分别为25 cm、20 cm、5 cm的长方体木盒从一个正方形窗口穿过,那么正方形窗口的边长至少应为多少?参考答案●重点难点磁场1.解析:方程y=1+ 的曲线为半圆,y=r(x–2)+4为过(2,4)的直线.答案:(]2.解法一:由f(x)>a,在[–1,+∞)上恒成立x2–2ax+2–a>0在[–1,+∞)上恒成立.考查函数g(x)=x2–2ax+2–a的图象在[–1,+∞]时位于x轴上方.如图两种情况:不等式的成立条件是:(1)Δ=4a2–4(2–a)<0 a∈(–2,1)(2) a∈(–3,–2 ,综上所述a∈(–3,1).解法二:由f(x)>a x2+2>a(2x+1)令y1=x2+2,y2=a(2x+1),在同一坐标系中作出两个函数的图象.如图满足条件的直线l位于l1与l2之间,而直线l1、l2对应的a值(即直线的斜率)分别为1,–3,故直线l对应的a∈(–3,1).●歼灭重点难点训练一、1.解析:在同一坐标系内作出y1=sin(x–)与y2= x的图象如图.答案:B2.解析:a,b是方程g(x)=(x–a)(x–b)=0的两根,在同一坐标系中作出函数f(x)、g(x)的图象如图所示:答案:A二、3.解析:联想到距离公式,两点坐标为A(4cosθ,3sinθ),B(2t–3,1–2t)点A的几何图形是椭圆,点B表示直线.考虑用点到直线的距离公式求解.答案:4.解析:解得A={x|x≥9或x≤3},B={x|(x–a)(x–1)≤0},画数轴可得.答案:a>3三、5.解:①作出y=sin(x+ )(x∈(0,π))及y=–的图象,知当|–|<1且–≠时,曲线与直线有两个交点,故a∈(–2,–)∪(–,2).②把sinα+ cosα=–a,sinβ+ cosβ=–a相减得tan ,故tan(α+β)=3.6.解:∵集合A中的元素构成的图形是以原点O为圆心,a为半径的半圆;集合B中的元素是以点O′(1, )为圆心,a为半径的圆.如图所示∵A∩B≠,∴半圆O和圆O′有公共点.显然当半圆O和圆O′外切时,a最小a+a=|OO′|=2,∴amin=2 –2当半圆O与圆O′内切时,半圆O的半径最大,即a最大.此时a–a=|OO′|=2,∴amax=2 +2.7.解:由可知a=3,b= ,c=2,左焦点F1(–2,0),右焦点F2(2,0).由椭圆定义,|PF1|=2a–|PF2|=6–|PF2|,∴|PF1|+|PA|=6–|PF2|+|PA|=6+|PA|–|PF2|如图:由||PA|–|PF2||≤|AF2|= 知–≤|PA|–|PF2|≤.当P在AF2延长线上的P2处时,取右“=”号;当P在AF2的反向延长线的P1处时,取左“=”号.即|PA|–|PF2|的最大、最小值分别为,– .于是|PF1|+|PA|的最大值是6+ ,最小值是6–.8.解:本题实际上是求正方形窗口边长最小值.由于长方体各个面中宽和高所在的面的边长最小,所以应由这个面对称地穿过窗口才能使正方形窗口边长尽量地小.如图:设AE=x,BE=y,则有AE=AH=CF=CG=x,BE=BF=DG=DH=y∴∴.高考数学重点难点突破重点难点38 分类讨论思想.txt人永远不知道谁哪次不经意的跟你说了再见之后就真的再也不见了。
数形结合,妙解高中数学难题
以形助数,以数解形
——数形结合(阿波罗尼斯圆)
作者:半斤&Sciaphila
Hello,大家好。
今天我们将为大家带来一份解题锦囊,教你用数形结合解决高考难题。
数形结合是数学解题中常用的思想方法,巧妙运用数形结合的思想可以把某些抽象的数学问题直观化、生动化,变抽象思维为形象思维,做到“以形助数,以数解形”。
实现数形结合,常于以下内容有关:①实数与数轴上的点的对应关系②函数与图像的对应关系③曲线与方程的对应关系④以几何元素和几何条件为背景建立起来的概念,如:复数、三角函数⑤所给的等式或代数式的结构含有明显的几何意义。
为让大家有更好的认识,下面是我们为大家准备的例题:
以上是较简单明了的数形结合在具体问题中的应用,下面再向大家介绍一下数形结合的另一个较具体的数学问题-——阿波罗尼斯圆在
高考中的应用。
下面来看一道高考题:
(最后贴心附上我们上一期的答案,相信童鞋们都已经做出来了哟。
)。
数形结合的思想方法与高考数学解题技巧摘要:高考数学最重要的就是高效率做题,时间不能浪费在解题步骤上,也不能让自己因为做题方法不正确,从而产生不好的心态。
数形结合在高考中,是难点、重点题目经常会用的方法。
数形结合的特点就是把难的转化为简单的,更直接清晰的发现问题,从而解决问题。
使用数形结合的方法,大部分数学应用题就会迎刃而解。
本文具体分析了什么是数形结合,以及如何让数形结合应用在高中的解题中做一个介绍。
关键词:数形结合;思想方法;高考;数学解题技巧一、引言高考之前,找到每一种类型题的解题方法是必须的,必须通过大量的练习总结经验,总结方法,尤其是数学解题思路。
其实,数形结合是最快最高效的解题方法。
数形结合,就是图解法,根据数与形之间的对应关系,通过图形的直观性来解决问题,是高中数学学习和解题的方法,这两之间的结合,可以把抽象的问题简单化。
有的图形简单,没有规律,把数值记录下来,更容易找出规律,有的就是数值看不到变化,画出图形就能看出是程什么趋势走向,使学生更快速的解题。
二、数形结合思想方法1.数与形有三种转换途径:①建立坐标系,把数通过图线的绘制,动态分析求解。
②通过分析数和式之间的关系、特点,转化问题思路,把复杂的问题转化成一个简单的来考虑。
③构造,根据数字的规律,联想几何图形,或者某一个函数,再或者建立一个图表。
更快速的分析解答。
2.解题的三种类型:①“由形化数”:就是根据题目中给出的图形,通过分析观察,找出图中关键的点,总结出数量关系,然后根据数的变化来判断几何图形。
②“由数化形”:这个就是根据已知条件,把数字转化成图形,包括有空间的,函数的图形。
然后在图中观察数字之间的变化情况,根据走向趋势,判断数量关系,找出数与式的本质特征.③“数形转换”:就是两个数和形状都给出,然后通过分析数的关系和观察图的形状,两者之间各自相互转换,找出隐含的数量关系。
三、数形结合思想方法的应用策略(一)以形助数在高三的数学学习中,题量的增加,各种解题方法容易搞混,而且对于一些既复杂又抽象的问题时,学生表示没有思路,题目得多读几遍,不容易理解。
数形结合思想在高考数学中的应用对策摘要:在数学教学的过程中,“数”是整体教学的基础,“形”是整体教学的延伸。
在高中数学教学中,存在大量的具有抽象意义的知识,对于学生来说,学习难度较高。
但是在高考中,数学占据着主要的地位。
因此,如何帮助学生缓解学习难度以及学习压力,提升学生的数学学习质量,就成为高中教师们主要的教学任务。
基于此,本文将对如何在高中数学教学中应用数形结合思想开展教学进行分析。
关键词:数形结合思想;高考数学教学;教学应用;应用对策前言:首先,所谓数形结合,指的就是将数学知识中的“数”“形”概念进行结合转化,帮助学生降低理解难度,提升学习质量的一种教学中手段。
在高中数学教学的过程中,“数”往往具有一定的抽象意义,而“形”具有一定的具体意义,运用该种教学手段开展数学教学,能够将抽象的知识具体化,帮助学生降低学习紧张感,提升学生的学习成绩,帮助学生通过高考大关。
一、将“数”转化成“形”,降低学生的理解难度首先,该种学习方式也可以被称之为以形助数。
从字面的理解上来说,就是利用“形”的数学知识来解决“数”的数学问题。
在实际的教学过程中,教师可以利用该种方式帮助学生理解难度较高的数学知识,完成数形结合,提升学生的学习质量。
一般情况下,该种方式主要应用于以下几种高考数学例题中,比如:选择题、填空题以及函数题型[1]。
例如,在讲解下面这道题时,教师就可以利用以形助数的方式进行讲解。
例1:现在一共有三个代数,分别为a、b、c。
其中a=log 21/3,b=21/3,c=log1/21/3,是试分析三者之间的大小关系。
在讲解这道习题时,教师可以很轻松地分析出题目的类型,也就是比大小。
但是对于高中生来说,这种类型的习题具有较高的难度。
此时教师可以结合数形结合思想,帮助学生降低难度。
首先,教师可以引导学生,将三个等式转化为函数公式。
已知,三组等式中,有一个共同的代数,就是1/3,因此,教师就可以将其视为代数x,将a、b、c分别视为y1、y2以及y3,并整理好函数公式。
高考冲刺数形结合的思想【高考展望】在高考题中,数形结合的题目出现在高中数学知识的方方面面上,把图象作为工具、载体,以此寻求解题思路或制定解题方案,真正体现数形结合的简捷、灵活特点的多是填空小题。
从近三年新课标高考卷来看,涉及数形结合的题目略少,预测今后可能有所加强。
因为对数形结合等思想方法的考查,是对数学知识在更高层次的抽象和概括能力的考查,是对学生思维品质和数学技能的考查,是新课标高考明确的一个命题方向。
1 •数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。
它可以使抽象的问题具体化,复杂的问题简单化。
“数缺形时少直观,形少数时难入微”,利用数形结合的思想方法可以深刻揭示数学问题的本质。
2 •数形结合的思想方法在高考中占有非常重要的地位,考纲指出“数学科的命题,在考查基础知识的基础上,注重对数学思想思想方法的考查,注重对数学能力的考查”,灵活运用数形结合的思想方法,可以有效提升思维品质和数学技能。
3.“对数学思想方法的考查是对数学知识在更高层次的抽象和概括的考查,考查时要与数学知识相结合”,用好数形结合的思想方法,需要在平时学习时注意理解概念的几何意义和图形的数量表示,为用好数形结合思想打下坚实的知识基础。
4 •函数的图象、方程的曲线、集合的文氏图或数轴表示等,是“以形示数”,而解析几何的方程、斜率、距离公式,向量的坐标表示则是“以数助形”,还有导数更是数形结合的产物,这些都为我们提供了“数形结合”的知识平台。
5 .在数学学习和解题过程中,要善于运用数形结合的方法来寻求解题途径,制定解题方案,养成数形结合的习惯,解题先想图,以图助解题。
用好数形结合的方法,能起到事半功倍的效果,“数形结合千般好,数形分离万事休”。
【知识升华】纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。
高考数学思想方法专题:第二讲数形结合思想【思想方法诠释】一、数形结合的思想所谓的数形结合,就是根据数学问题的条件和结论之间的在联系,既分析其代数含义,又揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决,数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。
数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性与灵活性的有机结合.数形结合的实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.二、数形结合思想解决的问题常有以下几种:1.构建函数模型并结合其图象求参数的取值围;2.构建函数模型并结合其图象研究方程根的围;3.构建函数模型并结合其图象研究量与量之间的大小关系;4.构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;5.构建立体几何模型研究代数问题;6.构建解析几何中的斜率、截距、距离等模型研究最值问题;7.构建方程模型,求根的个数;8.研究图形的形状、位置关系、性质等。
三、数形结合思想是解答高考数学试题的一种常见方法与技巧,特别是在解选择题、填空题时发挥奇特功效,具体操作时,应注意以下几点:1.准确画出函数图象,注意函数的定义域;2.用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图)然后作出两个函数的图象,由图求解。
四、在运用数形结合思想分析问题和解决问题时,需做到以下四点:1.要清楚一些概念和运算的几何意义以及曲线的代数特征;2.要恰当设参,合理用参,建立关系,做好转化;3.要正确确定参数的取值围,以防重复和遗漏;4.精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解。
高考数学数形结合思想分析与讲解所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系;(3)曲线与方程的对应关系;((4)以几何元素和几何条件为背景建立起来的概念,如复数、三角函数等;(5)所给的等式或代数式的结构含有明显的几何意义。
以“形”变“数”虽然形有形象、直观的优点,但在定量方面还必须借助代数的计算,特别是对于较复杂的“形”,不但要正确的把图形数字化,而且还要留心观察图形的特点,发掘题目中的隐含条件,充分利用图形的性质或几何意义,把“形”正确表示成“数”的形式,进行分析计算。
解题的基本思路:明确题中所给条件和所求的目标,分析已给出的条件和所求目标的特点和性质,理解条件或目标在图形中的重要几何意义,用已学过的知识正确的将题中用到的图形的用代数式表达出来,再根据条件和结论的联系,利用相应的公式或定理等。
“形”“数”互变“形”“数”互变是指在有些数学问题中不仅仅是简单的以“数”变“形”或以“形”变“数”而是需要“形”“数”互相变换,不但要想到由“形”的直观变为“数”的严密还要由“数”的严密联系到“形”的直观。
解决这类问题往往需要从已知和结论同时出发,认真分析找出内在的“形”“数”互变。
一般方法是看“形”思“数”、见“数”想“形”。
实质就是以“数”化“形”、以“形”变“数”的结合。
数形结合思想是一种可使复杂问题简单化、抽象问题具体化的常用的数学思想方法。
要想提高学生运用数形结合思想的能力,需要教师耐心细致的引导学生学会联系数形结合思想、理解数形结合思想、运用数形结合思想、掌握数形结合思想。
基础自测:1.已知0 a 1,则方程 a x log a x 的实数根的个数为()A.1 个B.2 个C.3 个D.1 个或 2个或 3个2.设数集Mx m x m 3x n1,且 M,N 都是集合,数集 N x n4 3x 0 x 1 的子集,如果把 b a叫做集合x a x b 的“长度”,那么集合 M N 的长度的最小值为1B. 2 1 5A.3 C. D.3 12 123.若奇函数 f (x) 在 0, 上的增函数,有f ( 3) 0 ,则x x f ( x) 0 ()A. x x 3或3 x 0B. x 0 x 3或 x 3C. x x 3或x 3D. x 0 x 3或 3 x 04.当x, y满足条件x y 1时,变量u x 的取值范围是()y 3A. 3,3B. 1 , 1C. 1 , 1D. 1 , 13 3 2 3 3 2参考解析:1.解析在同一坐标系下,画出函数y=a|x|,y=|logax| 的图象,则图象有两个交点 .2.解析 由题意知 .集合 M 的“长度”为3,集合 N4的“长度”为1,而集合 {x|0 ≤ x ≤1} 的“长度”331,b为 1;设线段 AB=1 , a, a , b 可在线段44AB 上自由滑动, a , b 重叠部分的长度即为 M ∩N.如图,显然当 a ,b 各自靠近 AB 两端时,重叠部分最短 ,其值为3 1 1 1 .4 312所以1 1 , 00 , 1.答案 Ck33综上所述,u1 ,1333.解析 由 f(x) 为奇函数且 f(-3)=0 ,得 f(3)=0.又 f(x) 在( 0,+∞ )上是增函数,据上条件做出满足题意的 y=f(x) 草图,如图,如右图中找出f(x) 与 x 异号的部分,可以看出 x · f(x) < 0 的解集为 {x|0 < x < 3 或 -3<x < 0}. 答案 D4.解析 由题意在坐标系下画出 |x|+|y|≤ 1 的图象如右图阴影部分,①若 x=0 时, |y|≤ 1,此时 u=0; ②若 x ≠ 0 时,变量可看成点 A(0, 3)与可行域内的点 B 连线斜率 k 的 倒数 ,而 k ∈ (-∞ ,-3] ∪ [3,+ ∞),典型例题讲解题型一代数问题“几何化”——以形助数【例 1】求函数 A 2m 46m 的值域。
难点37 数形结合思想数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合.应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决.运用这一数学思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征.●难点磁场1.曲线y =1+24x - (–2≤x ≤2)与直线y =r (x –2)+4有两个交点时,实数r 的取值范围 .2.设f (x )=x 2–2ax +2,当x ∈[–1,+∞)时,f (x )>a 恒成立,求a 的取值范围. ●案例探究[例1]设A ={x |–2≤x ≤a },B ={y |y =2x +3,且x ∈A },C ={z |z =x 2,且x ∈A },若C ⊆B ,求实数a 的取值范围.命题意图:本题借助数形结合,考查有关集合关系运算的题目.属★★★★级题目. 知识依托:解决本题的关键是依靠一元二次函数在区间上的值域求法确定集合C .进而将C ⊆B 用不等式这一数学语言加以转化.错解分析:考生在确定z =x 2,x ∈[–2,a ]的值域是易出错,不能分类而论.巧妙观察图象将是上策.不能漏掉a <–2这一种特殊情形.技巧与方法:解决集合问题首先看清元素究竟是什么,然后再把集合语言“翻译”为一般的数学语言,进而分析条件与结论特点,再将其转化为图形语言,利用数形结合的思想来解决.解:∵y =2x +3在[–2, a ]上是增函数∴–1≤y ≤2a +3,即B ={y |–1≤y ≤2a +3}作出z =x 2的图象,该函数定义域右端点x =a 有三种不同的位置情况如下:①当–2≤a ≤0时,a 2≤z ≤4即C ={z |z 2≤z ≤4} 要使C ⊆B ,必须且只须2a +3≥4得a ≥21与–2≤a <0矛盾. ②当0≤a ≤2时,0≤z ≤4即C ={z |0≤z ≤4},要使C ⊆B ,由图可知:必须且只需⎩⎨⎧≤≤≥+20432a a解得21≤a ≤2 ③当a >2时,0≤z ≤a 2,即C ={z |0≤z ≤a 2},要使C ⊆B 必须且只需⎩⎨⎧>+≤2322a a a 解得2<a ≤3 ④当a <–2时,A =∅此时B =C =∅,则C ⊆B 成立. 综上所述,a 的取值范围是(–∞,–2)∪[21,3]. [例2]已知a cos α+b sin α=c , a cos β+b sin β=c (ab ≠0,α–β≠k π, k ∈Z )求证:22222cosb ac +=-βα. 命题意图:本题主要考查数学代数式几何意义的转换能力.属★★★★★级题目. 知识依托:解决此题的关键在于由条件式的结构联想到直线方程.进而由A 、B 两点坐标特点知其在单位圆上.错解分析:考生不易联想到条件式的几何意义,是为瓶颈之一.如何巧妙利用其几何意义是为瓶颈之二.技巧与方法:善于发现条件的几何意义,还要根据图形的性质分析清楚结论的几 何意义,这样才能巧用数形结合方法完成解题.证明:在平面直角坐标系中,点A (cos α,sin α)与点B (cos β,sin β)是直线l :ax +by =c 与单位圆x 2+y 2=1的两个交点如图.从而:|AB |2=(cos α–cos β)2+(sin α–sin β)2 =2–2cos(α–β)又∵单位圆的圆心到直线l 的距离22||ba c d +=由平面几何知识知|OA |2–(21|AB |)2=d 2即 ba c d +==---2224)cos(221βα∴22222cosb ac +=-βα. ●锦囊妙计应用数形结合的思想,应注意以下数与形的转化: (1)集合的运算及韦恩图 (2)函数及其图象(3)数列通项及求和公式的函数特征及函数图象 (4)方程(多指二元方程)及方程的曲线以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法.以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合.●歼灭难点训练 一、选择题1.(★★★★)方程sin(x –4π)=41x 的实数解的个数是( ) A.2 B.3 C.4 D.以上均不对2.(★★★★★)已知f (x )=(x –a )(x –b )–2(其中a <b ),且α、β是方程f (x )=0的两根(α<β),则实数a 、b 、α、β的大小关系为( )A.α<a <b <βB.α<a <β<bC.a <α<b <βD.a <α<β<b 二、填空题 3.(★★★★★)(4cos θ+3–2t )2+(3sin θ–1+2t )2,(θ、t 为参数)的最大值是 . 4.(★★★★★)已知集合A ={x |5–x ≥)1(2-x },B ={x |x 2–ax ≤x –a },当A B 时,则a 的取值范围是 . 三、解答题5.(★★★★)设关于x 的方程sin x +3cos x +a =0在(0,π)内有相异解α、β. (1)求a 的取值范围; (2)求tan(α+β)的值.6.(★★★★)设A ={(x ,y )|y =222x a -,a >0},B ={(x ,y )|(x –1)2+(y –3)2=a 2,a >0},且A ∩B ≠∅,求a 的最大值与最小值.7.(★★★★)已知A (1,1)为椭圆5922y x +=1内一点,F 1为椭圆左焦点,P 为椭圆上一动点.求|PF 1|+|P A |的最大值和最小值.8.(★★★★★)把一个长、宽、高分别为25 cm 、20 cm 、5 cm 的长方体木盒从一个正方形窗口穿过,那么正方形窗口的边长至少应为多少?参 考 答 案●难点磁场1.解析:方程y =1+24x -的曲线为半圆,y =r (x –2)+4为过(2,4)的直线.答案:(43,125] 2.解法一:由f (x )>a ,在[–1,+∞)上恒成立⇔x 2–2ax +2–a >0在[–1,+∞)上恒成立.考查函数g (x )=x 2–2ax +2–a 的图象在[–1,+∞]时位于x 轴上方.如图两种情况:不等式的成立条件是:(1)Δ=4a 2–4(2–a )<0⇒a ∈(–2,1)(2)⇒⎪⎩⎪⎨⎧>--<≥∆0)1(10g a a ∈(–3,–2],综上所述a ∈(–3,1). 解法二:由f (x )>a ⇔x 2+2>a (2x +1)令y 1=x 2+2,y 2=a (2x +1),在同一坐标系中作出两个函数的图象. 如图满足条件的直线l 位于l 1与l 2之间,而直线l 1、l 2对应的a 值(即直线的斜率)分别为1,–3,故直线l 对应的a ∈(–3,1). ●歼灭难点训练一、1.解析:在同一坐标系内作出y 1=sin(x –4π)与y 2=41x 的图象如图.答案:B2.解析:a ,b 是方程g (x )=(x –a )(x –b )=0的两根,在同一坐标系中作出函数f (x )、g (x )的图象如图所示:答案:A二、3.解析:联想到距离公式,两点坐标为A (4cos θ,3sin θ),B (2t –3,1–2t ) 点A 的几何图形是椭圆,点B 表示直线. 考虑用点到直线的距离公式求解. 答案:2274.解析:解得A ={x |x ≥9或x ≤3},B ={x |(x –a )(x –1)≤0},画数轴可得. 答案:a >3三、5.解:①作出y =sin(x +3π)(x ∈(0,π))及y =–2a 的图象,知当|–2a |<1且–2a ≠23时,曲线与直线有两个交点,故a ∈(–2,–3)∪(–3,2). ②把sin α+3cos α=–a ,sin β+3cos β=–a 相减得tan 332=+βα, 故tan(α+β)=3.6.解:∵集合A 中的元素构成的图形是以原点O 为圆心,2a 为半径的半圆;集合B 中的元素是以点O ′(1,3)为圆心,a 为半径的圆.如图所示∵A ∩B ≠∅,∴半圆O 和圆O ′有公共点. 显然当半圆O 和圆O ′外切时,a 最小2a +a =|OO ′|=2,∴a min =22–2当半圆O 与圆O ′内切时,半圆O 的半径最大,即2a 最大. 此时2a –a =|OO ′|=2,∴a max =22+2.7.解:由15922=+y x 可知a =3,b =5,c =2,左焦点F 1(–2,0),右焦点F 2(2,0).由椭圆定义,|PF 1|=2a –|PF 2|=6–|PF 2|,∴|PF 1|+|P A |=6–|PF 2|+|P A |=6+|P A |–|PF 2| 如图:由||P A |–|PF 2||≤|AF 2|=2)10()12(22=-+-知–2≤|P A |–|PF 2|≤2.当P 在AF 2延长线上的P 2处时,取右“=”号; 当P 在AF 2的反向延长线的P 1处时,取左“=”号. 即|P A |–|PF 2|的最大、最小值分别为2,–2. 于是|PF 1|+|P A |的最大值是6+2,最小值是6–2.8.解:本题实际上是求正方形窗口边长最小值. 由于长方体各个面中宽和高所在的面的边长最小,所以应由这个面对称地穿过窗口才能使正方形窗口边长尽量地小.如图:设AE =x ,BE =y ,则有AE =AH =CF =CG =x ,BE =BF =DG =DH =y∴⎪⎩⎪⎨⎧==⇒⎪⎩⎪⎨⎧=+=+225210520222222y x y y x x ∴2225225210=+=+=y x AB .。