2011年江西省九江市中考数学模拟试卷
- 格式:doc
- 大小:441.50 KB
- 文档页数:20
A 1NM CBAB 1(第16题)(第14题) 江西省2011年中等学校招生考试数学模拟试卷一、选择题(本大题共8题,每小题3分,共24分) 1.-3的倒数是( )A 、13 B 、 —13 C 、±3 D 、±132.下列计算正确的是( ).A 、20=102 B = C 、224=- D 3=-3.预计2010年上海世博会的参观人数将达7000万人次,“7000万”用科学计数法可表示为…………………( )A .3710⨯; B .6710⨯; C .7710⨯; D .8710⨯.4.下列方程中,有两个不相等实数根的是……………………………( )A .2440x x -+= ;B .2310x x +-=; C .210x x ++=;D .2230x x -+=. 5.下面左图所示的几何体的俯视图是( )6.下列命题中是真命题的是( )A .经过平面内任意三点可作一个圆;B .相等的弧所对的弦相等C .相等的圆心角所对的弧一定相等;D .内切两圆的圆心距等于两圆半径的和.7.将一张矩形纸对折再对折(如图),然后沿着图中的虚 线剪下,得到①、②两部分,将①展开后得到的平面图形是( )A 、 矩形 B 、 三角形 C 、 梯形 D 、 菱形8.如图所示,直角三角形三边上的半圆面积从小到大依次记为1S 、2S 、3S ,则1S 、2S 、3S 的关系是( )A .321S S S =+B .232221S S S =+ C .321S S S >+ D .321S S S <+ 二、填空题(本大题共8题,每小题3分,共24分) 9.因式分解:22x x -= .10、选做题(从下面两题中只选做一题,如果做了两题的,只按第(1)题评分)。
(1)使式子21-x 有意义的x 取值范围是___________.(2)用计算器计算:510+≈_________.(结果保留三个有效数字) 11.方程组233x y x y -=⎧⎨+=⎩,的解是 .12.某班派9名同学参加拔河比赛,他们的体重分别是(单位:千克):67,59,61,59,63,57,70,59,65,这组数据的众数和中位数分别是_________ 13.某公司承担了制作600个上海世博会道路交通指引标志的任务, 原计划x 天完成,实际平均每天多制作了10个,因此提前5天完成任务。
江西2011中考预测卷·数学本套试题在遵循了2010年江西中考试题的命题原则的基础上,在选题上较为贴近2010年的试题,同时也涉及江西近几年常考考点,既注重对学生的基本知识和基本能力考查,又突出考查了学生实际应用的能力和归纳探究的能力,突显出中考命题对实际教学的导向作用,彰显了中考的人文精神,为引导和促进学生和谐发展作了有益的尝试.让学生进一步体会到数学在实际生活中的应用.试题主要亮点题展示如下: 亮 点 题号 亮点描述新信息 21,23 第21题取材于日常生活中的洗衣机洗涤效果问题,有效地考查了学生学数学用数学的能力;第23题以日常生活中的电工师傅安装顶灯为背景,很好地考查了建立相似三角形模型的能力.地方特色11 选做题学生可根据自己善于做哪题就选择哪题,体现了关怀。
易错题13 第13题易学生思维定势只考虑一种情形,忽略另一种情形 较难题25 灵活运用所学知识,将陌生的问题情境转化为我们熟悉或处理过的题目来解答.强化学生应用数学知识分析问题和解决问题的意识. 新特点加强了对圆和相似三角形的考查. 强预测 8 2010年考查的是对三视图的判别,预计2011年将会考查根据三视图判定几何体的数量一、选择题(本大题共8个小题,每小题3分,共24分)每小题只有一个正确选项)1.5-的相反数是() A .5 B .-5 C .51 D .-51 B 【解析】本题考查数的绝对值与相反数的概念 .解题思路:5- =5,所以它的相反数是-5【归纳总结】本题属于基础题,主要考查实数的有关概念,考查知识点单一.2.—22a +2(3)a -的结果为() A 2a B .72a C .—52a D .—112aB 【解析】本题考查整式的运算.解题思路;先将幂的乘方算出,即2(3)a -=2(3)-2a =92a ,再合并同类项 ,即—22a +92a =(—2+9)2a =72a 【技巧点拨】本题属于基础题,主要考查学生对幂的运算及加法运算的掌握,但对负数的幂运算容易出错,要注意正确理解法则。
2011年中等学校招生考试·数学一、选择题(本大题共8个小题,每小题只有一个选项符合题意。
每小题3分,共24分)1、 3 的相反数的是()A.13B.—3 C.33D.— 3D【解析】考查点:本题考查了有关相反数的概念。
解题思路: 3 加下列哪个数和为零。
2、本卷第17~25题的9道题中,每道题所赋分数的众数和中位数分别是()A.7,7B.8,8C.8,9D.8,7B【解析】考查点:统计知识中的众数和中位数的概念。
解题思路:将样本数据从小到大排列后最中间的这个数是中位数(若有偶数个数据,取中间两数的平均数),出现次数最多的是众数。
3、世博江西馆凭借“景德镇瓷”元素在上海世博会上大放光彩,下图为景德镇产的插花彩瓶,几何体形状如图2所示,其左视图正确的是()D【解析】考查点:三视图.解题思路:根据俯视图的定义,他是曲边棱柱。
【易错提示】本题考查了三视图的概念,题小但新颖且有一定思考,学生很容易错选A或B。
4、如图有三条绳子穿过一木板,两人分别站在木板的左、右两边,各选该边的一条绳子。
若每边每条绳子被选中的机会相等,则两人选到同一条绳子的概率为()A.13B.12C.19D.23A【解析】考查点:概率的计算。
解题思路:不管左边选哪一条绳子,右边选到与左边同一条绳子的概率均为13,反过来也一样。
【易错提示】本题考查了古典概型概率问题,学生很容易出现左右两边分别选一条绳子的概率都是13,所以左右两边选一条绳子的概率是13×13=19的错误。
5、如图1,BC∥DE,∠1=108°, ∠AED=75°, 则∠A的大小是()A.23°B.30°C.33°D.60°C【解析】考查点:两直线平行性质,三角形内外角关系.解题思路:由BC∥DE得∠AED=∠C=75°, ∠A+∠C=∠1=108°, ∠A=108°-75°=33°6、下列计算正确的是()A.a—(3b—a)= —3b B.a+a4=a5C.623a a a÷=D.3226(ab)a b=D【解析】考查点:本题考查了有关去括号、合并同类项,幂的运算,乘方的计算。
江西省2011年数学中考样卷(三)(说明:本卷共有六个大题,25个小题,全卷满分120分,考试时间120分钟.) 一、选择题:(本大题8小题,每小题3分,共24分.)每小题有且只有一个正 确选项,请将正确选项的代号填在题后的括号内. 1.如果103+=,则“”表示的数应是( ★ )A .3-B .3C .13D .13- 2.下列计算正确的是( ★ )A .358-+=-B . 0(2)0-=C . 21525-=D .1313⎛⎫÷-=- ⎪⎝⎭3.函数1y x =+的自变量x 的取值范围是( ★ )A .1x ≥-B .1x >-C .0x >D .1x ≠- 4.如图,已知直线m ∥n ,直角三角板ABC 的顶点A 在直线m 上,则∠α等于( ★ )A .21°B .48°C .58°D .30°5.在直角坐标系中,将双曲线3y x=绕着坐标原点旋转90°后,所得到的双曲线的解析式是( ★ ) A .3y x =B .6y x =C .3y x =-D .6y x=- 6.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字 1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止. 转动转盘一次,当转盘停止转动时,记指针指向标有奇数所在区域 的概率为P (奇数),则P (奇数)等于( ★ )A .12B .35C . 25D .237.对于抛物线2(0) y ax bx c a =++≠,下列说法错误的是( ★ )A .若顶点在x 轴下方,则一元二次方程20 ax bx c ++=有两个不相等的实数根 B .若抛物线经过原点,则一元二次方程20 ax bx c ++=必有一根为0 C .若0a b ⋅>,则抛物线的对称轴必在y 轴的左侧15 43 2第6题图 第4题图 α42︒nA BCmD .若2=4+b a c ,则一元二次方程20 ax bx c ++=,必有一根为-28.如图,在平面直角坐标系中,点B (1,1),半径为1、圆心角为90°的扇形外周有一动点P ,沿A →B →C →A 运动一圈,则点P 的纵坐标y 随点P 走过的路程s 之间的函数关系用图象表示大致是( ★ )二、填空题:(本大题8小题,每小题3分,共24分) 9.计算:|2|2cos45--︒=___★___.10.长度单位1纳米910-=米,目前发现一种新型病毒直径为23150纳米,用科学记数法表示该病毒直径是 2.3×510- 米(保留两个有效数字)11.如图,已知⊙O 的半径为2cm ,点C 是直径AB 的延长线上一点,且12BC AB =,过点C 作⊙O 的切线,切点为D ,则CD = ★ cm . 12.从10名学生(6男4女,其中小芳为女生)中,抽选6人参加 “防震知识”竞赛.若规定男生选3人,则“选到小芳”的事件应该 是 ★ (选填“必然事件、不可能事件、随机事件”).13.刘谦的魔术表演风靡全国,小明也学起了刘谦、发明了一个魔术盒,当任意实数对),(b a 进入其中时,会得到一个新的实数223a b -+,例如:把(3,2)-放入其中,就会得到2(3)2238--⨯+=. 现将实数对(,2)m m -(0)m <放入其中,得到实数24,则m =★ .14.如图所示,一张矩形纸片沿BC 折叠,顶点A 落在点A ′处,再过点A ′折叠使折痕DE ∥BC ,若AB =4,AC =3,则△ADE 的面积是 ★ .15.如图,已知正方形边长为4,以A 为圆心,AB 为半径作 BD,M 是BC 的中点,过点M 2121y xoC B P A 第8题图 s21o12y 34s21o12y 34s21o12y 3443y 21o12sA .B .C .D .DOABC 第11题图作EM ⊥BC 交 BD于点E ,则 BE 的长为 ★ .16.如图,⊙O 的半径OA ⊥弦BC ,且∠AOB =60°,D 是⊙O 上另一点,AD 与BC 相交于点E ,若DC =DE ,则正确结论的序号是 (多填或错填得0分,少填酌情给分). ① AB AC =; ②105ACD ∠=︒; ③AB BE <; ④△AEC ∽△ACD . 三、(本大题共3小题,每小题6分,共18分)17.先化简,再求值:22222222a ab b a b a ba ab a b ++---÷+++,其中3,2a b =-=.第15题图EMDABC 第14题图A/ABCD E 第16题图EODCBA18.解不等式组35,4313x x +≤⎧⎪+⎨>-⎪⎩,并求它的整数解.19.如图,点A, D, B,E 在同一条直线上,且AD=BE, ∠A=∠FDE,则△ABC≌△DEF.判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题请给出一个适当的条件使它成为真命题,并加以证明.四、(本大题共2小题,每小题8分,共16分)20.如图,在平面直角坐标系中,A (2,1),B (5,2),C (3,4)是菱形ABDC 的三个顶点.(1)在图中画出菱形ABDC 并写出菱形的顶点D 的坐标,并求sin ABC ∠的值; (2)以原点O 为位似中心,将菱形ABDC 放大为原来的2倍,在第一象限内画出放大后的图形,并写出点D 的对应点D ′的坐标.12 1 2 34 5 6 7 8 9 10 11 1110 9 8 7 6 5 4 3 2 1C BAyxO 第19题图21.宣传交通安全知识,争做安全小卫士.某校进行“交通安全知识”宣传培训后进行了一次测试.学生考分按标准划分为不合格、合格、良好、优秀四个等级,为了解全校的考试情况,对在校的学生随机抽样调查,得到图(1)的条形统计图,请结合统计图回答下列问题:(1)该校抽样调查的学生人数为_______名;抽样中考生分数的中位数所在等级是________;(2)抽样中不及格的人数是多少?占被调查人数的百分比是多少?(3)若已知该校九年级有学生500名,图(2)是各年级人数占全校人数百分比的扇形图(图中圆心角被等分),请你估计全校优良(良好与优秀)的人数约有多少人?人数九年级八年级七年级九年级八年级七年级图(2)10优秀等级图(1)良好及格不及格81418第21题图五、(本大题共2小题,每小题9分,共18分)22.如图,在Rt△ABC 中,∠ACB =90°,AC =5,CB =12,AD 是△ABC 的角平分线,过A 、C 、D 三点的圆与斜边AB 交于点E ,连接DE .(1)求证:AC =AE ; (2)求△ACD 外接圆的直径.第22题图ACBDE23.书籍是人类进步的阶梯!为爱护书一般都将书本用封皮包好.问题1:现有精装词典长、宽、厚尺寸如图(1)所示(单位:cm ),若按图(2)的包书方式,将封面和封底各折进去3cm .试用含a 、b 、c 的代数式分别表示词典封皮(包书纸)的长是 cm ,宽是___________cm ;问题2:在如图(4)的矩形包书纸皮示意图中,虚线为折痕,阴影是裁剪掉的部分,四角均为大小相同的正方形,正方形的边长即为折叠进去的宽度.(1)若有一数学课本长为26cm 、宽为18.5cm 、厚为1cm ,小海宝用一张面积为1260 cm2的矩形纸包好了这本数学书,封皮展开后如图(4)所示.若设正方形的边长(即折叠的宽度)为x cm ,则包书纸长为 cm ,宽为 cm (用含x 的代数式表示).(2)请帮小海宝列好方程,求出第(1)题中小正方形的边长x cm .图(4)26cm厚1cm18.5cm 第23题问题2图图(3)封面封底第23题问题1图图(1)图(2)封面封底3cm3cmc cm六、(本大题共2小题,每小题10分,共20分)24.矩形O ABC 的顶点A (-8,0)、C (0,6) ,点D 是BC 边上的中点,抛物线2y ax bx =+经过A 、D 两点,如图所示.(1)求点D 关于y 轴的对称点D '的坐标及a 、b 的值; (2)在y 轴上取一点P , 使PA +PD 长度最短, 求点P 的坐标;(3)将抛物线2y ax bx =+向下平移,记平移后点A 的对应点为1A ,点D 的对应点为1D ,当抛物线平移到某个位置时,恰好使得点O 是y 轴上到11A D 、两点距离之和11OA OD +最短的一点,求此抛物线的解析式.OD /ABC Dx6y -8第24题图25.在Rt△ABC中,∠ACB=90°,AB=4,D为AB的中点,将一直角△DEF纸片平放在△ACB所在的平面上,且使直角顶点重合于点D(C始终在△DEF内部),设纸片的两直角边分别与AC、BC相交于M、N.(1)当∠A=∠NDB=45°时,四边形MDNC的面积为;(2)当∠A=45°,∠NDB≠45°时,四边形MDNC的面积是否与(1)相同?说明理由;(3)当∠A=∠NDB=30°时,四边形MDNC的面积为;(4)当∠A=30°,∠NDB≠30°时,四边形MDNC的面积是否发生变化?若不发生变化(即与(3)相同),说明理由,若发生变化,设四边形MDNC的面积为S,BN为x,求S与x之间的关系.参考答案及评分标准一、选择题(本大题共8小题,每小题3分,共24分)1.D 2.C 3.A 4.B 5.C 6.B 7.A 8.C 二、填空题(本大题共8小题,每小题3分,共24分)9.0 10.2.3×510- 11.23 12.随机事件 13.-7 14.24 15.23π16.①、②、④(多填或错填不给分,少填一个扣1分) 三、(本大题共3小题,每小题6分,共18分)17.解:原式=()2()()()22a b a b a b a a b a b a b++--+++- …………………………… 3分=22a ba +-+ ………………………………………………… 4分 =ab a+ …………………………………………… 5分当3,2a b =-=时,32133a b a +-+==-.……………………………… 6分 18.解:35, (1)43 1 (2)3x x +≤⎧⎪+⎨>-⎪⎩解不等式(1)得: x ≤2 ; ……………………………………… 2分 解不等式(2)得: 1.5x >-; ……………………………………… 4分 ∴不等式组的解集为: 1.52x -<≤; ……………………………… 5分 ∴其整数解有1,0,1,2- .………………………………………………… 6分19.解:是假命题 ………………………………………………………………………2分添加条件如:∠E=∠CBA (不唯一) ………………………………………3分 证明:∵AD=BE ∴AD+DB=BE+DB即AB=DE ……………………………………………………………4分 在△CAB 和△FDE 中∠A=∠FDE,AB=DE,∠E=∠CBA∴△CAB≌△FDE…………………………………………6分四、(本大题共2小题,每小题8分,共16分) 20.解:(1)画对菱形…………………………………………………………………… 1分 点D 坐标为(6,5),…… 2分如图,10AB AC ==,22BC =; 过点A 作AP ⊥BC 于点P ,则2,22BP AP ==∴2225sin 510AP ABC AB ∠===.……………………………………………4分 (2)如图所示,D ′(12,10).(画图2分,求出D ′坐标2分)……………… 8分21、解:(1)50,良好; …………………………………… 2分 (2)8人,8100%16%50⨯= ; …………………………………… 5分 (3)4500150012÷=, …………………………………… 6分 ()28150084050⨯=人 . ………………………… 8分五、(本大题共2小题,每小题9分,共18分)22.(1)证明:∵∠ACB =90°, ∴AD 为直径. …………………… 1分又∵AD 是△ABC 的角平分线,∴ CD DE =,∴ AC AE = ,………… 2分∴在同一个⊙O 中,AC =AE ……………………… 3分(2)解:∵AC =5,CB =12,∴AB =222251213AC CB +=+=,… 4分∵AE =AC =5,∴BE =AB -AE =13-5=8, ……………………… 5分 ∵AD 是直径,∴∠AED =∠ACB =90°,………………………6分 ∵∠B =∠B ,∴△ABC ∽△DBE , …………………… 7分 ∴AC BC DE BE =,∴ DE =103, …………………………… 8分 ∴AD =222210551333AE DE ⎛⎫+=+= ⎪⎝⎭……………… 9分 D PD/O xyABC 12 3 4 5 6 7 8 9 10 11 11 10 9 8 7 6 5 4 3 2 1 12∴△ACD 外接圆的直径为5133. 23.解:问题1 :()26 cm b c ++, cm a ……………………… 3分问题2 :(1)238, 226x x ++ , ……………………… 5分 (2) 由题意,得: ()()2382261260x x ++= ;………… 7分解得:122,34(x x ==-不符合题意,舍去); ………………… 8分∴ x =2,答:小正方形的边长为2cm . ………………… 9分六、(本大题共2小题,每小题10分,共20分) 24.解:(1)由矩形的性质可知:B (-8,6)∴D (-4,6); 点D 关于y 轴对称点D ′(4,6)…………………… 1分 将A (-8,0)、D (-4,6)代入2y ax bx =+,得:36480 816463a b a a b b ⎧-==-⎧⎪∴⎨⎨-=⎩⎪=-⎩; …………………………3分 (2)设直线AD ′的解析式为y kx n =+,则:∴80,46;k n k n -+=⎧⎨+=⎩ 解得:1,24;k n ⎧=⎪⎨⎪=⎩ ………………………… 5分∴直线142y x =+与y 轴交于点(0,4),所以点P (0,4);……………7分 (3)解法1:由于OP =4,故将抛物线向下平移4个单位时,有OA 1+OD 1最短;…9分 ∴ 23438y x x +=-- ,即此时的解析式为23348y x x =---;…………10分 解法2:设抛物线向下平移了m 个单位,则A 1(-8,-m ),D 1(-4,6-m ), ∴/1(4,6)D m -令直线/11A D 为//y k x b =+; …………………………………………………8分//////18 2464k k b m k b m b m⎧⎧=-+=-⎪∴⎨⎨+=-⎩⎪=-⎩ ∵点O 为使OA 1+OD 1最短的点,∴/40b m =-= ∴m =4,………………9分即将抛物线向下平移了4个单位; ∴23438y x x +=-- ,即此时的解析式为23348y x x =---. …………10分 25.解:(1) 2; ……………………………………………………2分 (2)相同. …………………………………3分如图2,易证:△MDC≌△NDC,12222BDC CMDN S S ==⨯⨯= 四边形 ……………………………………5分 (3)如图3,133MDNC S DM DN ==⨯= 矩形.……………………………6分(4)发生变化, …………………………7分当∠A=30°,∠BDN≠30°时,如图4,过D 分别作DP⊥AC 于P ,DR⊥BC 于R , ∵∠PDR=∠FDE=90°,∴∠PDM=∠NDR,△DPM∽△DRN,31RN DR PM DP == ∴RN=3PM ,RN=1-x ,PM=13x -, 1114333(1)1322333x S x x -=+--=- . ………………………10分。
2011年江西省中考数学样卷(二)说明:1.本卷共有六个大题,30个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.一、选择题(本大题共8小题,每小题3分,共24分)每小题只有一个正确选项. 1.在0,-l ,2,一1.5这四个数中,是负整数的是( )A. -1B. 0C.2D.-1.52.如图,C 、B 是线段AD 上的两点,若AB =CD ,BC=2AC,那么AC 与CD 的关系是为( )A.CD =2ACB.CD=3ACC.CD=4BDD.不能确定3.如图桌面上一本翻开的书,则其俯视图为( )4.函数x y 24+=中,自变量x 的取值范围是( )A.2x >-B.2x -≥C.2x ≠-D.2x -≤5.把多项式a a a +-232分解因式,结果正确的是( ) A.a a a +-)2(2B.)12(2+-a a aC.2)1(+a a D.2)1(-a a6.如图,P 是∠α的边OA 上一点,且点P 垂直于x 轴,垂足为B ,OB =2, PB =5,则cos α等于 ( )A.32 B. 35 C. 25 D. 352 7.如图,O 是BC 、AD 的中点,∠A=∠D,∠A>∠B,那么线段AB 可以看成是由线段DC 经过某种图形变换得到的.这种图形变换是 ( ) A .平移 B .以过O 点且平行于AB 的直线为折痕对折 C .以O 为旋转中心旋转360° D.以O 为旋转中心旋转180° 8.已知四边形ABCD 是平行四边形,下列结论中不正确的是( ) A.当AB=BC 时,它是菱形 B.当AC⊥BD 时,它是菱形 C.当∠ABC=900时,它是矩形 D.当AC=BD 时,它是正方形 二、填空题(本大题共8小题,每小题3分,共24分) 9.计算:23)2(a = .10.2010年上海世界博览会是一届规模空前的人类盛会,共有246个国家和国际组织参展,逾7308万人次的海内外游客参观,7308万可用科学计数法表示为 万. 11. 已知点A (l ,-2),若A 、B 两点关于x 轴对称,则B 点的坐标为________. 12.如果32-=+b a ,那么代数式b a 422--的值是 . 13.将一张矩型纸片按图中方式折叠,若∠1 = 50°, 则∠2为 度.14.点),1(m P - 、),2(n Q 是直线x y 2-=上的两点,则m 与n 的大小关系是 . 15.如图,点A 、B 是反比例函数3y x=(0x >)图象上的两个点,在△AOB 中,OA=OB,BD 垂直于x 轴,垂足为D ,且AB =2BD ,则△AOB 的面积为 .16..在四边形中,若有一组对角都为90°,另一组对角不相等的四边形我们称它为“垂直”四边形,那么下列说法正确的序号是 . (多填或错填得0分,少填酌情给分).① “垂直”四边形对角互补; ②“垂直”四边形对角线互相垂直;③“垂直”四边形不可能成为梯形;④ 以“垂直”四边形的非直角顶点为端点的线段若平分这组对角,那么该“垂直”四边形有两组邻边相等. 三、(本大题共3个小题,每小题各7分,共20分)17.先化简,再求值:13+a a -1+a a ,其中a =5.18.如图,已知:GF=GB,AF=DB,∠A=∠D,求证:CG=EG .19.上电脑课时,有一排有四台电脑,同学A先坐在如图所示的一台电脑前座位上,B、C、D 三位同学随机坐到其他三个座位上.求A与B两同学坐在相邻电脑前座位上的概率.四、(本大题共2个小题,每小题8分,共16分)20.已知关于x的一元二次方程x2-2x-m+1=0.(1) 若x=3是此方程的一个根,求m的值和它的另一个根;(2) 若方程x2-2x-m+1=0有两个不相等的实数根,试判断另一个关于x的一元二次方程x2-(m-2)x+1-2m=0的根的情况.21.某校数学学习小组利用双休日对家乡县城区人们的交通意识进行调研.在城区中心交通最拥挤的一个十字路口,观察、统计白天抽取几个时段中闯红灯的人次.制作了如下的两个数据统计图.(1)若老年人这一天闯红灯人次为18人,求图1提供的五个数据(各时段闯红灯人次)的中位数并补全条形图;(2)估计一个月(按30天计算)白天在该十字路口闯红灯的未成年人约有多少人次?(3)请你根据统计图提供的信息向交通管理部门提出一条合理化建议.五、(本大题共2个小题,每小题9分,共18分)22.如图,已知△PDC是⊙O的内接三角形,CP=CD,若将△PCD绕点P顺时针旋转,当点C刚落在⊙O上的A处时,停止旋转,此时点D落在点B处.(1)求证:PB与⊙O相切;(2)当PD=23, ∠DPC=30°时,求⊙O的半径长.23.某校科技小组为参加央视《百科探秘》栏目的我爱机器人论坛,设计制作了由四个机器人进行舞蹈表演的节目.如图是四个机器人A、B、C、D在6×8在网格(每个小正方形的边长为1米)中表演前的位置,每个机器人由1名小组成员操控,按如图所示的程序同时同样运动,每一步都踩在格点上,步距不小于1米,小于2米.(1)求机器人A完成一次程序走过的路程长;(2)若要使输入点A,输出的点是D点所在的位置,请修改程序 ;(3)由于机器人能量有限,每个机器人走过的路程长不超过100米,在已知程序下,若每跨一步用时0.5秒,机器人完成舞蹈节目最多要进行几次程序(可用计算器计算)?用时大约几分钟以内?六、(本大题共2个小题,每小题10分,共 20分)24.如图,抛物线b ax x y +--=22经过点A (1,0)和点P (3,4).(1)求此抛物线的解析式,写出抛物线与x 轴的交点坐标和顶点坐标,并依此在所给平面直角坐标系中画出抛物线的大致图象;(2)若抛物线与x 轴的另一个交点为B ,现将抛物线向射线AP 方向平移,使P 点落在M 点处,同时抛物线上的B 点落在点D (BD∥PM)处.设抛物线平移前P 、B 之间的曲线部分与平移后M 、D 之间的曲线部分,与线段MP 、BD 所围成的面积为m , 线段 PM 为n ,求m 与n 的函数关系式.25.课题:探究能拼成正多边形的三角形的面积计算公式. 实验:(1)如图1,三角形的三边长分别为a 、b 、c ,∠A =60°,现将六个这样的三角形(设面积为6S )拼成一个六边形,由于大六边形三个角都是∠B +∠C =120°,所以由a 边围成了一个大的正六边形,其面积可计算出为 ;由于所围成的小六边形的边长都是 ,其面积为 ,由此可得6S = .(2)如图2, 三角形的三边长分别为a 、b 、c ,∠A =120°,试用这样的三角形拼成一个正三角形(设面积为3S ),先画出这个正三角形,再推出3S 的计算公式; 推广:(3)对于三角形的三边长分别为a 、b 、c ,当∠A 取什么值时,能拼成一个任意正n 边形吗?如果能,试写出∠A 和三角形的面积n S 的表达式;如果不能,请简要说明理由.参考答案及评分意见说明:1.如果考生的解答与本答案不同,可根据试题的主要考查内容参考评分标准制定相应的评分细则后评卷.2.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后续部分时,如果该步以后的解答未改变这一题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半,如果这一步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.一、选择题(本大题共8小题,每小题3分,共24分) 1.A 2. B 3.C 4.B 5.D 6.A 7. D 8. D 二、填空题(本大题共8小题,每小题3分,共24分)9.64a 10. 310308.7⨯ 11.(l ,2); 12. 8 13.65° 14.m >n 15.3 16. ①③④(多填或错填得0分,少填一个扣1分) 三、(本大题共3小题,每小题各6分,共18分)17.解: 原式=1)1)(1(13+-+=+-a a a a a a a ,…………………………………………………2分 =.)1(2a a a a -=-……………………………………………………………………4分 当a =5时,.552-=-a a ………………………………………………………………………6分 18. 解:∵GF=GB,∴∠GFB=∠GBF,……………………………………………………………………1分 ∵AF =DB ,∴AB=DF,……………………………………………………………………………2分 而∠A=∠D,∴△ACB≌△DEF, BC=FE,……………………………………………………………4分由GF=GB ,可知CG=EG .……………………………………………………………6分 19.解:依题意, B 、C 、D 三个同学在所剩位置上从左至右就坐的方式有如下几种情况: BCD,BDC,CBD,CDB,DBC,DCB,……………………………………………………3分 其中A 与B 相邻而坐的是CBD, C DB,DBC,DCB,…………………………………5分 ∴A 与B 两同学坐在相邻电脑前座位上的概率是.3264=…………………………6分 四、(本大题共2小题,每小题8分,共16分) 20. 解:(1)由已知得,01)3(2)3(2=+--⨯--m ,∴m=16, ………………………………………………………………………………2分 原方程化为,01522=--x x 解得,3,521-==x x ………………………………3分 ∴原方程的另一根为5;………………………………………………………………4分 (2)依题意得,)1(14)2(2+-⨯⨯--m >0,解得m >0,……………………………………………………………………………6分 ∴一元二次方程x 2-(m -2)x+1-2m=0的判别式为,)21(14)2(2m m -⨯⨯--=m m 42+>0,……………………………………7分即一元二次方程x 2-(m -2)x+1-2m=0也有两个不相等的实数根.………………8分 21.解:(1)设12~13时段闯红灯人数为x ,则由题意可得,18)35151530%(15=++++x ,解得x =25,…………………………………………………………………………2分 由此可补全条形图如下:…………………………………………………………3分这一天闯红灯的人数各时段的中位数是15;……………………………………………4分 (2)由于抽查的这一天未成年人约有120×30%=36人次闯红灯,……………………5分 ∴可估计一个月白天在该十字路口闯红灯的未成年人约有36×30=1080人次;…6分 (3)加强对7~8和12~13点,以及17~18点三个时段的交通管理,或加强对中青年人(或来成年人)的交通安全教育.………………………………………………………………8分 五、(本大题共2个小题,每小题9分,共18分) 22.解:(1) 证明:连接OA 、OP, 由旋转可得: △PAB ≌△PCD ,∴PA =PC=DC , ∴ AP PC DC ==,∠AOP=2∠D,∠APO=∠OAP= 018022D -∠又∵∠BPA =∠DPC=∠D , ∴∠BPO=∠BPA+018022D-∠=90°∴PB 与⊙O 相切. ……………………………………………5分(2) 过点A 作AE ⊥PB ,垂足为E ,∵∠BPA =30°, PB =2 3, △PAB 是等腰三角形; ∴BE =EP = 3,…………………………………6分PA=30cos EP =233=2, 又∵PB 与⊙O 相切于点P , ∴∠APO =60°,∴OP =PA =2.……………………………………………………………………9分23. 解:(1) 由程序可知,机器人A 完成一次程序走过的路程为22112+=++;…………………2分 (2)程序可修改为(如右图)…………………………4分(方法多种,酌情给分)(3)设机器人完成舞蹈节目要进行x 次程序, 依题意得,100)22(≤+x ,……………………5分 即x 4.3<100,解得x <17729, ∴机器人完成舞蹈节目最多要进行29次程序,…………7分∵每跨一步用时0.5秒,∴机器人完成舞蹈节目应在0.5×3×29×601≈0.73分钟.………………9分 六、(本大题共2个小题,每小题10分,共20分)24. 解: (1) 抛物线b ax x y +--=22经过点A(1,0)和点P(3,4),∴⎩⎨⎧=+--=+--469,021b a b a 解得⎩⎨⎧-=-=5,3b a ,………………………………………………2分 抛物线与x 轴的交点坐标为(5,0),(1,0),顶点坐标为(3,4)(即P 点),………………4分由此可作出抛物线的大致图象如右;………………5分(2)如图,连结PB,MD,根据平移的性质可知,PB 与MD 平行且相等,四边形MPBD 是平行四边形,阴影部分的面积就是平行四边形MPBD 的面积,………………………………………………………6分过B 点作BE⊥PA,垂足为E,则有sin∠PAB =PA 4=ABBE ,………………………7分 ∵A(1,0)和点P(3,4),∴PA=522422=+,而AB=4,∴BE=5585216=,…………………………9分 ∴平行四边形MPBD,其面积为PM BE ⋅即n m 558=.……………………………10分 25. 解:(1)2233a , b -c ,2)(233c b -, ])([4322c b a --…………………4分 (2)如图2画出正三角形花环,…………………………………………………………5分 ∵大三角形的边长都是a ,小三角形的边长都是b -c ,∴两个三角形都是正三角形,可求得大三角形面积为243a ,小三角形的面积为2)(43c b -,……………………6分 ∴3S =])(4343[3122c b a --=])([12322c b a --,……………………………7分 (3)当∠A =n360时, 能拼成一个任意正n 边形花环,……………………………………8分 此时大正n 边形的面积为nna180tan 42,花环内小正n 边形的面积为nc b n180tan 4)(2-,∴n S =])([180tan 4122c b a n-- .……………………10分。
2011年江西省中考数学样卷(四)说明:本卷共有六个大题,25个小题,全卷满分120分,考试时间120分钟. 一、选择题(本大题共8小题,每小题3分,共24分) 1. 2-的相反数是( ) A .12-B .12C .2-D .2 2.温家宝总理在2010年3月5日的十一届全国人大第三次会议的政府工作报告中指出, 就业形势依然严峻,中央财政拟投入433亿元用于促进就业.433亿用科学记数法表示应为( )A .8103.43⨯ B .91033.4⨯C .101033.4⨯D . 1110433.0⨯3.某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是( )A.31,31B.32,31C.31,32D.32,35 4.不等式组10,2x x ->⎧⎨<⎩的解集是( )A .x >1B .x <2C .1<x <2D .0<x <25.若分式2242x x x--的值为零,则x 的值为( )A. 一2B. 2C. 0D.一2或26.将矩形纸片ABCD 对折, 使点B 与点D 重合,折痕为EF ,连结BE ,则与线段BE 相等的线段条数(不包括BE ,不添加辅助线)有 ( )A. 1B.2C.3D. 4P AOB第7题ABCDEF 第6题7.如图,已知⊙O 是以数轴的原点O 为圆心,半径为1的圆,45AOB ∠=︒,点P (P 与O 不重合)在数轴上运动,若过点P 且与OA 平行的直线与⊙O 有公共点, 设点P 所表示的实数为x ,则x 的取值范围是( C ) A .或01<≤-x 10≤<x B .20≤<xC .2002≤<<≤-x x 或 D . 2>x8.如图,平面直角坐标系中,在边长为1的菱形ABCD 的边 上有一动点P 从点A 出发沿A B C D A →→→→匀速运动一周,则点P 的纵坐标y 与点P 走过的路程S 之间的函数关系用图象表示大致是( )二、填空题 (本大题共8小题,每小题3分,共24分) 9.分解因式=-x 12x 33_ _ _.10. 一元二次方程x x =22的解是 . 11.)30cos 30(tan 60sin ︒-︒︒= .12.如图,直线AB 分别与x 轴、y 轴交于点A (0,3)和点B (-1,0),求直线AB 的 解析式:第8题A B C D图2图1xyOAB -1 313.如图,小明将一张正方形包装纸,剪成图1所示形状,用它包在一个棱长为10dm 的正方体的表面(不考虑接缝),如图2所示.小明所用正方形包装纸的边长至少为 ________________dm .14.二次函数162-+=x x y 的最小值为 .15.一个边长为4㎝的等边三角形ABC 与⊙O 等高,如图放置, ⊙O 与BC 相切于点C , ⊙O 与AC 相交于点E ,则CE 的长为 ㎝.16.已知扇形的圆心角为︒60,半径为1,将它沿着箭头方向无滑动滚动到B A O '''位置, ①点O 到O '的路径是1OO 21O O O O '2; ②点O 到O '的路径是1OO 21O O O O '2; ③点O 在1O 2O 段上运动路线是线段21O O ; ④点O 到O '的所经过的路径长为.34π 以上命题正确的是 . 三、(本大题共3小题,每小题6分,共18分) 17.解分式方程 26111x x x -=+-.⌒ ⌒ ⌒ A B CEO 第15题OAB1O 2O1B2AB 'O 'A '第16题18.在平面直角坐标中,直角三角板,30︒=∠C cm AB 6=,将直角顶点A 放在点(3,1)处,AC ∥轴x ,求经过点C 的反比例函数的解析式.19. 把4张普通扑克牌;方块3,红心6,黑桃10,红心6,洗匀后正面朝下放在桌面上.(1)从中随机抽取一张牌是黑桃的概率是多少?(2)从中随机抽取一张,再从剩下的牌中随机抽取另一张. 请用表格或树状图表示抽取的两张牌牌面数字所有可能出现的结果,并求抽出一对6的概率.yA B CxO第18题四、(本大题共2小题,每小题8分,共16分)20. 为了调查某校全体初中生的视力变化情况,统计了每位初中生连续三年视力检查的结果(如图1),并统计了2010年全校初中生的视力分布情况(如图2、3).(1) 从图1提供的信息用统计知识,预测2011年全校学生的视力在4.9及以下的学生人数(从一个角度预测即可.........); (2)根据3幅图中提供的信息补全图2与图3;(3)学校计划在2011年加强用眼健康方面的教育.并通过治疗, 要求2010年视力在4.9及以下的部分假性近视的学生,视力达到5.0及以上.使2011年学校视力的达标率(视力在5.0及以上就算达标)上升10%,求这个学校在2011年视力好转、达标的假性近视学生的人数.图1图 22010年全校初中生视力分布情况统计图40%21.一张长方形桌子有6个座位. (1) 按甲方式将桌子拼在一起.3张桌子拼在一起共有 个座位,n 张桌子拼在一起共有 个座位; (2) 按乙方式将桌子拼在一起.3张桌子拼在一起共有 个座位,m 张桌子拼在一起共有 个座位; (3)某食堂有A ,B 两个餐厅,现有200张这样的长方形桌子,计划把这些桌子全放在两个餐厅,每个餐厅都要放有桌子.将a 张桌子放在A 餐厅,按甲方式每6张拼成1张大桌子;将其余桌子都放在B 餐厅,按乙方式每4张桌子拼成1张大桌子,若两个餐厅一共有790个座位,问A ,B 两个餐厅各有多少个座位?………甲方式:………乙方式:五、(本大题共2小题,每小题9分,共18分)22.如图, ⊙O的半径为4㎝,AB是⊙O的直径,BC切⊙O于点B ,且BC=4㎝,当点P在⊙O上运动时,是否存在点P,使得△PBC为等腰三角形,若存在,有几个符合条件的点P,并分别求出点P到线段BC的距离;若不存在,请说明理由.AoB C(第22题)23.已知直线b a ⊥于O ,现将矩形ABCD 和矩形EFGH ,如图1放置,直线BE 分别交直线b a ,于M N ,.(1)当矩形ABCD≌矩形EFGH 时,(如图1) BM 与 NE 的数量关系是 ; (2)当矩形ABCD 与矩形EFGH 不全等,但面积相等时,把两矩形如图2,3那样放置,问在这两种放置的情形中,(1)的结论都还成立吗?如果你认为都成立,请你利用图3给予证明,若认为BM 与 NE 的有不同的数量关系,先分别写出其数量关系式,再证明.(1) BM= NE(2) 如图2,3那样放置(1)中的结论都成立,证明: 如图3,在矩形ABCD 和矩形EFGH 中,FN∥EH, ,∠FNE=∠BEA,∠EFN=∠A=90° ∴△EFN∽△BAE,同理:△BCM∽△EAB∴EF EN AB BE =…………①, BC BMHE EB=………………② ①÷②得, EF HE EN EBAB BC BE BM⨯⨯=⨯⨯又∵EF×HE=AB×BC, ∴EN EBBE BM⨯⨯=1, ∴ EN=BM六、(本大题共2小题,每小题10分,共20分)24. 经过原点和G (4,0)的两条抛物线x b x a y 1211+=,x b x a y 2222+=,顶点分别为B A ,,且都在第1象限,连结BA 交x 轴于T ,且3==AT BA . (1) 分别求出抛物线1y 和2y 的解析式;(2) 点C 是抛物线2y 的x 轴上方的一动点,作x CE ⊥轴于E ,交抛物线1y 于D,试判断CD和DE 的数量关系,并说明理由;(3) 直线m x =,交抛物线1y 于M ,交抛物线2y 于N ,是否存在以点T B N M ,,,为顶点的四边形是平行四边形,若存在,求出m 的值;若不存在,说明理由..2y 1y 4 G25.平面内两条直线1l ∥2l ,它们之间的距离等于a .一块正方形纸板ABCD 的边长也等 于a .现将这块硬纸板如图所示放在两条平行线上.(1)如图1,将点C 放置在直线2l 上, 且1l AC ⊥于O , 使得直线1l 与AB 、AD 相交于E 、F ,证明:AEF ∆的周长等于a 2;请你继续完成下面的探索:(2)如图2,若绕点C 转动正方形硬纸板ABCD ,使得直线1l 与AB 、AD 相交于E 、F , 试问AEF ∆的周长等于a 2还成立吗?并证明你的结论;(3)如图3,将正方形硬纸片ABCD 任意放置,使得直线1l 与AB 、AD 相交于E 、F ,直线2l 与BC 、CD 相交于G ,H ,设∆AEF 的周长为1m ,∆CGH 的周长为2m ,试问1m ,2m 和a 之间存在着什么关系?试证明你的结论.1l2lABCDE F图2AC图31l2lBDEFGH1l2lABCDE F图1O参考答案及评分意见一、选择题(本大题共8小题,每小题3分,共24分) 1. D 2. C 3.A 4. C 5. A 6. B 7. C 8. B 二、填空题(本大题共8小题,每小题3分,共24分) 9. 3x(x+2)(x-2) 10. 01=x ,212=x 11. 41-; 12. y=3x+3 13. 22014.-10 15.3 16. ③④三、(本大题共3小题,每小题6分,共18分)17. 解:方程两边乘以)1(1-+x x )( 得)1)(1(6)1(-+=--x x x x ……………………………………2分 整理得16-=-x解得 x =-5. ……………………………………5分 经检验: x =-5是原方程的解.∴原方程的解是x =-5. …………………………………………6分18.解:因为,30︒=∠C 6=AB ,所以36=AC ……………………………2分 所以点)1,37(C ……………………………3分后抽取的牌牌面数字先抽取的牌牌面数字5554443332225432开始设经过点C 的反比例函数的解析式xk y =. 所以137k=,即37=k . ………………………………………………5分 所以经过点C 的反比例函数的解析式xy 37=.………………………………………6分19. 解(1)从中随机抽取一张牌是黑桃的概率为41………………………2′ (2)抽取的两张牌牌面数字所有可能出现的结果用表格表示如下:3 6 10 63 (3,6) (3,10) (3,6)6 (6,3)(6,10) (6,6)10 (10,3) (10,6)(10,6)6(6,3) (6,6) (6,10)也可树状图表示如下:所有可能出现的结果 (3,6) (3,10) (3,6) (6,3) (6,10) (6,6) (10,3) (10,6) (10,6) (6,3) (6,6) (6,10)……………………………4′ 由表格(或树状图)可以看出,抽取的两张牌可能出现的结果有12种,它们出现的可能性相等,而两张牌牌面数字都是6的结果有2种,后抽取的牌 牌面数字∴P (抽取的是一对6 )=61122=. ……………………………6分四、(本大题共2小题,每小题8分,共16分.)20. (1)①从平均人数的角度预测,2011年全校学生的视力在4.9以下的学生有500人; ②从人数的最大值与最小值的平均值预测,2011年全校学生的视力在4.9以下的学生有550人;③从人数的中位数角度预测,2011年全校学生的视力在4.9以下的学生有450人;. ④从人数的平均增长数预测, (3)800+3300800-=32966,约967人. 2011年全校学生的视力在4.9以下的学生有约967人. 等等. …………………2分 (2)学生总数800÷40%=2000(人),………………………………………3分 视力5.0:=200060030%, 30%×︒360=︒108; 视力5.1: 2000-800-600-200=400(人),=200040020%, 20%×︒360=︒72; 视力5.2以上:=200020010%, 10%×︒360=︒36.………………………………………5分(3)设到达正常视力的假性近视学生的人数为x 人. 依题意得: 2000200400600++ +10%=2000200400600x+++ ………………7分解得:200=x答: 到达正常视力的假性近视学生的人数为200人. …………………8分21.(1)10 ,42+n ; ………………………………………………2分 (2)14,24+m ; …………………………………………4分 (3)按甲种方式每6张拼一张能有:2×6+4=16(个), 按乙种方式每4张拼一张能有:4×4+2=18(个), 根据,790420018616=-⨯+⨯a a ……………………………………6分 解得:.60=a ……………………………………7分A 餐厅:160616=⨯a(个), B 餐厅:=-⨯420018a630(个). ……………………………………8分 五、(本大题共2题,每小题9分,共18分) 22.解: 假设存在点P,使得为△PBC 等腰三角形, 当BC BP =时,可得OB BP OP ==, 则△1OBP 为等边三角形. ∴.,301︒=∠BG P1P2P过1P 作BC G P ⊥1于G , ∵.224211===BP G P ∴1P 到BC 距离为2cm .………………2分当BC CP =时, ∵22CP OP OB BC ===,︒=∠90OBC , ∴四边形2OBCP 为正方形. ∴.4,9022cm C P BCP =︒=∠ ∴2P 到BC 距离为4cm . ………………5分 当BP CP =时,作BC 的垂直平分线交⊙O 于P . ∵BC K P ⊥3, ∴321224222233==-=-=OM OP M P (㎝)∴,4323+=K P ∴3P 到线段BC 距离为432+ (㎝). …………………………7分∵23OP K P ⊥,∴3243==M P M P (㎝). ∴3244-=K P (㎝).∴4P 到线段BC 距离为324- ( ㎝). ………………………………………9分∴存在4个点P 满足条件,P 到BC 的距离分别为,4,2cm cm ,)432(cm +cm .)324(-.23. (1) BM= NE…………………………………………………2分 (2) 如图2,3那样放置(1)中的结论都成立,………………4分证明: 如图3,在矩形ABCD 和矩形EFGH 中,FG∥EH, ,∠FNE=∠BEA,∠EFN=∠A=90° ∴△EFN∽△BAE,同理:△BCM∽△EAB……………………………6分∴EF EN AB BE =………①, BC BM HE EB=…………② ①÷②得, EF HE EN EBAB BC BE BM⨯⨯=⨯⨯又∵EF×HE=AB×BC, ∴EN EBBE BM⨯⨯=1,∴ EN=BM ………………………………………9分六、(本大题共2小题,每小题10分,共20分) 24.(1) ∵,3==AT BA∴A (2,3),B (2,6). …………………………………………………………1分∵x b x a y 1211+=过A (2,3)和).0,4(G 依题意得:⎩⎨⎧=+=+.0416,3241111b a b a解得⎪⎩⎪⎨⎧=-=.3,4311b a∴.34321x x y +-= …………………………………………………………2分 同理.62322x x y +-= …………………………………………………………3分(2).EF CD = …………………………………………………………4分 证明;设40,<<=t t OE . ∵D 在.34321x x y +-=上, ∴=DE .3432t t +-………………………………………………………5分 ∵C 在x x y 62322+-=上,∴=CE t t 6232+-.∴=-=DE CE CD (t t 6232+-)—(t t 3432+-)=t t 3432+-.∴.DE CD = ……………………………………………7分 (3) 由于MN∥BT,当假设存在四边形BTNM 为平行四边形时,则.MN BT ==6. ∵)623,(),343,(22m m m N m m m M +-+-∴=MN .343)623()343(222m m m m m m -=+--+-依题意,得: 23634m m =-. …………………………………………9分 2334m m -=-6, 此方程无解, 2334m m -=6, 解之得:∴.322±=m …………………………………………10分 ∴存在322±=m 使得以点T B N M ,,,为顶点的四边形是平行四边形. 25.(1)证法一:,2,2,2a a AO AO AF AE AO EF -==== ……………………2分则.2222a AO AO EF AF AE =+=++…………………………………………3分 证法二:连结.,FC EC∵1l AC ⊥,∴.︒=∠=∠90COE B . 又∵,,EC EC a CO BC ===∴.OCE BCE ∆≅∆ ……………………………………………2分 ∴.EO BE =同理FD OF =.∴ .2a AD AB EF AF AE =+=++ ……………………………………………3分 (1) 如图4,过C 作EF CM ⊥于M , 则.90︒=∠=∠EMC B∵,,EC EC a CM BC ===∴MCE BCE ∆≅∆ …………………4分 同理CDF CMF ∆≅∆得.,DF MF ME BE ==…………………5分∴ .2a AD AB EF AF AE =+=++ ………………6分 (3)a m m 221=+证明:如图5将21,l l 分别同时向下平移相同的距离,则4l 和3l 的距离还是a ,使得4l 经过点C , 3l 交AB 于M ,交AD 于N . ……………………………………………7分1l2lABCDE F图4M由(2)的证明知,2a AN MN AM =++过F 作FK ∥AB 交MN 于K . ∴四边形EMKF 为平行四边形.∴,,EM FK MK EF == ………………………………………8分 ∵作FQ MN ⊥于Q ,P GH CP 于⊥.则.CP FQ = ∵FK ∥AB , ∴.AMN FKQ ∠=∠作BJ ∥MN , ∴.ABJ AMN ∠=∠ ∵︒=∠+∠90CBJ ABJ ,,CGP BGT CBJ ∠=∠=∠.90︒=∠+∠GHC CGP∴.GHC FKQ ∠=∠∴FQK ∆≌CPH ∆∴.,PH KQ CH FK == ……………………9分 同理.,GP NQ GC FN == ∴.GH KN =则.2a MN AN AM KNMK FN AF EM AE GH CH GC EF AF AE =++=+++++=+++++………………………………………10分4lAC1l2lBDEF G HMNK图53lQ P TJ。
机密★2011年6月19日江西省2011年初中毕业暨中等学校招生考试数学试题卷说明:1.本卷共有六个大题,25个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.一、选择题(本大题共8个小题,每小题3分,共24分)每小题只有一个正确选项. 1.下列各数中,最小的是( ).A. 0B. 1C.-1D.2.根据2010年第六次全国人口普查主要数据公报,江西省常住人口约为4456万人.这个数据可以用科学计数法表示为( ).A. 4.456×107人 B. 4.456×106人 C. 4456×104人 D. 4.456×103人 3.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中的实物的俯视图是( ).4.下列运算正确的是( ).A.a +b =abB. a 2·a 3=a 5C.a 2+2ab -b 2=(a -b )2D.3a -2a =15.已知一次函数y =x +b 的图象经过第一、二、三象限,则b 的值可以是( ). A .-2 B.-1 C. 0 D. 26.已知x =1是方程x 2+bx -2=0的一个根,则方程的另一个根是( ). A .1 B.2 C.-2 D.-17.如图,在下列条件中,不能..证明△ABD ≌△ACD 的是( ). A.BD =DC , AB =AC B.∠ADB =∠ADC ,BD =DC C.∠B =∠C ,∠BAD =∠CAD D. ∠B =∠C ,BD =DC8.时钟在正常运行时,分针每分钟转动6°,时针每分钟转动0.5°.在运行过程中,时针与分针的夹角会随着时间的变化而变化.设时针与分针的夹角为y (度),运行时间为t (分),当时间从12︰00开始到12︰30止,y 与 t 之间的函数图象是( ).y (度))A.(度)) B.度))C.度)D.B.C.D.A. 第7题图甲图乙第3题二、填空题(本大题共8小题,每小题3分,共24分) 9.计算:-2-1=__________.10.因式分解:x 3-x =______________.11.函数y =x 的取值范围是 .12.方程组25,7x y x y +=⎧⎨-=⎩的解是.13.如图,在△ABC 中,点P 是△ABC 的内心,则∠PBC +∠PCA +∠PAB =__________度. 14.将完全相同的平行四边形和完全相同的菱形镶嵌成如图所示的图案.设菱形中较小角为x 度,平行四边形中较大角为y 度,则y 与x 的关系式是 . 15.如图,△DEF 是由△ABC 绕着某点旋转得到的,则这点的坐标是__________.16.如图所示,两块完全相同的含30°角的直角三角板叠放在一起,且∠DAB =30°.有以下四个结论:①AF ⊥BC ②△ADG ≌△ACF ③O 为BC 的中点 ④AG ︰DE4,其中正确结论的序号是 . .三、(本大题共3小题,每小题6分,共18分) 17.先化简,再求值:2()11a a a a a+÷--,其中 1.a =18.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛. (1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.19.如图,四边形ABCD 为菱形,已知A (0,4),B (-3,0). (1)求点D 的坐标;(2)求经过点C 的反比例函数解析式.ACB P第13题xy第14题 ADCB EOGF第16题第15题C DE C图甲DC图乙四、(本大题共2小题,每小题8分,共16分)20.有一种用来画圆的工具板(如图所示),工具板长21cm,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为3cm,其余圆的直径从左到右依次递减0.2cm.最大圆的左侧距工具板左侧边缘1.5cm,最小圆的右侧距工具板右侧边缘1.5cm,相邻两圆的间距d均相等.(1)直接写出其余四个圆的直径长;(2)求相邻两圆的间距.21.如图,已知⊙O的半径为2,弦BC的长为A为弦BC所对优弧上任意一点(B,C两点除外).(1)求∠BAC的度数;(2)求△ABC面积的最大值.(参考数据:sin602=,cos302=,tan303=)五、(本大题共2小题,每小题9分,共18分)22.图甲是一个水桶模型示意图,水桶提手结构的平面图是轴对称图形,当点O到BC(或DE)的距离大于或等于⊙O的半径时(⊙O是桶口所在圆,半径为OA),提手才能从图甲的位置转到图乙的位置,这样的提手才合格.现用金属材料做了一个水桶提手(如图丙A-B-C-D-E-F,C-D是 C D,其余是线段),O是AF的中点,桶口直径AF=34cm,AB=FE=5cm,∠ABC =∠FED =149°.请通过计算判断这个水桶提手是否合格.2,tan73.6°≈3.40,sin75.4°≈0.97.)图丙23.以下是某省2010年教育发展情况有关数据:全省共有各级各类学校25000所,其中小学12500所,初中2000所,高中450所,其它学校10050所;全省共有在校学生995万人,其中小学440万人,初中200万人,高中75万人,其它280万人;全省共有在职教师48万人,其中小学20万人,初中12万人,高中5万人,其它11万人.请将上述资料中的数据按下列步骤进行统计分析.(1)整理数据:请设计一个统计表,将以上数据填入表格中.(2)描述数据:下图是描述全省各级各类学校所数的扇形统计图,请将它补充完整. (3)分析数据:①分析统计表中的相关数据,小学、初中、高中三个学段的师生比,最小的是哪个学段?请直接写出.(师生比=在职教师数︰在校学生数)②根据统计表中的相关数据,你还能从其它角度分析得出什么结论吗?(写出一个即可)③从扇形统计图中,你得出什么结论?(写出一个即可)2010年全省教育发展情况统计表高中Array1.8%全省各级各类学校所数扇形统计图六、(本大题共2小题,每小题10分,共20分)24.将抛物线c1:y=2+x轴翻折,得抛物线c2,如图所示.(1)请直接写出抛物线c2的表达式.(2)现将抛物线c1向左平移m个单位长度,平移后得到的新抛物线的顶点为M,与x轴的交点从左到右依次为A,B;将抛物线c2向右也平移m个单位长度,平移后得到的新抛物线的顶点为N,与x轴交点从左到右依次为D,E.①当B,D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A,N,E,M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.yxO备用图25.某数学兴趣小组开展了一次活动,过程如下:设∠BAC=θ(0°<θ<90°).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB,AC上.活动一:如图甲所示,从点A1开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直. (A1A2为第1根小棒)数学思考:(1)小棒能无限摆下去吗?答:.(填“能”或“不能”)(2)设AA1=A1A2=A2A3=1.①θ=_________度;②若记小棒A2n-1A2n的长度为a n(n为正整数,如A1A2=a1,A3A4=a2,…),求出此时a2,a3的值,并直接写出a n(用含n的式子表示).活动二:如图乙所示,从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第一根小棒,且A1A2=AA1.数学思考:(3)若已经摆放了3根小棒,则θ1 =_________,θ2=________,θ3=________;(用含θ的式子表示)(4)若只能..摆放4根小棒,求θ的范围.A1A2ABC图乙A3A41θ2θ3θA1A2ABC A3A4A5A6a1a2a3图甲·机密2011年6月19日江西省2011年中等学校招生考试数学试题卷参考答案及评分意见说明:1.如果考生的解答与本答案不同,可根据试题的主要考查内容参考评分标准制定相应的评分细则后评卷.2.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后续部分时,如果该步以后的解答未改变这一题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半,如果这一步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.一、选择题(本大题共8个小题,每小题3分,共24分)1.D 2.A 3.C 4.B 5.D 6.C 7.D 8.A二、填空题(本大题共8个小题,每小题3分,共24分)9.3-10.()()11x x x +- 11.1x ≤ 12.4,3x y =⎧⎨=-⎩ 13. 9014.2180y x -=(或1902yx =+) 15.(0,1) 16.①②③④说明:(1)第11题中若写成“1x <”的,得2分;(2)第16题,填了1个或2个序号的得1分,填了3个序号的得2分.三、(本大题共3个小题,每小题各6分,共18分) 17.解:原式=2111111a aa a a a a a a ⎛⎫-÷=⨯=⎪----⎝⎭. ………………3分当1a =时, 原式2==………………6分18.解:(1)方法一画树状图如下:所有出现的等可能性结果共有12种,其中满足条件的结果有2种.∴P (恰好选中甲、乙两位同学)=16. ………………4分甲乙 丙 丁 丙甲 乙 丁 乙甲 丙 丁 丁甲 乙 丙 第一次 第二次方法二 列表格如下:甲乙 丙 丁甲甲、乙 甲、丙甲、丁乙 乙、甲 乙、丙 乙、丁 丙丙、甲 丙、乙 丙、丁 丁 丁、甲 丁、乙 丁、丙所有出现的等可能性结果共有12种,其中满足条件的结果有2种. ∴P (恰好选中甲、乙两位同学)=16. ………………4分(2)P (恰好选中乙同学)=13. ………………6分19.解:(1) ∵(0,4),(3,0)A B -, ∴3,4,O B O A == ∴5AB=.在菱形ABC D 中,5ADAB ==, ∴1OD =, ∴()0,1D -. …………3分(2)∵BC ∥AD , 5BCAB ==, ∴()3,5C --.设经过点C 的反比例函数解析式为k yx=.把()3,5--代入k yx=中,得:53k -=-, ∴15k =,∴15yx=. ……6分四、(本大题共2个小题,每小题8分,共16分)20.解:(1)其余四个圆的直径依次为:2.8cm, 2.6cm, 2.4cm, 2.2cm.………………4分 (2)依题意得,4 1.5 1.53 2.8 2.6 2.4 2.221d +++++++=, ……………6分 ∴41621d+= ∴54d =. ………………7分答:相邻两圆的间距为54cm. ………………8分21.解:(1) 解法一连接OB ,OC ,过O 作OE ⊥BC 于点E . ∵OE ⊥BC ,BC =∴BE EC == ………………1分 在Rt △OBE 中,OB =2,∵sin 2B E B O E O B∠==,∴60B O E ∠=, ∴120B O C∠=,∴1602BACBOC ∠=∠=. ………………4分解法二连接BO 并延长,交⊙O 于点D ,连接CD .∵BD 是直径,∴BD =4,90D C B ∠=.在Rt △DBC 中,sin 42BC BD CBD∠===,∴60B D C ∠= ,∴60B A C B D C ∠=∠= .………………4分(2) 解法一因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 落在优弧BC 的中点处. ………………5分 过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC ,1302BAEBAC ∠=∠=.在Rt △ABE中,∵30BE BAE =∠=,∴3tan 303BE AE ===,∴S △ABC=132⨯=.答:△ABC面积的最大值是 ………………8分解法二因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 落在优弧BC 的中点处. ………………5分 过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC .∵60B A C∠=, ∴△ABC 是等边三角形. ………………6分在Rt △ABE中,∵30BE BAE =∠=,∴3tan 303BE AE ===,∴S △ABC=132⨯=.答:△ABC面积的最大值是 ………………8分五、(本大题共2个小题,每小题9分,共18分). 22.解法一连接OB ,过点O 作OG ⊥BC 于点G . ………………1分在Rt △ABO 中,AB =5,AO =17, ∴ ta n ∠ABO =17 3.45AO AB==,∴∠ABO =73.6°,………………4分∴∠GBO =∠ABC -∠ABO =149°-73.6°=75.4°. ………………5分 又∵17.72OB ==, ………………6分 ∴在Rt △OBG 中,sin 17.720.9717.1917O G O B O BG =⨯∠=⨯≈>. ……………8分∴水桶提手合格. ……………9分解法二连接OB ,过点O 作OG ⊥BC 于点G . ……………1分在Rt △ABO 中,AB =5,AO =17,图丙CDE∴ ta n ∠ABO =17 3.45AO AB==,∴∠ABO =73.6°. ………………4分 要使OG ≥OA ,只需∠OBC ≥∠ABO , ∵∠OBC =∠ABC -∠ABO =149°-73.6°=75.4°>73.6°,……8分 ∴水桶提手合格. ………………9分23.解:(1)2010年全省教育发展情况统计表(说明:“合计”栏不列出来不扣分) ……………3分(2)……………6分(3)①小学师生比=1︰22,初中师生比≈1︰16.7,高中师生比=1︰15,∴小学学段的师生比最小. ………7分②如:小学在校学生数最多等. ………8分③如:高中学校所数偏少等.………9分说明:(1)第①题若不求出各学段师生比不扣分;(2)第②、③题叙述合理即给分.六、(本大题共2个小题,每小题10分,共20分)24.解:(1)2y =-. ………………2分学校所数 (所) 在校学生数 (万人) 教师数 (万人) 小学 12500 440 20 初中 2000 200 12 高中 450 75 5 其它10050 280 11 合计2500099548高中 1.8% 全省各级各类学校所数扇形统计图(2)①令20+=,得:121,1x x =-=,则抛物线c 1与x 轴的两个交点坐标为(-1,0),(1,0).∴A (-1-m ,0),B (1-m ,0). 同理可得:D (-1+m ,0),E (1+m ,0).当13ADAE=时,如图①,()()()()111113m m m m -+---=+---⎡⎤⎣⎦,∴12m =. ………………4分当13AB AE=时,如图②,()()()()111113m m m m ----=+---⎡⎤⎣⎦,∴2m=. ………………6分∴当12m =或2时,B ,D 是线段AE 的三等分点.②存在.………………7分 方法一 理由:连接AN 、NE 、EM 、MA .依题意可得:((,,M m N m -. 即M ,N 关于原点O 对称, ∴OMON=.∵()()1,0,1,0A m E m --+, ∴A ,E 关于原点O 对称, ∴OA OE =, ∴四边形ANEM 为平行四边形. ………………8分 要使平行四边形ANEM 为矩形,必需满足OM OA =, 即()2221m m +=--, ∴1m =.∴当1m =时,以点A ,N ,E ,M 为顶点的四边形是矩形. …………10分方法二理由:连接AN 、NE 、EM 、MA . 依题意可得:((,,M m N m -. 即M ,N 关于原点O 对称, ∴OMON=.∵()()1,0,1,0A m E m --+, ∴A ,E 关于原点O 对称, ∴OA OE =,∴四边形ANEM 为平行四边形. ………………8分∵222(1)4AM m m =-+++=,2222(1)444ME m m m m =+++=++,222(11)484AE m m m m =+++=++,若222AM M E AE +=,则224444484m m m m +++=++,∴1m=.此时△AME 是直角三角形,且∠AME =90°. ∴当1m=时,以点A ,N ,E ,M 为顶点的四边形是矩形. …………10分25.解: (1)能. ………………1分 (2)① 22.5°. ………………2分 ②方法一∵A A 1=A 1A 2=A 2A 3=1,A 1A 2⊥A 2A 3,∴A 1A 3AA 3=1+.又∵A 2A 3⊥A 3A 4 ,∴A 1A 2∥A 3A 4.同理:A 3A 4∥A 5A 6,∴∠A =∠AA 2A 1=∠AA 4A 3=∠AA 6A 5, ∴AA 3=A 3A 4,AA 5=A 5A 6∴a 2=A 3A 4=AA 3=1+,a 3=AA 3+ A 3A 5=a 2+ A 3A 5. ………………3分∵A 3A 52,∴a 3=A 5A 6=AA 5=)2221a +=. ………………4分方法二∵A A 1=A 1A 2=A 2A 3=1,A 1A 2⊥A 2A 3,∴A 1A 3AA 3=1+.又∵A 2A 3⊥A 3A 4 ,∴A 1A 2∥A 3A 4.同理:A 3A 4∥A 5A 6.∴∠A 2A 3A 4=∠A 4A 5A 6=90°,∠A 2A 4A 3=∠A 4 A 6A 5, ∴△A 2A 3A 4∽△A 4A 5A 6,∴2231a a a =,∴a 3=2221)1a =. ………………4分)11n n a -= ………………5分(3)12θθ= ………………6分23θθ= ………………7分34θθ= ………………8分(4)由题意得:490,590,θθ⎧<⎪⎨≥⎪⎩∴1822.5θ≤<. ………………10分。
九江市2011年数学中考模拟试卷说明:本卷共六大题,25小题,全卷满分120分,考试时间120分钟。
一、选择题(本大题共8小题,每小题3分,共24分。
每小题只有一个答案)1、下列运算正确的是( )A. a +2a 2﹦3a 2B. a 3-a 2﹦aC. (a 3)2﹦a 5D.a 3÷a 4﹦1a(a ≠0) 2、在直角坐标系中,点A (1,2)的横坐标乘以-1、纵坐标不变,得到点A ’;则点A 与A ’的关系是( )A. 关于X 轴对称B. 关于Y 轴对称C. 关于原点对称D.将点A 向X 轴负方向平移一个单位3、如果圆锥的侧面积为20π㎝2,它的母线长5 ㎝,那么此圆锥的底面半径的长等于( )A. 2㎝B.2 2 ㎝C. 4㎝D. 8㎝4、为了了解居民节约用水的情况,增强居民的节水意识,右表是某个单元的住户当月用水量的调查结果:则关于这12户居民用水量,下列说法错误的是( )A. 中位数6方B.众数6方C.平均数5方D.极差8方 5、如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点, 则ABC 的度数为( ) A. 30O B. 45 O C.36 O D.60 O 6、如右图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的主视图是( )2A . B. C. D. 1 1 17、函数y =1x-2 的图像可以由函数y =1x的图像向右平移2个单位得到,则下列关于函数y =1x-2的图像的性质,不正确...的是( ) A.它的图像是中心对称图形,对称中心点的坐标为(2,0)B.当x >0时,y 随x 的增大而减小C.当x >2时,y 随x 的增大而减小D.它的图像与y 轴交点坐标是(0,- 12) 8.如图,在Rt △ABC 中,∠ACB=90°,BC=3,AC=4,AB 垂直平分线DE 交BC 的延长线于点E ,则CE 的长为( )A. 32B. 76C. 256D.2 二、填空题(每小题3分,共24分)9.分解因式:x(x-1)-3x+4= .10.规定运算:(a *b )=|a - b|,其中a 、b 为实数,则(7 * 3)+ 7 = . 11.2010年上海世博会中国馆投资约1095600000元,将这次投资经费用科学记数法可表示住户(户) 2 4 5 1 用水量(方/户) 2 4 6 10 A B C 1 1 1 2为 .(保留两个有效数)12.如果鸟卵孵化后,雏鸟为雌与雄的概率相同,如果2枚卵全部成功孵化,则2只雏鸟都为雄鸟的概率是 .13.两抛物线y =﹣12 x 2+1, y =﹣12x 2-1与两条和y 轴平行的直线x=-2,x=2围成的封闭图形的面积为 .14.在平面直角坐标系中,已知A(6,3)、B(6,0)两点,以坐标原点O 为位似中心,相似比为 13,把线段AB 缩小后得到线段A 'B ',则A 'B '长度等于 .15.如图,点O 是△ABC 的内切圆的圆心,若∠ABC=70°,则∠BOC= .16.若α、β均为锐角,则以下有4个命题:①若sin α<sin β,则α<β;②若α+β=90°,则sin α=cos β;③存在一个角α,使sin α=1.02;④tan α=sin αcos α.其中正确命题的序号是 .(多填或错填得0分,少填的酌情给分)三、解答题(每小题6分,共计18分。
江西省2011年中考数学模拟试卷B姓名: 班级:一、选择题(本大题共8小题,每小题3分,共24分)每小题只有一个正确选项,请把正确选项的代号填在题后的括号内.1、如果a 与 -1互为倒数,则a 的相反数等于( ).A .2-B .1-C .0D . 12、下列关于12的说法中,错误的是( ). A .12 是最简二次根式 B .4123<<C .12是12的算术平方根D . 12是无理数 3、实数a 、b 在数轴上对应的位置如图所示,则( ). A .b a -> ; B .b a -<- ;C .b a <- ;D . b a ->-4、一元二次方程2540x x +-=根的情况是( ). A . 两个不相等的实数根 B . 两个相等的实数根 C . 没有实数根 D . 不能确定5、已知△ABC 如左图,则右侧下列四个三角形中,能与△ABC 相似的是( ).6、将分式方程321(1)1x x x x +-=++去分母,整理后得( ).A .330x --=B .32x x +=C .2230x x --=D .2+230x x +=7、如图,在梯形ABCD 中,AD//BC , AD =1,BC = 4,∠C =70°,∠B =40°,则AB 的长是( ).A .4B .5C .2D .38、某人匀速上坡一段时间后,由于有急事,又以更快的速度匀速地沿原路返回;这一B CDA 第7题图第11题图2=k2x+b1x+a二、填空题(本题共8小题,每小题3分,满分24分);请将最后的答案填在答题卷上.9、在一组数据-1,0,4,5,8中插入一个数据x,使该组数据的中位数是3,则x= .10、“等腰梯形的对角线相等”的逆命题是 , 它是 (“真”或“假”)命题.11、如图,直线11y k x a=+与22y k x b=+的交点坐标为(1,2),则使12y y<的x的取值范围为.12、如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中剩余的编号为1~7号的小正方形中任意一个涂黑,则所得图案是一个轴对称图形的概率是.13、对于数,,,a b c d,规定一种运算a bad bcc d=-,如101(2)022(2)=⨯--⨯-2=-;当((xx14、中,15、则点A16向右平移2双曲线2C3①双曲线2C 是中心对称图形,其对称中心是(2,0). ②双曲线2C 仍是轴对称图形,它有两条对称轴. ③双曲线2C 与y 轴有交点,与x 轴也有交点.④当2x <时, 双曲线2C 中的一支,y 的值随着x 值的增大而减小. 其中正确结论的序号是 .(多填或错填得0分,少填则酌情给分.)三、(本大题共3个小题,每小题6分,共18分)17、先化简,再求值:()xy xy y x y x 4112+-÷⎪⎪⎭⎫ ⎝⎛+,其中x2,y =1x -.18、已知:如图,AB 是O 的直径,C 是O 上一点,CD ⊥AB ,垂足为点D ,F 是AC 的中点,O F 与A C 相交于点E ,AC =8 cm ,2EF =cm .(1)求半径O A 的长; (2)求sin C 的值.19、已知关于x 的一元二次方程22(21)0x m x m +-+=有两个实数根1x 和2x . (1)求实数m 的取值范围;(2)当22120x x -=时,求m 的值.第18题图F4四、(本大题共2个小题,每小题8分,共16分)20、“知识改变命运,科技繁荣祖国”.下图为我市某校2011年参加科技运动会航模比赛(包括空模、海模、车模、建模四个类别)的参赛人数统计图:(1)该校参加车模、建模比赛的人数分别是 人和 人; (2)该校参加航模比赛的总人数是 人,空模所在扇形的圆心角的度数是 °,并把条形统计图补充完整;(3)从全市中小学参加航模比赛选手中随机抽取80人,已知有32人获奖,且各类模型获奖比例与参赛人数比例一致;若今年我市中小学参加航模比赛人数共有2400人,请你估算今年参加“空模比赛”这一项目的获奖人数大约是多少人?21、如图,在Rt △ABC 中,∠ACB =90°, AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D ,CE 与AB 交于F .(1)求证:△CEB ≌△ADC ;(2)若AD =9cm ,DE =6cm ,求BE 和EF 的长.五、(本大题共2个小题,每小题9分,共18分)某校2011年航模比赛 参赛人数条形统计图空模建模 车模海模25%25% 某校2011年航模比赛 参赛人数扇形统计图第21题图22、在中央电视台第二套《购物街》栏目中,有一个精彩刺激的游戏――幸运大转盘,其规则如下:①游戏工具是一个可绕轴心自由转动的圆形转盘,转盘按圆心角均匀划分为20等分,并在其边缘标记5分、10分、15分、…、100分共20个5的整数倍数,游戏时,选手可旋转转盘,待转盘停止时,指针所指的数即为本次游戏的得分;②每个选手在旋转一次转盘后可视得分情况选择是否再旋转转盘一次,若只旋转一次,则以该次得分为本轮游戏的得分,若旋转两次则以两次得分之和为本轮游戏的得分;③若某选手游戏得分超过100分,则称为“爆掉”,该选手本轮游戏裁定为“输”,在得分不超过100分的情况下,分数高者裁定为“赢”;④遇到相同得分的情况,相同得分的选手重新游戏,直到分出输赢.现有甲、乙两位选手进行游戏,请解答以下问题:(1)甲已旋转转盘一次,得分65分,他选择再旋转一次,求他本轮游戏不被“爆掉”的概率.(2)若甲一轮游戏最终得分为90分,乙第一次旋转转盘得分为85分,则乙还有可能赢吗?赢的概率是多少?(3)若甲、乙两人交替进行游戏,现各旋转一次后甲得85分,乙得65分,你认为甲是否应选择旋转第二次?说明你的理由.23、如图,已知点A (-2,4) 和点B (1,0)都在抛物线22=++上.y m x m x n Array(1)求m、n;(2)向右平移上述抛物线,记平移后点A的对应点为点B的对应点为B′,若四边形AA B B''线的表达式;''的对称中心点M的坐标.(3)试求出菱形AA B B56六、(本大题共2个小题,每小题10分,共 20分)24.如图,边长为1的正方形ABCD 中,以A 为圆心,1为半径作 BD,将一块直角三角板的直角顶点P 放置在 BD(不包括端点B 、D )上滑动,一条直角边通过顶点A ,另一条直角边与边BC 相交于点Q ,连接PC ,并设PQ=x ,以下我们对△CPQ 进行研究.(1)△CPQ 能否为等边三角形?若能,则求出x 的值;若不能,则说明理由;(2)求△CPQ 周长的最小值;(3)当△CPQ 分别为锐角三角形、直角三角形和钝角三角形时分别求x 的取值范围.25、如图,已知梯形OABC ,AB ∥OC ,A (2,4),B (3,4),C (7,0).点D 在线段OC 上运动(点D 不与点O 、C 重合),过点D 作x 轴的垂线交梯形的一边.....于点E ,以DE 为一边向左侧作正方形DEFG ,设点D 的横坐标为t ,正方形DEFG 与梯形OABC 重合部分的面积为s .(1)、直接写出线段OA 与线段BC 所在直线的解析式; (2)、求s 关于t 的函数关系式,并求s 的最大值.第24题第25题。
2011年江西省九江市中考数学模拟试卷© 2012 菁优网一、选择题(共8小题,每小题3分,满分24分)1、(2010•鄂尔多斯)下列计算正确的是()A、a+2a2=3a2B、a3•a2=a6C、(a3)2=a9D、a3÷a4=a﹣1(a≠0)2、(2008•扬州)在平面直角坐标系中,将点A(1,2)的横坐标乘以﹣1,纵坐标不变,得到点A′,则点A和点A′的关系是()A、关于x轴对称B、关于y轴对称C、关于原点对称D、将点A向x轴负方向平移一个单位得点A′3、(2002•朝阳区)如果圆锥的侧面积为20πcm2,它的母线长为5cm,那么此圆锥的底面半径的长等于()A、2cmB、2cmC、4cmD、8cm4、(2010•宁夏)为了解居民节约用水的情况,增强居民的节水意识,下表是某个单元的住户当月用水量的调查结果则关于这12户居民月用水量,下列说法错误的是()A、中位数6方B、众数6方C、极差8方D、平均数5方5、(2010•眉山)如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A、90°B、60°C、45°D、30°6、(2009•南平)如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是()A、B、C、D、7、函数y=的图象可以由函数y=的图象向右平移2个单位得到,则下列关于函数y=的图象的性质,不正确的是()A、它的图象是中心对称图形,对称中心点的坐标为(2,0)B、当x>0时,y随x的增大而减小C、当x>2时,y随x的增大而减小D、它的图象与y轴交点坐标是(0,﹣)8、(2009•山西)如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE 的长为()A、B、C、D、2二、填空题(共8小题,每小题3分,满分24分)9、(2010•荆州)分解因式:x(x﹣1)﹣3x+4=_________.10、(2007•桂林)规定运算:(a*b)=|a﹣b|,其中a、b为实数,则(*3)+=_________.11、2010年上海世博会中国馆投资约1095600000元,将这次投资经费用科学记数法可表示为_________.(保留两个有效数)12、(2010•襄阳)如果鸟卵孵化后,雏鸟为雌为雄的概率相同.如果2枚卵全部成功孵化,则2只雏鸟都为雄鸟的概率是_________.13、两抛物线y=﹣x2+1,y=﹣x2﹣1与两条和y轴平行的直线x=﹣2,x=2围成的封闭图形的面积为_________.14、(2007•南通)在平面直角坐标系中,已知A(6,3)、B(6,0)两点,以坐标原点O为位似中心,相似比为,把线段AB缩小后得到线段A′B′,则A′B′的长度等于_________.15、如图,点O是△ABC的内切圆的圆心,若∠BAC=70°,则∠BOC=_________.16、若α、β均为锐角,则以下有4个命题:①若sinα<sinβ,则α<β;②若α+β=90°,则sinα=cosβ;③存在一个角α,使sinα=1.02;④tanα=.其中正确命题的序号是_________.(多填或错填得0分,少填的酌情给分)三、解答题(共9小题,满分72分)17、(2008•太原)解方程:x2﹣6x﹣2=018、(2008•江西)如图:在平面直角坐标系中,有A(0,1),B(﹣1,0),C(1,0)三点坐标.(1)若点D与A,B,C三点构成平行四边形,请写出所有符合条件的点D的坐标;(2)选择(1)中符合条件的一点D,求直线BD的解析式.19、某儿童娱乐场有一种游戏,规则是:在一个装有6个红球和若干个白球(每个球除颜色外其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动为40 000人次,公园游戏场发放的福娃玩具为10 000个.(1)求参加一次这种游戏活动得到福娃玩具的概率;(2)请你估计袋中白球接近的概率.①、图②分别是该厂2006~2009年二氧化硫排放量(单位:吨)的两幅不完整的统计图.请根据图中信息解答下列问题:(1)该厂2006~2009年二氧化硫的排放总量是_________吨,这四年二氧化硫排放量的中位数是_________吨;(2)把图①的折线图补充完整;(3)图②中2006年二氧化硫的排放量对应扇形的圆心角是_________度,2009年二氧化硫的排放量占这四年排放总量的百分比是_________.21、如图,一量角器所在圆的直径为10cm,其外缘有A、B两点,其读数分别为71°和47°.(1)劣孤所对的圆心角是多少度?(2)求劣孤的长.(3)问A、B之间的距离是多少?(sin12°≈0.12,cos12°≈0.98)22、(2005•江西)某课外学习小组在设计一个长方形时钟钟面时,欲使长方形的宽为20厘米,时钟的中心在长方形对角线的交点上,数字2在长方形的顶点上,数字3,6,9,12标在所在边的中点上,如图所示.(1)当时针指向数字2时,时针与分针的夹角是多少度?(2)请你在长方框上点出数字1的位置,并说明确定该位置的方法;(3)请你在长方框上点出钟面上其余数字的位置,并写出相应的数字(说明:要画出必要的、反映解题思路的辅助线);(4)问长方形的长应为多少?23、(2007•黄冈)传销是一种危害极大的非法商业诈骗活动,国家是明令禁止的.参与传销活动的人,最终是要上当受骗的.据报道,某公司利用传销活动诈骗投资人,谎称“每位投资者每投资﹣股450元,买到一件价值10元的商品后,另外可得到530元的回报,每﹣期投资到期后,若投资人继续投资,下﹣期追加的投资股数必须是上一期的2倍”.退休的张大爷先投资了1股,以后每期到期时,不断追加投资,当张大爷某一期追加的投资数为16股后时,被告知该公司破产了.(1)假设张大爷在该公司破产的前﹣期停止投资,他的投资回报率是多少?(回报率=)(2)试计算张大爷在参与这次传销活动中共损失了多少元钱?24、(2008•湖州)阅读理解:对于任意正实数a,b,∵≥0,∴a﹣+b≥0,∴a+b≥2,只有点a=b时,等号成立.结论:在a+b≥2(a,b均为正实数)中,若ab为定值p,则a+b≥,只有当a=b时,a+b有最小值2.根据上述内容,回答下列问题:(1)若m>0,只有当m=_________时,m+有最小值_________;(2)思考验证:①如图1,AB为半圆O的直径,C为半圆上任意一点,(与点A,B不重合).过点C作CD⊥AB,垂足为D,AD=a,DB=b.试根据图形验证a+b≥,并指出等号成立时的条件;②探索应用:如图2,已知A(﹣3,0),B(0,﹣4)P为双曲线上的任意一点,过点P作PC⊥x轴于点C,PO⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.25、等边△OAB在平面直角坐标系中(图1),已知点A(2,0),将△OAB绕点O顺时针方向旋转a°(0<a<360)得△OA1B1.(1)直接写出点B的坐标;(2)当a=30时,求△OAB与△OA1B1重合部分(图2中的阴影部分)的面积;(3)当A1,B1的纵坐标相同时,求a的值;(4)当60<a<180时,设直线A1B1与BA相交于点P,PA、PB1的长是方程x2﹣mx+m=0的两个实数根,求此时点P的坐标.答案与评分标准一、选择题(共8小题,每小题3分,满分24分)1、(2010•鄂尔多斯)下列计算正确的是()A、a+2a2=3a2B、a3•a2=a6C、(a3)2=a9D、a3÷a4=a﹣1(a≠0)考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方。
分析:利用同底数幂的运算法则计算即可.解答:解:A、a和2a2不是同类项,不能合并,故本选项错误;B、应为a3•a2=a5,故本选项错误;C、应为(a3)2=a6,故本选项错误;D、a3÷a4=a﹣1(a≠0),正确.故选D.点评:本题考查了合并同类项法则、同底数幂的乘法、同底数幂的除法,熟练掌握性质是解题的关键,不是同类项的一定不能合并.2、(2008•扬州)在平面直角坐标系中,将点A(1,2)的横坐标乘以﹣1,纵坐标不变,得到点A′,则点A和点A′的关系是()A、关于x轴对称B、关于y轴对称C、关于原点对称D、将点A向x轴负方向平移一个单位得点A′考点:关于x轴、y轴对称的点的坐标。
分析:已知平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y),从而求解.解答:解:根据轴对称的性质,知横坐标都乘以﹣1,即是横坐标变成相反数,则实际是作出了这个图形关于y轴的对称图形.故选B.点评:考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点.3、(2002•朝阳区)如果圆锥的侧面积为20πcm2,它的母线长为5cm,那么此圆锥的底面半径的长等于()A、2cmB、2cmC、4cmD、8cm考点:圆锥的计算。
分析:圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求得圆锥的底面半径.解答:解:设圆锥的底面半径为r,则20π=π×r×5,解得r=4cm,故选C.点评:本题考查圆锥侧面积的求法的灵活运用.4、(2010•宁夏)为了解居民节约用水的情况,增强居民的节水意识,下表是某个单元的住户当月用水量的调查结果则关于这12户居民月用水量,下列说法错误的是()A、中位数6方B、众数6方C、极差8方D、平均数5方考点:中位数;算术平均数;众数;极差。
专题:图表型。
分析:根据表中数据,分别利用中位数、众数、极差、平均数的定义即可求出它们,然后就可以作出判断.解答:解:依题意得众数为6;中位数为(4+6)=5;极差为10﹣2=8;平均数为(2×2+4×4+5×6+10)=5.故A错.故选A.点评:此题主要考查了众数、中位数、平均数、极差等定义,要求学生对于这些定义比较熟练.5、(2010•眉山)如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A、90°B、60°C、45°D、30°考点:勾股定理。
分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.解答:解:根据勾股定理可以得到:AC=BC=,AB=.∵()2+()2=()2.∴AC2+BC2=AB2.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.点评:本题考查了勾股定理,判断△ABC是等腰直角三角形是解决本题的关键.6、(2009•南平)如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是()A、B、C、D、考点:简单组合体的三视图。