化工压力容器常见缺陷和处理方法
- 格式:doc
- 大小:23.00 KB
- 文档页数:7
Science &Technology Vision 科技视界0引言渗漏、泄漏,以至引发压力容器爆炸事件是压力容器焊接缺陷的结果,导致人民安全与庞大的财产亏损。
根据对压力容器事件考察说明,压力容器事件的40%是从焊缝缺陷处开头的。
焊缝的查验在对压力容器实行查验的原委中特别主要。
所以,要早点察觉缺陷,把焊接缺陷控制在相应的领域内,来保证压力容器运营安全。
1压力容器内外表面宏观及几何缺陷1.1错边与角变形在焊接时互相相接的焊接工件没有全部连接在一起,而是错开了一定的地方的就是错边,在组装时段是通常发生错边这种质量缺陷的时间段,也许是由于设计问题或者是焊接工的技术问题因素。
属于几何缺陷的有错边与角变形,经常会引发应力集中的是压力容器的错边和角变形,危急时会导致压力容器的运用安全。
1.2咬边一般称之为咬边的是焊接时所根据的焊接参数有问题时或许焊接技术办法运用不妥时,会让母材上沿着焊趾的目标显露必然的沟槽或者凹下。
同步,若是埋弧焊的焊接速率太快或者焊机轨道不屈,也会导致焊件被溶解从而消除相当的深度,而还会导致焊缝咬边的是当填充金属不能实时填满时。
用规范抗拉强度下限值大于540MPa 的钢材和Cr—Mo 低合金钢材以及不锈钢材创造的容器和焊接接头系数取为1的容器,咬边是它焊缝表面不能有的。
0.5mm 是别的容器焊缝表面的咬边深度不能大于的,100mm 是咬边接连长度不能大于的,该焊缝长度的10%是焊缝两边咬边的总共长度不能超过的。
2压力容器焊接的经常见的缺陷2.1夹渣与气孔焊缝边缘有氧割或碳弧气刨残留的熔渣;坡口角度或焊接电流太小,或焊接速度过快,这是发生夹渣的因素。
电流太小焊接速率太快、不合适的运条、运用碱性焊条时,因为电弧太长或者极性不准确也会导致夹渣等等这些都是产生夹渣这种质量缺陷的因素。
防备发生夹渣的办法是:准确选择坡口分寸,仔细处理坡口边缘,采用适宜的焊接电流与焊接速率,运条摇动要合适。
焊接气孔就是如果在焊接时有气泡滞留在熔池中,而且这些气泡在冻结的原委中也没有全部冒出,就或许会在这地方造成必然的空穴。
压力容器焊接缺陷分析与防治措施1.焊接接头裂纹:焊接接头裂纹是最常见的焊接缺陷之一、裂纹通常会在焊接后出现,局部会有明显的变形。
裂纹的形成原因可能是焊接材料的质量不好,焊接接头的几何形状不合适,焊接过程中的应力集中或温度变化等。
2.焊缝气孔:焊缝气孔是由于焊接过程中产生的气体未能完全排出而形成的。
气孔的存在会导致焊缝的强度降低,容易造成渗漏,进而导致压力容器的失效。
3.焊接结构变形:在压力容器的焊接过程中,由于焊接过程中产生的热量,容易导致焊接结构的变形。
焊接结构的变形会导致内部应力集中,从而引发裂纹和其他缺陷。
针对压力容器焊接缺陷,可以采取以下防治措施:1.选择合适的焊接材料和焊接工艺:选择合适的焊接材料和焊接工艺非常重要。
应根据压力容器的使用环境和材料特性选择合适的焊接材料,确保其具有良好的焊接性能。
同时,采用适当的焊接工艺和参数,控制焊接过程中的温度和应力分布,降低焊接缺陷的产生风险。
2.严格控制焊接质量:在焊接过程中,要严格按照相关的焊接规范和标准进行操作。
采用合适的检测方法和设备,对焊接接头进行检测和评估,及时发现和修复缺陷,确保焊接质量。
3.合理设计焊接结构:在压力容器的设计中,应合理考虑焊接结构的几何形状和焊接方式。
避免焊接接头的集中应力和变形,尽量减少焊接缺陷的发生。
4.加强人员培训和质量管理:培训焊接操作人员的技能和意识,提高其对焊接质量的认识和重视程度。
加强质量管理,建立完善的质量控制体系,确保焊接质量的可靠性。
总之,压力容器焊接缺陷的分析和防治是确保压力容器安全性的重要环节。
通过合适的焊接材料和工艺选择、严格控制焊接质量、合理设计焊接结构以及加强人员培训和质量管理等措施,可以有效减少焊接缺陷的发生风险,提高压力容器的耐压能力和安全性。
故障维修压力容器常见缺陷分析及影响刘 兵(山东美陵博德化工机械有限公司,山东 青岛 266555)摘 要:现阶段压力容器被广泛应用在各领域生产建设环节中,对实际生产质量与生产期间的安全性具有较大影响。
压力容器运行期间经常会出现各类缺陷问题,使安全生产期间的危害性增大。
基于此,本文以压力容器检验工作的重要意义为切入点,提出压力容器常见缺陷问题。
针对此类问题制定出解决对策,以供参考。
关键词:压力容器;常见缺陷;影响前言:压力容器是多行业生产过程中的重要特种压力容器之一。
随科技技术发展速度不断加快,压力容器运行环境日渐复杂,压力容器安全运行水平对企业生产经营期间的综合效益影响巨大。
受各类不稳定因素制约,压力容器在实际运行期间经常会出现各类缺陷问题,引发生产安全事故。
因此为充分发挥出压力容器运行期间的积极作用,需要细致分析压力容器常见缺陷问题种类及形成原因,加大压力容器运行期间的监管力度。
1 压力容器管理工作的重要意义就目前来看,压力容器运行参数不断提高,容器实际运行期间的效率及安全性对生产综合效益影响巨大。
为确保压力容器能够在提升生产水平,保证生产质量中发挥出重要作用,需要加强容器检验力度,最大限度消除缺陷隐患问题,防范安全事故发生。
压力容器长期处于高温、高压运行环境下,无法从根本上避免容器老化、故障问题[1]。
为切实延长压力容器全生命周期,保障压力容器实际运行效果,应重点关注压力容器的检验及管理工作,细致分析与评估可能影响到压力容器正常运行水平的不稳定因素,结合此些因素,制定出专项可行的解决对策。
2 压力容器常见缺陷种类在压力容器实际运行过程中,从容器结构设计到后期运维管理等各环节都会出现缺陷问题[2]。
在压力容器设计中,由于设计工作没有严格遵照国家及有关部门的相关规定,设计单位资质不高,用户及供货方的协调不到位,均会导致压力容器故障问题发生几率增大。
同时,压力容器在运行期间也会出现过热变形、膨胀受阻、表面应力过大等出现问题。
压力容器筒体卷制质量缺陷分析及对策前言随着工业的不断发展,压力容器在工业生产中发挥着越来越大的作用。
而对于压力容器筒体的卷制质量缺陷问题,一直是生产中值得关注和解决的问题。
本文将对压力容器筒体卷制质量缺陷问题进行分析,并提出一些对策。
压力容器筒体卷制质量缺陷的原因压力容器筒体卷制的质量缺陷问题主要是由以下几方面原因所导致:材料原因材料的选用是影响压力容器筒体卷制质量的重要因素。
材料的质量及其物理化学性能直接影响到卷制后成品的质量。
一些材料中含有的杂质、疵点、氧化物等,在卷制时会产生卷制质量的缺陷。
设备因素由于设备的制造工艺和工艺水平等差异,也会引起不同程度的卷制质量缺陷。
因此,压力容器筒体卷制设备的选购和制造工艺的优化,对卷制质量具有重要的影响。
工艺因素卷制工艺是影响塞筒卷制质量的另一个因素。
卷制工艺过程中,材料的卷制速度、压力、温度等参数的控制方式、卷筒焊缝的处理方法等都会影响卷制质量。
而一些不当的卷制工艺,往往会导致卷制质量的缺陷。
压力容器筒体卷制质量缺陷分析对于压力容器筒体卷制质量缺陷问题,常见的有以下几种:1. 卷筒表面有裂纹卷筒表面常常出现裂纹的问题。
这主要是由于卷制过程中,卷筒钢板的弯曲受力过大,导致钢板表面产生了一定程度的破裂。
2. 卷筒表面出现气泡卷筒表面出现气泡是由于卷制时未能将含气的空气排出。
由于没有排气,气泡被卡在铁板内部,形成了气泡的问题。
3. 焊缝未打磨因为卷筒是由多个钢板焊接而成的,焊缝的处理对于卷制质量具有重要的影响。
如果卷制后的焊缝未能及时清理和打磨,就会留下大量的杂质和毛刺,从而影响焊接质量。
4. 波纹形变严重卷制过程中,如果钢板的卷制弯曲角度过大,就会造成卷筒的波纹形变过大的问题。
这个问题不仅影响到产品的外观质量,还会影响到产品的使用寿命。
压力容器筒体卷制质量缺陷对策针对以上分析的问题,提出以下对策:1. 选择优质的钢材选择合适的钢材是防止卷筒钢板卷制质量缺陷的关键。
压力容器制造常见问题与解决方法【摘要】本文主要介绍了压力容器制造过程中常见的问题及解决方法。
材料选择不当可能导致压力容器的性能下降甚至发生安全事故。
焊接质量不合格也是一个常见问题,需要加强焊接质量管理。
设计参数计算错误和表面处理不到位也会影响压力容器的质量。
检测手段不完善可能导致隐藏的问题无法及时发现。
为了解决这些问题,需要加强材料选择与焊接质量管理,提高设计参数计算和表面处理的准确性,以及完善检测手段和质量保障体系。
通过这些措施,可以提高压力容器的制造质量,确保其安全可靠性。
【关键词】压力容器、制造、常见问题、材料选择、焊接质量、设计参数、表面处理、检测手段、解决方法、管理、准确性、质量保障、体系。
1. 引言1.1 压力容器制造常见问题与解决方法压力容器是一种用于储存或传输气体、液体或蒸汽的设备,广泛应用于化工、石油、制药等行业。
在压力容器的制造过程中,常常会出现一些问题,如材料选择不当、焊接质量不合格、设计参数计算错误、表面处理不到位以及检测手段不完善等。
材料选择不当可能导致压力容器在使用过程中出现强度不足或耐腐蚀性能不佳的问题,进而影响设备的安全性和使用寿命。
解决这一问题的关键在于加强材料选择与焊接质量管理,确保选用符合要求的材料,并进行严格的材料检验和焊接监控。
焊接质量不合格可能会导致焊缝处出现裂纹、气孔等缺陷,从而降低压力容器的承压能力和安全性。
要解决这一问题,需要加强焊接工艺控制,提高焊工技术水平,确保焊接质量符合要求。
设计参数计算错误可能导致压力容器在工作过程中出现超压或不稳定等问题,危及设备和人员安全。
要解决这一问题,需要提高设计人员的专业水平,加强设计参数计算的准确性和可靠性。
检测手段不完善可能导致压力容器内部缺陷难以发现,从而影响设备的安全性。
要解决这一问题,需要完善检测手段和质量保障体系,确保对压力容器进行全面、准确的检测。
要提高压力容器制造的质量和安全性,需要加强材料选择与焊接质量管理,提高设计参数计算和表面处理的准确性,完善检测手段和质量保障体系。
解析压力容器制造过程常见缺陷1. 压力容器的概述作为盛装气体或液体的设备,压力容器最高的工作压力范围≥0.1MPa,多在特殊的环境(如高温、高压、易腐蚀)下使用。
为满足不同行业客户的多样化需求,压力容器的形态、结构和参数都向着多样化的方向发展,这意味着压力容器制造过程中涉及到多种规范性标准和条件的限制,因此必须采取严格的质量控制措施。
压力容器制造过程具有如下特征:(1)压力容器不同于通用机械产品,在运用软件技术对产品进行设计时,不仅要求设计人员掌握先进的计算机技术,更要具备化工设备的整体设计思想;(2)压力容器生产过程涉及金属冶金、材料化工、材料力学、机加工和检验检测等多个领域的内容,生产过程中受到多种条件的影响,因此生产过程具备较高的复杂性,生产人员需要具备相应的技术资格且对生产流程进行严格控制;(3)压力容器的工作条件比较苛刻且要求有较长的使用寿命,所盛装的介质又多是有毒有害、易燃易爆的气体或液体,因此压力容器制造过程中要特别重视安全性;(4)压力容器制造过程中是以钣金件的焊接质量为主要质量控制点,因此焊接质量是制造過程中相对薄弱的环节,需要采取特定的质量控制措施。
2. 压力容器制造过程的常见缺陷及质量控制对策2.1 材料使用的问题及质量控制对策在压力容器制造过程中,受到采购困难或对现有材料进行充分利用等因素的限制,材料代用问题在压力容器制造过程中时有发生,这给压力容器的安全性能埋下了极大的隐患。
压力容器制造过程中材料使用问题主要可以归纳为如下方面:选材考虑不周,过分强调材料某性能的优越性而导致其他性能的不合格;材料入库检验制度不完善,致使材质与所需不符,最终使用不符合标准的材料而导致压力容器质量不合格;(3)没有落实材料订货的技术要求,在订购材料时没有将设计文件的技术质量要求向供货商进行说明;(4)选择和使用的焊接材料不符规范,导致焊缝性能难以满足使用需求。
笔者认为,压力容器制造过程中材料的质量控制应从如下几个方面着手:第一,制造单位要在熟悉国家标准及图样设计要求的基础上,严格控制材料的采购流程,通过对材料进行复验或对供货单位进行考察、评审及追踪等办法,切实确保使用的压力容器材料符合相关标准。
浅谈压力容器设计中的常见问题及对策压力容器是工业生产中常见的设备,用于加工、储存和输送各种气体、液体和粉末。
它们承受着高压、高温或低温等复杂的工作环境,因此在设计和制造过程中要特别注意安全性和可靠性。
在压力容器设计中常常会遇到一些问题,下面就让我们来浅谈一下这些常见问题及对策。
一、焊接质量问题焊接是压力容器制造过程中最关键的环节之一,焊接质量直接影响着容器的安全性和可靠性。
常见的焊接质量问题包括焊接缺陷、焊接接头设计不合理和焊接接头处的应力集中等。
为了解决这些问题,首先应该加强焊工的技术培训,提高他们的焊接水平和质量意识;其次要严格控制焊接工艺参数,确保焊接质量符合标准要求;最后要设计合理的焊接接头结构,减少应力集中并提高接头的疲劳寿命。
二、材料选择和损伤问题压力容器的材料选择直接关系到其抗压性能和耐腐蚀性能。
选择不当或材料损伤都会导致容器失效。
为了避免这些问题,首先应该在设计阶段就对材料进行严格筛选和检测,确保材料符合要求;其次要加强对材料的管理和保养,及时发现并处理材料损伤问题;最后要严格按照材料的使用规范来设计和制造压力容器,确保其安全性和可靠性。
三、安全阀和压力表问题安全阀和压力表是压力容器的重要保护装置,它们直接关系到容器的安全运行。
常见的问题包括安全阀和压力表的选择不当、安装位置不合理和维护不及时等。
为了解决这些问题,首先应该对安全阀和压力表的性能和使用要求有清楚的了解,确保其选择和安装符合标准要求;其次要加强对安全阀和压力表的维护保养,及时发现并处理问题;最后要加强对安全阀和压力表的使用管理,确保其在容器运行过程中起到应有的作用。
四、设备结构设计问题压力容器的结构设计直接关系到其承压性能和使用寿命。
常见的结构设计问题包括受力分析不合理、结构尺寸设计不合理和支撑方式选择不当等。
为了解决这些问题,首先应该加强对设备结构设计的理论研究和实践经验总结,确保设计合理性;其次要加强对设备结构的计算分析,确保其受力性能符合要求;最后要结合实际情况对设备结构进行合理优化,确保容器的安全运行。
浅论压力容器检验中的缺陷\成因及处理摘要:压力容器具有一定的危险性,因此需要定期检验,处理缺陷,实现安全生产。
本文就压力容器定期检验中常见缺陷与成因进行了分析,并提出了处理措施。
关键词:压力容器检验缺陷成因处理引言压力容器使用一段时间后,在定期检验过程中往往会发现一些制造时遗留下的“先天”缺陷以及使用中产生的新生缺陷,依据确保安全、“合乎使用”的原则,检验人员能否对缺陷的性质正确定性定量、分析产生原因,进而提出科学、可靠的处理方法显得十分重要。
1 压力容器的定期检验内容1.1压力容器外部检查亦称运行中检查检查的主要内容有:压力容器外表面有无裂纹、变形、泄漏、局部过热等不正常现象:安全附件是否齐全、灵敏、可靠:紧固螺栓是否完好、全部旋紧:基础有无下沉、倾斜以及防腐层有无损坏等异常现象。
外部检查既是检验人员的工作,也是操作人员日常巡回检查项目。
发现危及安全现象(如受压元件产生裂纹、变形、严重泄渗等)应予停车并及时报告有关人员。
1.2压力容器内外部检验压力容器内外部检验这种检验必须在停车和容器内部清洗干净后才能进行。
检验的主要内容除包括外部检查的全部内容外,还要检验内外表面的腐蚀磨损现象:用肉眼和放大镜对所有焊缝、封头过渡区及其他应力集中部位检查有无裂纹,必要时采用超声波或射线探伤检查焊缝内部质量:测量壁厚。
若测得壁厚小于容器最小壁厚时,应重新进行强度校核,提出降压使用或修理措施:对可能引起金属材料的金相组织变化的容器,必要时应进行金相检验:高压、超高压容器的主要螺栓应利用磁粉或着色进行有无裂纹的检查等。
通过内外部检验,对检验出的缺陷要分析原因并提出处理意见。
修理后要进行复验。
压力容器内外部检验周期为每三年一次,但对强烈腐蚀性介质、剧毒介质的容器检验周期应予缩短。
运行中发现有严重缺陷的容器和焊接质量差、材质对介质抗腐蚀能力不明的容器也均应缩短检验周期。
1.3压力容器全面检验压力容器全面检验除了上述检验项目外,还要进行耐压试验(一般进行水压试验)。
浅谈压力容器制造过程中存在的问题及相应解决措施1. 引言1.1 背景介绍压力容器是一种用于承受内部压力并保持结构稳定的设备。
在工业生产中,压力容器被广泛应用于化工、石油、制药、食品等行业。
由于其工作环境复杂和工作压力较高,压力容器制造过程中存在着各种问题,这也使得压力容器的安全性备受关注。
在压力容器制造过程中,材料选择不当是一个常见的问题。
如果选用的材料不能承受所需的工作压力,容器就会出现安全隐患。
制造工艺不规范也是一个潜在的问题,可能导致容器结构不稳定或存在缺陷。
缺乏严格的质量控制也使得压力容器在制造过程中可能出现质量问题。
为了解决这些问题,压力容器制造企业应该注意在设计阶段选择合适的材料,并保证制造工艺规范化。
建立严格的质量控制体系,对每个环节进行监控和检测,确保压力容器的质量达到标准要求。
压力容器制造过程中存在的问题需要引起重视,只有加强管理和控制,才能确保压力容器的安全可靠性。
展望未来,随着技术的不断发展,相信压力容器制造将会有更大的进步和提升。
1.2 研究目的研究目的是为了深入探讨压力容器制造过程中存在的问题及相应解决措施,通过对材料选择不当、制造工艺不规范、缺乏严格质量控制等方面进行分析和总结,为压力容器制造行业提供一些具体的改进建议和指导意见。
通过本研究,希望能够促进压力容器制造工艺的不断完善和提升,确保压力容器的安全性和可靠性,保障人民生命财产安全,推动我国压力容器制造行业的健康发展。
2. 正文2.1 压力容器制造过程中存在的问题在压力容器制造过程中,存在着诸多问题需要引起重视和解决。
材料选择不当是一个常见的问题。
由于一些厂家为了降低成本,使用劣质材料或者不符合标准的材料进行制造,导致容器的使用寿命大大缩短,甚至存在安全隐患。
制造工艺不规范也是一个常见问题。
一些制造企业为了赶工期或者降低成本,忽略了制造工艺的严谨和规范性,造成了制造过程中的各种质量问题,影响了容器的使用效果和安全性。
194研究与探索Research and Exploration ·智能检测与诊断中国设备工程 2024.02 (上)表现形式和产生原因:咬边,就是两个部件间的焊接缝隙表露出来的凹陷现象。
产生这个问题的原因有很多,比如焊接作业没有按照规程进行,比如焊丝与焊接部位发生偏移,导致受焊部位的熔池出现时间较长,比如焊接电流过大,导致焊接部位受到较大冲击,又比如焊接速度没有保持匀速,存在时快时慢的情况等。
咬边的出现,使得母材有效截面面积有所减少,同时,咬边位置承受的应力相较其他位置而言更严重、更集中。
设想一下,用安全锤砸向玻璃四角,此时玻璃四角因为承受较大应力,就会导致裂纹出现,从而破坏了整块玻璃。
咬边遭受集中应力后也会如此,使得焊缝边缘出现裂纹的可能性比较大。
气孔,从形象上也可以看作气泡,是一个呈“空穴”状的缺陷。
当焊接母材外表面没有清理干净,其氧化膜和污垢还停留在上面时,或者焊接工艺参数设置不符合实际要求时,就容易产生焊接气孔。
业内学者对焊接气孔进行研究,认为焊接气孔的产生与焊接时所产生的氢气(元素)有关。
也有人认为是在焊接过程中发生了一定的波动,使得焊接部位发生收缩和衰竭的情况,使得气孔产生。
总之,我们可以这样理解,因操作问题,使得焊接过程中产生的气体被快气体一步而完成收缩的金属包容在里面,导致气体没有溢出,就形成一个气孔,也就是空穴。
当然,造成气孔产生的原因不只是上面提到的两点,也有可能是坡口四周有未清理的污垢;坡口表面存在水滴、油滴等液态物质;焊条和焊剂呈现潮湿状态;焊芯有生锈情况;焊接工作人员操作手法有问题等。
这些原因都会给气体逸出形成阻碍,造成逸出迟滞,从而产生气孔。
焊瘤,就是焊接部位金属溢出,并且凝固成一个圆球状形态。
可以借助家庭调料瓶来想象,比如蚝油,如果瓶口有溢出,并且没有及时处理,就会在瓶口周围,或者瓶身上留下一道印记,痕迹尾端就是已经凝结的一处圆球状、水滴状形态。
与之相比,焊瘤并不会向四周溢出太多,只是在焊接部位存在。
化工压力容器常见缺陷和处理方法
化工厂中的压力容器经常遇到的缺陷是腐蚀、裂纹和变形,操作人员必须定期进行技术检验,尽早消除隐患,防止缺陷继续发展扩大,对生产造成影响。
1腐蚀
腐蚀是压力容器在使用过程中最容易产生的一种缺陷,特别是在化工容器中。
它是由于金属与所接触的介质产生化学或电化学变化作用而引起的。
腐蚀种类
容器的腐蚀可以是均匀腐蚀、点腐蚀、晶间腐蚀、应力腐蚀和疲劳腐蚀。
不管是哪一种腐蚀,严重时都会导致容器的失效或破坏。
压力容器的内外表面都可以产生腐蚀。
容器的外壁一般是大气的腐蚀,大气的腐蚀作用与地区与季节等有密切的关系,在干燥的地区或季节,大气的腐蚀比潮湿地区或多雨季节轻微得多。
压力容器外壁的腐蚀多产生于经常处于潮湿状态和易于积存水分或
湿气的部位。
在容器与支架的接触面、容器与地面接触的部分容易产生腐蚀。
容器内壁的腐蚀主要是由于工作介质或它所含有的杂质作用而产生的。
一般来说,工作介质具有明显腐蚀作用的容器,设计时都采取防腐蚀措施,如选用耐腐蚀材料、进行表面处理或表面涂层、在
内壁加衬里等。
因此,这些容器内壁的腐蚀常常是因为防腐蚀措施遭到破坏而引起的。
容器内壁的腐蚀也可能是由于正常的工艺条件被破坏而引起,例如干燥的氯对钢制容器不产生腐蚀作用,而如果氯气中含有水分或充装氯气的容器因进行水压试验后没有干燥,或由于其它原因进入水分,则氯气与水作用生成盐酸或次氯酸,对容器内壁产生强烈的腐蚀作用。
由于结构原因也可引起或加剧腐蚀作用,例如,带有腐蚀性沉积物的容器,排出管高于容器的底平面,使容器底部长期积聚有腐蚀性的沉积物,因而产生腐蚀。
此外,焊缝及热影响区、铆接容器的铆钉周围及接缝区都是比较容易产生腐蚀的地方。
由于容器外壁的腐蚀一般是均匀腐蚀或局部腐蚀,用直观检查的方法即可发现。
外壁涂刷有油漆防护层的容器,如果防护层完好无损,而且又没有发现其它可疑迹象,一般不需要清除防护层来检查金属壁的腐蚀情况。
外面有保温层或其它覆盖层的容器,如果保温材料对器壁材料无腐蚀作用,或容器壳体有防腐层,在保温层完好无损的情况下,也可以不拆除保温层,但如果发现泄漏或其它有可能引起腐蚀的迹象,则至少在可疑之处拆除部分保温层进行检查。
容器内壁可能有各种形式的腐蚀。
对均匀腐蚀和局部腐蚀也可以通过直观检查的方法。
对晶间腐蚀和断裂腐蚀(应力腐蚀和疲劳腐蚀),除了严重的晶间腐蚀可以用锤击检查有所发现外,一般用直观检查是难以判断的,常用金相检验、化学成分分析和硬度测定。
一般衬里要作气密性检验,检验时有妨碍检验的构件应予以拆除。
经直观检查发现容器内壁或外壁有均匀腐蚀或局部腐蚀时应测量被腐蚀处的剩余厚度,从而确定器壁的腐蚀厚度和腐蚀速率。
处理方法
对腐蚀缺陷的处理要根据容器的具体使用情况而定,一般原则是:(1)内壁发现晶间腐蚀、断裂腐蚀等缺陷时,不易继续使用。
如果腐蚀是轻微的,允许根据具体情况,在改变原有工作条件下使用。
(2)当发现分散点腐蚀,但不妨碍工艺操作时(不存在裂纹、腐蚀深度小于计算壁厚的一半),可对缺陷不作处理继续使用。
(3)均匀腐蚀和局部腐蚀按剩余厚度不小于计算厚度的原则,确定其继续使用、缩小检验间隔期限、降压使用或判废。
2裂纹
裂纹是压力容器中最危险的一种缺陷,它是导致容器发生脆性破坏的因素,同时又会促进疲劳破裂和腐蚀破裂的产生。
裂纹种类
压力容器中的裂纹,按其生成过程,大致可分为两大类,即原材料或容器制造中产生的裂纹和容器使用过程中产生的裂纹或扩展的裂纹。
前者包括钢板的轧制裂纹、容器的拔制裂纹、焊接裂纹和消除应力热处理裂纹;后者包括疲劳裂纹和应力腐蚀裂纹。
原材料轧制裂纹是由于金属材料本身存在的疏松、缩孔和非金属夹杂物等缺陷积聚在一起,经轧制而生成的线性缺陷。
这种缺陷可以在材料的内部,也可以在表面,无一定的方向性和固定的部位。
有些拔制的小型高压容器中,也常常发现类似的裂纹。
焊接裂纹主要是在容器制造过程中产生的,这是由于容器制造厂质量检验不严,或原有缺陷轻微未被发现而在使用过程中有所发展。
消除应力热处理裂纹是一种呈分枝状的晶间裂纹,是在焊后消除应力热处理时产生的,也可在使用中扩展。
疲劳裂纹是因为容器的结构不良或材料存在缺陷,造成局部应力过高,在容器经过反复多次的加压或卸压后产生的裂纹,在一些开停频繁的压力容器中可以发现这种裂纹。
腐蚀裂纹是腐蚀介质在一定的工作条件下,对材料进行腐蚀而逐渐形成的,这种裂纹往往与应力有关。
因为应力和腐蚀两者相互促进,后
者在材料表面形成缺口产生应力集中,或削弱金属的晶间结合力,而前者则加速腐蚀的进展,使表面缺口向深处发展。
压力容器的裂纹虽然在它的内外表面的各个部位都可能存在,但是一般最容易产生裂纹的地方是焊缝与焊接热影响区以及局部应力过高的部位。
处理方法
裂纹的检查可以用直观检查和无损探伤。
一般是通过直观检查发现或初步发现裂纹的迹象,再通过无损探伤进一步加以确认。
无损探伤无论是液体的渗透探伤、荧光探伤和磁力探伤,对检查表面裂纹都有较高的效用,可以根据具体情况适当选用。
当发现压力容器有裂纹缺陷时,首先应根据裂纹所在部位、数量、大小、分布情况及容器的工作条件等分析裂纹产生的原因,必要时可以进行金相检验,以判断裂纹是原材料存在的缺陷,还是容器制造时留下的,或是使用过程中产生的。
然后再根据缺陷的严重程度和容器的具体情况确定缺陷或对存在缺陷的容器处理方法。
由于材料轧制或拔制容器留下的微裂,一般都比较浅,可以用手锉或砂轮等磨去。
焊接裂纹应在检查发现时予以铲除。
由于结构不良、局部应力过高而产生裂纹的部件一般不宜继续使用。
存在腐蚀裂纹的容器,也不应将裂纹铲除或焊补后继续使用。
在特殊情况下,由于容器制造或原材料留下的裂纹确实难以消除,经过具有资格的压力容器缺陷评定单位检查鉴定,并根据断裂力学的分析和计算,确认裂纹不会扩展,且具有足够的安全裕度,容器可以采取可靠的监护措施,继续使用,但要缩短检验间隔期限,严密监视裂纹的发展情况。
3变形
变形是指容器在使用以后整体或局部地方发生几何形状的改变,这种缺陷一般在压力容器中是比较少见的。
变形种类
容器的变形一般可以表现为局部凹陷、鼓包、整体扁瘪、整体膨胀等几种形式。
局部凹陷是容器壳体或封头的局部区域受到外力的撞击或挤压因而发生的表面凹洼,这种变形一般只能在壳壁较薄的小容器上产生,它并不引起容器壁厚的改变,而只是使某一局部表面失去了原有的几何形状。
鼓包是容器的某一部分承压面因严重的腐蚀,壁厚显著减薄,因而在内压作用下发生的向外凸起变形。
个别情况下也可因容器的局部温度过高,致使材料的机械性能降低而产生鼓包,这种变形将使容器这一区域的壁厚进一步减薄。
整体扁瘪是因为受外压作用的壳体壁厚太薄,以至在压力作用下失去稳定性,丧失原有的壳体形状,这种变形只发生在容器的受外压部件,如夹套容器的内筒。
整体膨胀变形是因为容器壁厚太薄或超压使用,致使整个容器或某些截面产生屈服变形而造成的。
这种变形一般都是缓慢进行的,只有在特殊的监测下才能发现。
处理方法
变形的检查一般可用直观检查,不太严重的变形可以通过量具检查来发现。
产生变形缺陷的容器,除了不太严重的局部凹陷以外,其它的一般不宜继续使用。
因为经过塑性变形的容器,壁厚总有不同程度的减薄,而且变形材料也会因应变硬化而降低习韧性,耐腐蚀性能也较差。
对于轻微的鼓包变形,如果变形面积不太大,而且又未影响到容器的其它部分,则在容器材料可焊性较好的情况下,可以考虑采用挖补处理。
即将局部鼓包的部分挖去,再用相同形状和材料的板块进行补焊,焊后按容器原来的技术要求对焊缝进行技术检验。