当前位置:文档之家› 扭杆弹簧

扭杆弹簧

扭杆弹簧
扭杆弹簧

扭杆弹簧设计

倪明明

作为悬架弹性元件的—种——扭杆弹簧的两端分别与车架(车身)和导向臂连接。工作时扭杆弹簧受扭转力矩作用。

一、扭杆弹簧优点:

(1)单位质量的储能是钢板弹簧的3倍,所以采用扭杆弹簧的悬架质量轻、结构简单、占用空间小。

(2)悬架扭杆固定在车身上,减小了非簧载质量,提高汽车的平顺性和操控稳定性。

(3)可通过调整扭杆弹簧固定端的安装角度,实现对车身高度的调节。

(4)扭杆弹簧在越野车、轻型客、货车上应用比较广泛。在轿车悬架上也有使用(雷诺-5型、富康)。

二、扭杆弹簧分类

按照断面形状不同,扭杆弹簧分为圆形、管形、片形等几种。

(1)圆形断面扭杆工艺性良好和装配容易而得到广泛应用。采用圆断面组合式扭杆时,可以用2、4或6根组合形成的组合式扭杆。故在本次设计的悬架中选取圆形断面

扭杆。

(2)管形断面扭杆有材料利用合理和能够用来制作组合式扭杆的优点。

(3)片形断面扭杆在一片断了以后仍能工作,所以工作可靠性好,除此之外还有工艺性良好、弹性好、扭角大等优点。

三、扭杆弹簧的设计

设计扭杆弹簧需要确定的主要尺寸有扭杆直径d和扭杆长度L

扭杆弹簧采用45CrNiMoVA优质合金弹簧钢制造扭杆。采用淬火,回火热处理工艺,表面硬度在44~52HRC。为了提高疲劳强度,扭杆需要经预扭和喷丸处理。经过预扭和喷丸处理

的扭杆许用切应力[τ]可在800~900MPa 范围内选取,轿车可取上限,货车宜取下限。本次设计案例是是轿车,故[τ

]=900MPa

设计时应当根据最大扭矩计算扭杆直径d

设计时以乘坐5人为上限,没人以65Kg 计算,空载时前轴荷分配为60%,依据《汽车设计》(第四版,吉林大学出版社),满载前轴荷分配在47%~60%,在此取满载前轴荷分配为54%。对于圆截面的扭杆弹簧的两端花键连接,应力集中系数 1.2t K =, 1.25N =则产生的扭转力F 为

1.2 1.25(1365565)9.854%/2

6707.61F N

=??+???=

3max 6707.61180101207.37M FR N m -==??=g

18.97d mm =

=

= 取整后得:d=20mm

式中,Mmax 为扭杆承受的最大扭矩;τ为扭转切应力,可取允许扭转切应力(900MPa)代人计算。

所以200.08d

mm =±

扭杆弹簧可分为端部、杆部和过渡段三部分。 (1)端部渐开线花键设计(摘自GB/T 3478.1-1995)

为使端部和杆部寿命一样,推荐端部直径D=(1.2~1.3)d=(24~26)mm

取 D=26mm

花键轴大经上偏差为0,公差等级选为IT6,查《机械制图》(第五版,高等教育出版社)常用及优先轴公差带极限偏差(GB/T 1800.4--1999)得下偏差为-0.013mm

所以 0

0.01326626D h mm -==

花键长度0.40.42610.4l D mm ==?=

查常用键的长度系列(GB/T 1095--2003)值得:10l mm =

两端采用无切削加工的直齿渐开线花键联结,花键标准压力角为0

45,模数取1。

R=依据表二,选取铣切深度H=5mm ,铣切宽度B=4mm ,过渡圆弧半径26mm

花键齿数: z=11

根据表三,花键长度和公差等级,选取齿向公差β

(2)过渡段设计

从端部直径到杆部直径之间的一段称为过渡段。为了使这段应力集中降到最小,过渡段 的尺寸应该是逐渐变化的。 过渡段长00

2620

11.202tan152tan15

g D d L mm --≈

==

取整得12g L mm =

过渡圆弧半径2

211.20262022.41426204

g L D d R mm D d --=

+=+=-- 取整得23R

mm =

过渡段可以分为靠近直径为D 的花键端部的非有效部分和靠近直径为d 的杆部的有效部分,即这一部分可以看作是扭杆工作长度的一部分,称为有效长度Le

有效长度Le 可用下式计算

232312202020332626267.26g e L d d d L D D D mm

????

????????=++=++????

? ? ? ?????????????????=

设计前应当根据对汽车平顺性的要求,先行选定悬架的刚度c n

该设计要求是轿车,对平顺性要求很高,因此选取悬架的固有频率0 1.0f Hz = 由

0f =

得:

()22220244 1.0136556554%/218014.00/n c f m N m

ππ==???+??=

扭杆的工作长度0L 用下式计算

434

4

60(2010)

7.71010

671.453232

18014.00

n

d G

L mm c ππ-?????=

=

=?

取0672L mm =

式中,G 为切变模量,设计时取47.710G MPa =?;c n 为扭杆的扭转刚度。

分析上式可知:扭杆直径d 和有效长度L 对扭杆的扭转刚度c n 有影响。

(1)增加扭杆直径d 会使扭杆的扭转刚度c n 增大,n c d ∝即,所以汽车平顺性变坏。(2)增加扭杆有效长度L 能减小扭杆的扭转刚度c n ,1

n c L

即使汽车平顺性获得改善。 扭杆的工作长度L 等于杆身长Lo 再加上有效长度Le 的两倍,即 0267227.26686.52e L L L mm =

+=+?=

根据表一,扭杆直线度公差为 1.5mm ± 所以686.5 1.5L

mm =±

四、扭杆弹簧的校核

(1)设计前应当根据对汽车平顺性的要求,先行选定悬架的刚度c n 。 该设计要求为轿车,,平顺性要求很高。

扭转刚度:()

4

346

4

3

2010

7.41010169.3/3232686.510

n

d G

c N mm L

ππ--?????=

=

=??

满足轿车的舒适性要求

(2)校核渐开线花键强度能否满足扭矩要求 ()

m a x 33

221207.37

18.70.811(0.71)(1010)2110p m M MPa zhld σψ--?=

==???????

满足《机械设计》(第八版,高等教育出版社),表6-3(花键许用应力)

要求的35p MPa σ≤

0=0.70.8=.h =0.80.810.8212

m m h m mm

D d

d d mm

ψψψα==?=+==表示载荷分配不均匀系数,与齿数有关,一般~,

齿数多时选取较小值,本设计中取07z 表示花键齿数l 表示花键工作长度

表示花键齿侧面工作高度,对于渐开线花键,压力角45时,为花键平均直径,

五、参考文献

[1]王望予. 汽车设计. 第四版. 北京:机械工业出版社,2011.5 [2]余志生. 汽车理论. 第五版. 北京:机械工业出版社,2011,1 [3]陈家瑞. 汽车构造(下册). 第三版. 北京:机械工业出版社,2010,7 [4]濮良贵,纪名刚. 机械设计. 第八版. 北京:高等教育出版社,2006.5

[5]刘朝儒,吴志军,高政一. 机械制图. 第五版. 北京:高等教育出版社,2001,8

扭杆悬架设计

4.3扭杆悬架设计 作为悬架弹性元件的一种——扭杆弹簧的两端分别与车架(车身)和导向臂连接。工作时扭杆弹簧受扭转力矩作用。扭杆弹簧在汽车上可以纵置、横置或介于上述两者之间。因扭杆弹簧单位质量储能量比钢板弹簧大许多,所以扭杆弹簧悬架质量小(簧下质量得以减少),目前在轻型客车、货车上得到比较广泛的应用。除此之外,扭杆弹簧还有工作可靠、保养维修容易等优点。 扭杆弹簧可以按照断面形状或弹性元件数量的不同来分类。按照断面形状不同,扭杆弹簧分为圆形、管形、片形等几种。按照弹性元件数量不同,扭杆可分为单杆式(图4—12a、b)或组合式两种。组合式扭杆又有并联(图4—12c、d)和串联(图4—12e)两种。端部做成花键的圆形断面扭杆,因工艺性良好和装配容易而得到广泛应用,与管形扭杆比较材料利用不够合理是它的缺点。管形断面扭杆有制造工艺比较复杂的缺点,但它也有材料利用合理和能够用来制作组合式扭杆的优点。片形断面扭杆在一片断了以后仍能工作,所以工作可靠性好,除此之外还有工艺性良好、弹性好、扭角大等优点。片形断面扭杆的材料利用不够合理。组合式扭杆能缩短弹性元件的长度,有利于在汽车上布置。采用圆断面组合式扭杆时,可以用2、4或6根组合形成的组合式扭杆。 图4—12 扭杆断面形状及端部结构 a)圆形断面扭杆,端部为花键 b)圆形断面扭杆,端部为六角形c)片形组合式扭杆 d)圆形组合式扭杆e)串联组合式扭杆 下面以汽车上常用的圆形断面扭杆为例,介绍扭杆弹簧的设计要点。 设计前应当根据对汽车平顺性的要求,先行选定悬架的刚度c。设计扭杆弹簧需要确定的主要尺寸有扭杆直径d和扭杆长度L(图4—13)。

扭杆弹簧

扭杆弹簧设计 倪明明 作为悬架弹性元件的—种——扭杆弹簧的两端分别与车架(车身)和导向臂连接。工作时扭杆弹簧受扭转力矩作用。 一、扭杆弹簧优点: (1)单位质量的储能是钢板弹簧的3倍,所以采用扭杆弹簧的悬架质量轻、结构简单、占用空间小。 (2)悬架扭杆固定在车身上,减小了非簧载质量,提高汽车的平顺性和操控稳定性。 (3)可通过调整扭杆弹簧固定端的安装角度,实现对车身高度的调节。 (4)扭杆弹簧在越野车、轻型客、货车上应用比较广泛。在轿车悬架上也有使用(雷诺-5型、富康)。 二、扭杆弹簧分类 按照断面形状不同,扭杆弹簧分为圆形、管形、片形等几种。 (1)圆形断面扭杆工艺性良好和装配容易而得到广泛应用。采用圆断面组合式扭杆时,可以用2、4或6根组合形成的组合式扭杆。故在本次设计的悬架中选取圆形断面 扭杆。 (2)管形断面扭杆有材料利用合理和能够用来制作组合式扭杆的优点。 (3)片形断面扭杆在一片断了以后仍能工作,所以工作可靠性好,除此之外还有工艺性良好、弹性好、扭角大等优点。 三、扭杆弹簧的设计 设计扭杆弹簧需要确定的主要尺寸有扭杆直径d和扭杆长度L 扭杆弹簧采用45CrNiMoVA优质合金弹簧钢制造扭杆。采用淬火,回火热处理工艺,表面硬度在44~52HRC。为了提高疲劳强度,扭杆需要经预扭和喷丸处理。经过预扭和喷丸处理

的扭杆许用切应力[τ]可在800~900MPa 范围内选取,轿车可取上限,货车宜取下限。本次设计案例是是轿车,故[τ ]=900MPa 设计时应当根据最大扭矩计算扭杆直径d 设计时以乘坐5人为上限,没人以65Kg 计算,空载时前轴荷分配为60%,依据《汽车设计》(第四版,吉林大学出版社),满载前轴荷分配在47%~60%,在此取满载前轴荷分配为54%。对于圆截面的扭杆弹簧的两端花键连接,应力集中系数 1.2t K =, 1.25N =则产生的扭转力F 为 1.2 1.25(1365565)9.854%/2 6707.61F N =??+???= 3max 6707.61180101207.37M FR N m -==??=g 18.97d mm = = = 取整后得:d=20mm

M法的计算土弹簧-刚度

《JTG D63-2007公路桥涵地基与基础设计规范》 桩基土弹簧计算方法 根据地基基础规范中给出的m法计算桩基的土弹簧: 基本公式: K=ab 1 mz ③ 式中: a:各土层厚度 b 1 :桩的计算宽度 m:地基土的比例系数 z:各土层中点距地面的距离 计算示例: 当基础在平行于外力作用方向由几个桩组成时, b1=0.9×k(d + 1) ① h1=3×(d+1) ∵ d=1.2 ∴ h1=6.6 L1=2m L1<0.6×h1=3.96M ∴ k=b′+((1-b′)/0.6)×L1/h1 ② 当n1=2时,b′=0.6 代入②式得:k= 当n1=3时,b′=0.5 代入②式得:k=0.92087542 当n1≥4时,b′=0.45 带入②式得:k=0.912962963 将k值带入①式可求得b1, 对于非岩石类地基,③式中m值可在规范表P.0.2-1中查到 对于岩石类地基,③式中m值可由下式求得: m=c/z 其中c值可在表P.0.2-2中查得 将a、b1、m、z带入③可求得K值 m 同时,《08抗震细则》,第6.3.8中规定,对于考虑地震作用的土弹簧, M 动=(2~3倍)M 静 。

桥梁的地震反应分析研究中,考虑桩-土共同作用时,在力学图式中作如下处理。 假定土介质是线弹性的连续介质,等代土弹簧刚度由土介质的动力m 值计算。“m -法”是我国公路桥梁设计中常用的桩基静力设计方法。在此采用的动力m 值最好以实测数据为依据。由地基比例系数的定义可表示为 z zx x z m ??=σ 式中,zx σ是土体对桩的横向抗力,z 为土层的深度,z x 为桩在深度z 处的横向位移(即该处土的横向变位值)。 由此,可求出等代土弹簧的刚度为s K z m b a x x z m b a x A x P K p z z p z zx z s s ???=????===)()(σ 式中,a 为土层的厚度,p b 为该土层在垂直于计算模型所在平面的方向上的宽度,m 值见表1。

扭杆弹簧及其应用

汽车悬架上的扭杆弹簧及其应用 来源:中国钢铁现货网2011-01-13 复制网址〖宽屏查看〗弹簧是机械和电子行业中广泛使用的一种弹性元件,弹簧在受载时能产生较大的弹性变形,把机械功或动能转化为变形能,而卸载后弹簧的变形消失,将变形能转化为机械功。汽车悬架的金属弹簧除了螺旋弹簧和钢板弹簧外,还有扭杆弹簧。扭杆弹簧是一种弹性机械零件,跟其他类型弹簧一样,都是利用材料的弹性以及本身的结构和总体布置的特点,实现能量的转变。随着汽车工业的发展和进步,扭杆弹簧在汽车悬架上的应用越来越广泛。为使汽车在行驶中能够获得适当的操控性与舒适性,必须装设避震装置,扭杆弹簧也因此被用作为汽车悬架系统中的避震装置,利用扭杆弹簧的变形以吸收能量,来缓和汽车行驶时产生的震动和倾斜,因此,扭杆弹簧在汽车上担负着十分重要的角色。 与钢板弹簧相比,扭杆弹簧由于结构简单、质量小、不需要润滑等优点而得到广泛应用。使用扭杆弹簧的悬架结构比较简单,占用空间小,适合小型车使用。缺点是刚度受到扭杆长度的限制,不够柔软,乘坐舒适性不理想,对材料要求高。扭杆弹簧常用的材料有碳素弹簧钢、合金弹簧钢、不锈弹簧钢以及铜合金、镍合金等。 近30年来,随着新工艺、新技术的发展,扭杆弹簧的性能有了很大提高,主要标志是高应力、高强度扭杆的采用,静应力和缓冲能力都达到更高的水平,扭杆弹簧的最大工作应力已达到1300MPa。在组成扭杆悬架的所有零件中,扭杆弹簧是保证悬架装置具有优良性能的关键零件之一,只有提高扭杆弹簧的最大工作应力,才能设计出性能优良的悬架装置。 扭杆弹簧的制造材料一般应具有高的弹性极限、疲劳极限、冲击韧性及良好的热处理性能等。扭杆弹簧加工过程中,切料应注意避免温度升高,镦锻时端部加热温度为950~1000℃,镦锻后端部用退火炉加热并缓冷。铬锰弹簧钢淬火温度830~860℃,淬火冷却以垂直状态投入油中或用滚模压淬火,可防止或减小弯曲变形,应及时进行回火;为提高疲劳强度,一般应进行喷丸强化;为防止使用中的永久变形,按照负荷方向进行预扭试验,喷丸后的扭杆弹簧应及时涂漆防锈。 现代汽车设计中,舒适性越来越受到重视。对汽车平顺性的要求也越来越高。特别是对客车和货车的舒适性要求逐渐提高,扭杆弹簧在支撑车体、传递地面给车体的力,缓和车辆在行驶时由车轮传给车体的冲击力,保证车辆在不平路面高速行驶时的平稳性和乘员的舒适性方面具有重要意义。(余冶) 北汽B40(报价图片参数)/B70底盘特点:带扭杆弹簧的前独立悬挂在民用车型中非常少见底盘表现期待指数:★★★★

扭杆弹簧独立悬架设计手册

设计手册悬架篇—扭杆弹簧独立悬架部份 一、概述 1、什么是独立悬架 2、独立悬架的优缺点 二、扭杆悬架 1、扭杆悬架的典型结构 2、扭杆悬架的特点 3、扭杆悬架的刚度特性 4、扭杆悬架的运动特性 5、悬架与整车的关系 三、扭杆悬架设计 1、主要性能参数的确定 2、悬架刚度(悬架刚度不同于扭杆刚度的概念) 3、系统阻尼(系统阻尼不同于减振阻尼的概念) 4、悬架设计计算 5、扭杆的设计 四、装调中的控制要素 1、整车姿态的调整与控制 2、前轮定位的调整与控制 3、轮胎气压的调整与控制 五、故障处理案例 1、回正性差 2、轮胎偏磨

第一章概述 独立悬架是相对于非独立悬架而言的,其特点是左、右两车轮之间各自“独立”地与车架或车身相联,构成断开式车桥,当单边车轮驶过凸起时,不会影响到另一侧车轮。 独立悬架由于其导向机构措综复杂,结构型式很多,但主流结构主要有:双横臂式,纵臂式,麦弗逊式、多连杆式等。 双横臂式独立悬架又细分为等长双横臂式和不等长双横臂式。一般用于轿车的前、后悬架,轻型载货汽车的前悬架或要求高通过性的越野车的前、后悬架。 纵臂式独立悬架以平行于汽车行驶方向的纵臂承担导向和传力作用,常用于非驱动桥的后悬架。 麦弗逊式,其突出特点在于将导向机构与减振装置合到一起,将多个元零件集成在一个单元内。不公简化了结构,减轻了质量,还节省了空间,较多应用于紧凑型轿车的前悬架。 与非独立悬架相比,独立悬架的诸多优点: 1、非悬挂质量小,悬架所受到并传给车身的冲击载荷小,有利于提高汽车的行驶平顺 性及轮胎接地性能; 2、左右车轮的跳动没有直接的相互影响,可减少车身的倾斜和振动; 3、占用横向空间小,便于发动机布置可以降低发动机的安装位置,从而降低汽车质心 位置,有利于提高汽车行驶稳定性; 4、易于实现驱动轮转向。 我公司目前所采用的前独立悬架均为不等长双横臂式扭杆悬架,如BJ1027A皮卡车型、BJ1032小卡车型和BJ6486轻客车型等。 第二章扭杆悬架 扭杆式双横臂独立悬架,用扭杆作为弹性元件,简称为扭杆悬架。 2.1 扭杆悬架的典型结构 2.1.1悬架的导向机构 悬架的导向机构是一种四连杆机构,四连杆机构由上摆臂、下摆臂及主销构成。 图2-1为悬架系统结构简图, 三角型DEF为悬架上摆臂, DE为上摆臂轴; 三角型ABC为悬架下摆臂, AB为下摆臂轴; F为上球头销、 C为下球头销 FC构成转向桥的主销 车轮跳动过程中,上摆臂、下摆臂各自绕 它们的摆臂轴进行摆动。 M、N分别为转向梯型上的两点,M为转向 梯型断开点,N为转向节臂与转向拉杆的 连接点。 图2-1 摆臂结构有两种:A形臂和一字臂,呈A字形或三角形的摆臂为A形臂;呈一字形的摆臂为一字臂。上摆臂一般都是A形臂。 上下摆臂均为A形臂的称为双A形臂结构,四驱的车辆或四驱平台上的两驱车辆一般采用双A形臂,如:长丰猎豹、BJ2027皮卡;一般SUV车因考虑越野性能,其前悬架大多采

基于Excel的行李箱盖扭杆弹簧计算研究

10.16638/https://www.doczj.com/doc/7d18196181.html,ki.1671-7988.2018.07.029 基于Excel的行李箱盖扭杆弹簧计算研究 李超帅,于波,林森,孙兆有,李瑞生 (华晨汽车工程研究院,辽宁沈阳110141) 摘要:针对三厢车行李箱盖用扭杆弹簧布置过程中计算数据量大且正向设计准确性差的问题,对行李箱系统建立了力学模型,通过公式推导将行李箱盖相关作用力矩表示为以行李箱盖开闭角度为单一变量的参数,利用Excel的公式编辑功能,实现了行李箱全开闭角度的开闭力计算,简化了计算过程,提高了设计准确性。同时,通过理论分析提供了行李箱盖开闭力与平衡角度的设计优化方法。 关键词:Excel;行李箱盖;扭杆弹簧;计算 中图分类号:U467 文献标识码:B 文章编号:1671-7988(2018)07-94-05 Calculation Of Torsion Bar Spring Of Trunk Lid Based On Excel Li Chaoshuai, Yu Bo, Lin Sen, Sun Zhaoyou, Li Ruisheng ( Brilliance Automotive Engineering Research Institute, Liaoning Shenyang 110141 ) Abstract: In order to solve the problem of large amount of data and poor accuracy of forward design in the design of torsion bar spring for three compartment car trunk lid, a mechanical model was built for the trunk lid. The torques about the trunk lid were expressed as parameters with a single variable about the opening and closing angle of the trunk lid by the formula deduction. The calculation of the opening and closing force of the trunk lid was realized by applying the formula editing function of Excel. The calculation process was simplified and the design accuracy was improved. At the same time, the design optimization method for the opening/closing force and balance angle of trunk lid was provided by theoretical analysis. Keywords: Excel; Trunk Lid; Torsion Bar Spring; Calculation CLC NO.: U467 Document Code: B Article ID: 1671-7988(2018)07-94-05 前言 三厢车行李箱盖助力开启机构是实现行李箱盖开闭的关键部件,其设计布置的好坏与行李箱盖开闭操作力是否舒适、平衡角度是否合理以及极限工况开闭是否可靠直接相关。目前三厢车行李箱盖助力开启机构主要有鹅颈式铰链与扭杆弹簧组合型式、四连杆铰链与气弹簧组合型式、鹅颈式铰链与气弹簧组合型式,鹅颈式铰链与拉簧、气弹簧组合型式以及电动开闭机构的型式。其中鹅颈式铰链与扭杆弹簧组合的助力开启型式以其机构简单、质量轻、制造容易、成本低以及不受气候温度影响等优点,是经济型三厢车的主要应用结构[1,2]。 在行李箱盖扭杆弹簧的设计开发过程中,需要校核行李箱盖开闭全角度的开启操作力、关闭操作力以及平衡角度区间,同时需要计算铰链摩擦力以及车辆驻坡角度对开闭操作力与开闭可靠性的影响,设计过程需进行大量的数据处理与计算。本文通过公式推导将行李箱盖相关作用力矩表示为以行李箱盖开闭角度为单一变量的参数,利用Excel的公式编辑功能,编制了行李箱盖开闭力计算表格,简化了计算过程, 作者简介:李超帅,就职于华晨汽车工程研究院、硕士学位,中级工程师,主要从事车身附件开发。 94

扭杆弹簧知识

汽车悬挂的金属弹簧有三种形式,分别是螺旋弹簧、钢板弹簧和扭杆弹簧。螺旋弹簧形似螺旋线而得名,具有重量小且占位置少的优点,当路面对轮子的冲击力传来时,螺旋弹簧产生变形,吸收轮子的动能转换为螺旋弹簧的位能(势能),从而缓和了地面的冲击对车身的影响。钢板弹簧的中部通过U型螺栓(又称骑马螺栓)固定在车桥上,两端的卷耳用销子铰接在车架的支架上,通过钢板弹簧将车桥与车身连接起来,当路面对轮子的冲击力传来时,钢板产生变形,起到缓冲、减振的作用。扭杆弹簧一端与车架固定连接,另一端与悬架控制臂连接,通过扭杆的扭转变形达到缓冲作用。在三种弹簧中,螺旋弹簧和钢板弹簧都是常见的汽车弹簧,它们的作用比较好理解。而许多人对扭杆弹簧的形状与作用则不太明了。 从截断面上看,扭杆弹簧有园形、管形、矩形、叠片及组合式等。使用最多是园形扭杆,它呈长杆状,两端可以加工成花键、六角形等,以便将一端固定在车架而另一端通过控制臂固定在车轮上。 扭杆用合金弹簧钢做成,具有较高的弹性,既可扭曲变形又可复原,实际上起到螺旋弹簧相同的作用,只不过表现形式不一样而已。汽车运行时,车轮受地面凹凸的影响上下运动,控制臂也会随之上升或下降。当车轮向上时控制臂上升,使扭杆被迫扭转变形,吸收冲击能量。当冲击力减弱时,杆的自然还原能力能迅速恢复到它原来的位置,使车轮回到地面,避免车架受到颠簸。 扭杆弹簧能够储存较大的能量,比相等应力的螺旋弹簧和钢板弹簧大得多。杆越短越粗,刚度也越大。一般来讲,三种弹簧比较,扭杆弹簧单位重量的储能量较大,且占用的空间位置最小,易于布置,还可以适度调整车身的高度,所以不少乘用车悬挂采用扭杆弹簧。 厂家在制造扭杆弹簧时施加了预应力,增大疲劳强度。由于预应力是有方向的,所以扭杆弹簧也是有方向的。扭杆弹簧标记有左边或右边,用来识别安装在哪一侧。

基于汽车扭杆弹簧结构分析和改进

2014年第7期(总第371期)QI YE KE JI YU FA ZHAN │企业科技与发展│ qiyekejiyufazhan 扭杆弹簧作为弹性元件,由于其单位质量所储存能量比其他弹簧储存能量大,且结构相对紧凑,易于布置,在汽车设计和制造中得到了广泛的应用[1]。影响扭杆弹簧性能的因素很多,主要有几何尺寸、材料、热处理工艺、预扭和喷丸等。在设计扭杆弹簧几何尺寸时,扭杆直径和长度对于扭杆弹簧性能影响很大。现阶段,制造扭杆弹的材料很多,主要包括50CrVA 、60Si2Mn 、40Cr 和60CrA 等弹簧钢。针对选材的不同,对应采用的热处理工艺也有很大区别,例如50CrVA 和60Si2Mn 主要采用整体淬火方式,40Cr 主要采用感应淬火。不同的淬火方式得到的扭杆弹簧性能也存在差异。 HyperWorks 是由Altair 公司设计研发的一款有限元仿真软件,具有强大的前后处理功能。同时,可以对模型进行优化设计,在整车和零部件研发中,得到了十分广泛的应用。 1问题阐述 某商用车扭杆弹簧总成由扭杆、摇臂、控制臂、定位螺栓、 防尘罩和其他附件组成。其中,摇臂与前桥下摆臂通过花键连接,控制臂与车架横梁通过下臂轴连接。扭杆弹簧在整车行驶过程中,主要承受汽车颠簸时产生的扭矩。扭杆弹簧的台架试验规定满足循环40万次不损坏。扭杆弹簧组成如图1所示。 某车辆在用户使用过程中,出现扭杆弹簧突然断裂的现象,断裂部分在限位螺栓附近,位置在墩头过渡区域,由于整 体淬火方式对过渡部分存在热处理缺陷,导致该区域存在脱碳现象,厚度为80μm ,断裂呈螺旋形。经过硬度检测和晶相组织分析结果显示,断裂处扭杆弹簧硬度分布不均,有些地方的硬度低于图纸要求值。由于扭杆弹簧为底盘安全结构件,关系到乘员的人身安全,所以必须彻底解决扭杆弹簧断裂问题。本文主要从扭杆弹簧的设计和材料入手解决其断裂问题。扭杆断裂情况如图2所示。 2扭杆弹簧有限元分析 有限元分析基本步骤分为三维数模建立,几何清理,网格 划分,添加属性,施加载荷和载荷步,结果分析。 2.1三位数模的建立 通过三维绘图软件UG 建立扭杆弹簧三维数模,为满足有限元分析要求,对扭杆端头处花键进行简化处理(如图3和图4所示)。 【作者简介】郭长城,硕士研究生,一汽通用轻型商用汽车有限公司底盘工程师,从事转向系统和悬架系统的设计开发工作;李明,一汽大众汽车 有限公司质量体系工程师,从事质量体系建立和管理等工作。 基于HyperWorks 汽车扭杆弹簧结构分析和改进 郭长城1,李 明2 (1.一汽通用轻型商用汽车有限公司,吉林长春130033;2.一汽大众汽车有限公司,吉林长春130000)【摘要】文章针对某车型实际使用过程中出现的扭杆弹簧断裂问题,对扭杆弹簧结构进行CAE 分析,观察其应力云图,通过对材料和热处理方式进行研究,改进扭杆弹簧结构,增强扭杆弹簧的疲劳寿命。优化方式在台架试验和整车道路试验得到了验证,彻底解决了扭杆弹簧断裂问题。【关键词】扭杆弹簧;HyperWorks ;热处理;有限元【中图分类号】U463.33【文献标识码】A 【文章编号】1674-0688(2014)07-0015-03图1扭杆弹簧组成 注:1 .扭杆;2.调整臂;3 .摇臂;4.防尘罩.后限位螺栓;6.前限位螺栓。 1 2 34 6 5 图2扭杆断裂 图4扭杆弹簧三维数模 图3 扭杆弹簧示意图(单位:mm ) 894 27 15

拉压扭簧计算公式弹簧刚度计算

弹簧刚度计算 压力弹簧 · 压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷; · 弹簧常数:以k表示,当弹簧被压缩时,每增加1mm距离的负荷(kgf/mm); · 弹簧常数公式(单位:kgf/mm): G=线材的钢性模数:碳钢丝G=79300 ;不锈钢丝G=697300,磷青铜线G=4500 ,黄铜线G=350 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 Nc=有效圈数=N-2 拉力弹簧 拉力弹簧的 k值与压力弹簧的计算公式相同 ·拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹簧卷制成形后发生。拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同,使得每个拉力弹簧初始拉力产生不平均的现象。所以安装各规格的拉力弹簧时,应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。

· 初张力=P-(k×F1)=最大负荷-(弹簧常数×拉伸长度) · 拉力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷; · 弹簧常数:以k表示,当弹簧被拉伸时,每增加1mm距离的负荷(kgf/mm); · 弹簧常数公式(单位:kgf/mm): G=线材的钢性模数:碳钢丝G=79300 ;不锈钢丝G=697300,磷青铜线G=4500 ,黄铜线G=350 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 扭力弹簧 · 弹簧常数:以 k 表示,当弹簧被扭转时,每增加1°扭转角的负荷 (kgf/mm). · 弹簧常数公式(单位:kgf/mm): E=线材之钢性模数:琴钢丝E=21000 ,不锈钢丝E=19400 ,磷青铜线E=11200,黄铜线E=11200 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数

汽车扭杆弹簧制造工艺

汽车扭杆弹簧制造工艺 汽车扭杆弹簧是利用杆的扭转弹性变形而起弹簧作用的零件,淬火和预扭是加工扭杆弹簧的重要工序。生产厂家通常采用常规淬火和常温预扭,其缺点有:容易造成扭杆弯曲、硬度不均、耐疲劳性能减弱、松弛变形量大等。本文利用滚动淬火和热预扭工艺解决了该类问题。 扭杆弹簧制造工艺现状 汽车扭杆弹簧可分为实心扭杆和空心扭杆两类,其截面有圆、方、矩形、椭圆形及多边形等,而又以截面为圆形居多。和螺旋弹簧及板簧相比,扭杆弹簧结构简单,工作时无摩擦,弹簧特性稳定,不产生颤振,单位体积储能大,弹簧体积较小,属于小型轻量化产品,在汽车、火车、坦克及装甲车等方面获得广泛应用。 生产厂家通常采用的扭杆弹簧的制造工艺路线:切料(→镦锻→退火)→端部加工→常规淬火→回火→常温预扭(强扭)处理→喷丸→检验→防锈。 工艺路线中常规淬火和常温预扭工序存在缺点: 1)常规淬火通常有吊挂式竖直进入淬火液、横向水平进入淬火液和高频感应淬火三种方式。吊挂式淬火,会出现工件上下面硬度不均,呈“S”形弯曲,很难校直;横向水平淬火,由于工件受冷却能力不同,易产生变形;高频感应淬火会出现扭杆心部淬不透的现象。 2)预扭(亦称强扭)是对扭杆弹簧强化处理最重要方法之一。其目的是:提高扭杆表层的预压应力和开发利用心部材料的承载潜力,来提高其耐疲劳性能和最大允许剪应力。其方法是扭杆热处理后在常温下沿其工作时的承载方向施加一扭角(大于使用时的最大工作扭角),使扭杆的表层应力超过材料的屈服极限而发生塑性变形,然后再卸载。经过连续加载、卸载,使扭杆表层的塑性变形趋于稳定,并保证最后一次卸载后松弛变形小于规定值。缺点是预扭次数多,一般要三次以上,延长了产品的制造周期,浪费人力、物力和财力,松弛变形量大,耐疲劳性能弱。 扭杆弹簧制造新工艺 扭杆弹簧制造新工艺是用滚动淬火取代常规淬火,用热预扭取代常温预扭,其他工艺不变。 1.滚动校直淬火 针对工艺路线中的扭杆弹簧常规淬火问题,提供了扭杆弹簧滚动校直淬火。设备结构如附图所示,由调速、校直、床身、淬火和杠杆五个部分组成。调速部分包括电动机、变速器、主动齿轮、从动齿轮;校直部分包括主动轴、端盖、从动轴、滑块、U形密封圈、主动轮及平键、从动轮及平键、轴承、U形密封圈座、滑块、轴用弹性挡圈和配重;淬火部分包括喷水管;杠杆部分包括钢丝绳、杠杆支架、杠杆和脚踏板。

空气弹簧刚度计算

空气弹簧刚度计算 1. 载荷与气压关系式: )A p (p P a -= ----(1) 式中: P 载荷 p 气囊内绝对气压 A 气囊有效承压面积 a p 标准大气压,其值与运算单位有关: 采用N 、mm 时,a p =0.0981≈0.1N/mm 2 采用kgf 、cm 时,a p =1 kgf/cm 2 采用1b 、in 时,a p =14.223 lb/in 2(psi) 2. 气压与容积变化关系式―――气体状态方程式 m )V V (p p 00= 式中: p 任一位置气囊内气体的绝对气压 V 任一位置气囊内气体容积 0p 静平衡位置气囊内气体的绝对气压 0V 静平衡位置气囊内气体容积 m 多变指数,静态即等温过程 m =1; 动态即绝热过程 m =1.4; 一般状态,可取 m =1.33。 3. 刚度:弹性特性为弱非线性,取其导数,即 dx dP K = 式中: K 任一位置的刚度 P 载荷 x 气囊变形量即行程 即: dx )A]p d[(p K a -= dx )A]p V V d[(p a m m 00-= dx dV V V Amp dx dA )p V V (p 1m m 00a m m 00?--=+ ----(2)

当气囊处在平衡位置时, V =0V , p =0p , dx dV =-A , 即: 020a 00V A mp dx dA )p (p K +-= ----(3) 在平衡位置时之偏频: 0a 000)V p (p mgA p dx dA A g 2π1n -+?= (Hz) ----(4) 式中:dx dA 称为有效面积变化率; g 重力加速度。 可见,降低dx dA 、增大0V ,可降低0n ,提高平顺性。 P.S.有时采用相对气压p 1来运算更为方便: p 1 =p -a p ----(5) 代入式(1)即P = p 1 A 或:0p = a 10p p + 代入式(3) 即:02a 10100V A )p m(p dx dA p K ++= ----(6) 0 10a 100V mgA p p p dx dA A g 2π1n ?++?= (Hz) ----(7) 又∵2 D 4πA = D 为有效直径, ∴ dx dD 2πD dx dA ?= 代入式(6) 0 2 a 10100V A )p m(p dx dD 2πDp K ++?= ----(8) 式中: dx dD 称为有效直径变化率。 dx dD 或dx dA 由空气弹簧制造商提供数据或曲线, 对囊式空气弹簧,一般dx dD =0.2--0.3, 对膜式空气弹簧,一般dx dD =0--0.2, 甚至有dx dD =-0.1,取决于活塞形状。

弹簧参数、尺寸及计算公式资料

弹簧参数及尺寸 一、小型圆柱螺旋拉伸弹簧尺寸及参数 1、弹簧的工作图及形式 1.1 工作图样的绘制按GB4459、4规定。 1.2 弹簧的形式分为A型和B型两种。 2、材料弹簧材料直径为0.16~0.45mm,并规定使用GB4357中B组钢丝或YB(T)11中B组钢丝。采用YB(T)11中B组钢丝时,需在标记中注明代号“S”。 3、制造精度弹簧的刚度、外径、自由长度按GB1973规定的3级精度制造。如需按2级精度制造时,加注符号“2”,但钩环开口尺寸均按3级精度制造。 4、旋向弹簧的旋向规定为右旋。如需左旋应在标记中注明“左”。 5、钩环开口弹簧钩环开口宽度a为0.25D~0.35D。注:D为弹簧中径。 6、表面处理 6.1采用碳素弹簧钢丝制造的弹簧,表面一般进行氧化处理,但也可进行镀锌、镀镉、磷化等金属镀层及化学处理。其标记方法应按GB1238的规定。 6.2采用弹簧用不锈钢丝制造的弹簧,必要时可对表面进行清洗处理,不加任何标记。 7、标记 7.1标记的组成弹簧的标记由名称、型式、尺寸、标准编号、材料代号(材料为弹簧用不锈钢丝时)以及表面处理组成。规定如下: 7.2标记示例 例1:A型弹簧,材料直径0.20mm,弹簧中径3.20mm,自由长度8.80mm,左旋,刚度、外径和自由长度的精度为2级,材料为碳素弹簧钢丝B组,表面镀锌处理。 标记:拉簧A0.20*3.20*8.80-2左GB1973.2——89-D-Zn 例2:B型弹簧,材料直径0.40mm,弹簧中径5.00mm,自由长度17.50mm,右旋,刚度、外径和自由长度的精度为3级,材料为弹簧用不锈钢丝B组。 标记:拉簧B0.40*5.00*17.50 GB1973.2--89-S 8、计算依据标准中的计算采用如下基本公式: 切应力(N/mm²):τ=(8PDK)/(πd³) 变形量(mm):F=(8PD³n)/ Gd4 弹簧钢度(N/mm):P′=P/ F=(Gd4)/(8D³n) 曲度系数:K =(4C-1)/(4C-4)+ (0.615)/C 旋转比:C =D/d 自由长度(mm):H。=(n+1.5)d+ 2Dι 弹簧钢丝展开长度(mm):L≈(n + 2)πD 弹簧单件质量(mg):m≈(πd²/4)Lρ 注:ρ为弹簧材料密度,取ρ=7.85mg/mm³。初拉力P的计算公式与初应力τ。的选取范围:P。=(πd³/8D)τ。 ∵P。=(πd³/8D)π。取π。C≈60, 则:P。=(πd³/8D)·(60/C)=(23.56d4)/D² 式中:D为弹簧的中径。 当选取初拉力时,推荐初拉力τ。值在图A1阴影区域内选取。本标准中的τ。是按照关系式τ。C≈60确定的,即取τ。上下限的近似中点而算出P。值。 二、小型圆柱螺旋压缩弹簧尺寸及参数 1、弹簧的工作图及型式 1.1 工作图样的绘制按GB 4459.4的规定。 1.2 弹簧的形式分为两端圈并紧不模型(YⅡⅠ)和两端圈并紧磨平型(YⅠ)两种。

拉压扭簧计算公式弹簧刚度计算

拉压扭簧计算公式弹簧 刚度计算 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

弹簧刚度计算 压力弹簧 · 压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷; · 弹簧常数:以k表示,当弹簧被压缩时,每增加1mm距离的负荷(kgf/mm); · 弹簧常数公式(单位:kgf/mm): G=线材的钢性模数:碳钢丝G=79300 ;不锈钢丝G=697300,磷青铜线G=4500 ,黄铜线G=350 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 Nc=有效圈数=N-2 拉力弹簧 拉力弹簧的 k值与压力弹簧的计算公式相同 ·拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹簧卷制成形后发生。拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同,使得每个拉力弹簧初始拉力产生不平均的现象。所以安装各规格的拉力弹簧时,应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。

· 初张力=P-(k×F1)=最大负荷-(弹簧常数×拉伸长度) · 拉力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷; · 弹簧常数:以k表示,当弹簧被拉伸时,每增加1mm距离的负荷(kgf/mm); · 弹簧常数公式(单位:kgf/mm): G=线材的钢性模数:碳钢丝G=79300 ;不锈钢丝G=697300,磷青铜线G=4500 ,黄铜线G=350 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 扭力弹簧 · 弹簧常数:以 k 表示,当弹簧被扭转时,每增加1°扭转角的负荷 (kgf/mm). · 弹簧常数公式(单位:kgf/mm): E=线材之钢性模数:琴钢丝E=21000 ,不锈钢丝E=19400 ,磷青铜线E=11200,黄铜线E=11200 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数

基于非线性有限元法的弹簧刚度分析

基于非线性有限元法的弹簧刚度分析 摘要本文以铁路车辆三大件式转向架用螺旋弹簧为研究对象。传统的弹簧的垂向和横向刚度分析一般采用经验公式来计算,这在线弹性范围不会存在问题。而实际工作中,弹簧运动过程往往存在大的变形,属于非线性的范畴,所以本文要研究其在非线性范围内有限元计算结果和传统经验公式的对比,以便于指导设计研究。 关键词非线性;有限元;弹簧;横向刚度;垂向刚度 前言 螺旋弹簧在铁路车辆三大件式转向架中起着垂向支撑和减震的双重作用,是三大件式转向架必不可少的组成部分之一,其刚度的大小和匹配关系着整个转向架的动力学性能,因此对弹簧刚度的研究有着非常重要的意义。 弹簧刚度作为弹簧的主要参数之一,在以往的设计中往往是按照经验公式对其轴向刚度和横向刚度进行计算,在线性阶段该方法也许不会有什么问题,可是当弹簧变形到一定程度的时候会出现弹簧自接触的问题,即弹簧由于变形而发生了自身的一部分与另一部分接触,此时的弹簧参数已经由类线性参数变成了非线性参数,而按照经验公式则无法判断何时弹簧进入非线性,所以弹簧的设计仅仅依靠经验公式会存在一定的风险。由于有限元软件的普及[1],本文将使用有限元的方法对弹簧刚度进行分析,从而更进一步提高刚度计算的精度。 1 研究对象 本次分析使用的模型為某型转向架上的一种弹簧,该弹簧所用材料为60SiMnAT,有效圈数为5.5圈,线径24mm,中径115mm,剪切模量为78.5GPa,自由高252mm。其材料属性如下表。 2 研究方法 按照刚度的定义,即结构抵抗变形的能力,也就是产生单位位移所需要的力,其单位为N/mm。在进行弹簧横向刚度和轴向刚度的分析时,弹簧的两个端面与接触面之间做刚性接触处理,并假定在整个过程中上下支撑面保持平行,对弹簧进行强迫位移分析,并取得每一个位移值对应的支反力,从而求得其刚度曲线。分析采用UGNX软件,分析假想图如下。 3 结果及分析 根据分析结果可以得到如下轴向支反力与轴向位移关系图、轴向刚度与轴向位移关系图、横向刚度与轴向位移关系图等。

拉、压、扭簧计算公式弹簧刚度计算

拉、压、扭簧计算公式弹簧刚度计算 -CAL-FENGHAI.-(YICAI)-Company One1

弹簧刚度计算 压力弹簧 ·压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷;·弹簧常数:以k表示,当弹簧被压缩时,每增加1mm距离的负荷(kgf/mm); ·弹簧常数公式(单位:kgf/mm): G=线材的钢性模数:碳钢丝G=79300 ;不锈钢丝G=697300,磷青铜线G=4500 ,黄铜线G=350 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 Nc=有效圈数=N-2 拉力弹簧 拉力弹簧的 k值与压力弹簧的计算公式相同 ·拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹簧卷制成形后发生。拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同,使得每个拉力弹簧初始拉力产生不平均的现象。所以安装各规格的拉力弹簧时,应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。

·初张力=P-(k×F1)=最大负荷-(弹簧常数×拉伸长度) ·拉力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷;·弹簧常数:以k表示,当弹簧被拉伸时,每增加1mm距离的负荷(kgf/mm); ·弹簧常数公式(单位:kgf/mm): G=线材的钢性模数:碳钢丝G=79300 ;不锈钢丝G=697300,磷青铜线G=4500 ,黄铜线G=350 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d N=总圈数 扭力弹簧 ·弹簧常数:以 k 表示,当弹簧被扭转时,每增加1°扭转角的负荷 (kgf/mm). ·弹簧常数公式(单位:kgf/mm): ?E=线材之钢性模数:琴钢丝E=21000 ,不锈钢丝E=19400 ,磷青铜线E=11200,黄铜线E=11200 d=线径 Do=OD=外径 Di=ID=内径 Dm=MD=中径=Do-d

压力弹簧刚度计算[1]

n C Gd n D Gd F c 334882===λ 上式中: c :弹簧的刚度,(即你所说的弹性系数,中学物理叫倔强系数k ); F :弹簧所受的载荷; λ:弹簧在受载荷F 时所产生的变形量; G :弹簧材料的切变模量;(钢为8×104MPa ,青铜为4×104MPa ) d :弹簧丝直径; D 2:弹簧直径; n :弹簧有效圈数; C :弹簧的旋绕比(又称为弹簧指数d D C 2 =) 由上式可知。当其它条件相同时,C 值愈小的弹簧,刚度愈大,亦即弹簧愈硬;反之则愈软。还应注意到,C 值愈小,弹簧内、外侧的应力差愈悬殊,卷制愈难,材料利用率也就愈低,并且在工作时将引起较大的扭应力。所以在设计弹簧时,一般规定C ≥4,且当弹簧丝直径d 越小时,C 值越宜取大值。 其实上面这个公式是根据微段弹簧丝ds 受转矩后扭转d θ,从而产生微量变形d λ,再将d λ积分而得到圆弹簧丝螺旋弹簧在受载荷F 后所产生的变形量: 4 328Gd n FD =λ

弹簧的弹性系数k与弹簧的直径,弹簧的线径,弹簧的材料,弹簧的有效圈数有关。具体关系是: 与弹簧圈的直径成反比, 与弹簧的线径的4次方成正比, 与弹簧的材料的弹性模量成正比, 与弹簧的有效圈数成反比. 大多数金属材料在弹性变形阶段的应力与应变之间符合胡克定律: 拉伸时:σ = Eε 剪切时:τ = Gγ 式中 σ拉应力, ε拉应变, E——拉伸杨氏模量; τ切应力,γ切应变,G——切变模量。 当温度增高时,E和G值都降低。因而,如果温度改变前后的应变相同,则温度增高后的应力减小,即弹簧的弹力也减小。但在室温附近E和G值变化不大。 1.弹性系数(即弹性模量):是反映金属材料在比例极限内的参数 模量。拉伸时: E=σ/ε (虎克定律)

相关主题
文本预览
相关文档 最新文档