CPLD低频数字相位测量仪的设计
- 格式:pdf
- 大小:133.32 KB
- 文档页数:2
低频数字式相位测量仪摘要本低频数字式相位测量仪由数字式移相信号发生器、模拟移相网络、数字相位测量部分以及人机接口等模块组成。
数字式移相信号发生器采用双路时统DDS技术,基于FPGA实现。
相位测量部分采用基于相位—时间变换的等精度测量技术,由单片机控制CPLD实现。
本系统硬件设计应用了EDA技术,软件设计采用基于C51的模块化设计技术,总体上较好地完成了题目基本和发挥部分的要求。
并增加了扫频、扫相、扫幅及相位打印功能,扩展了模拟移相器移相范围及相位显示形式。
关键词:时统DDS数字移相等精度数字测相 FPGA/CPLD一.方案论证与选择根据题目要求本系统可分解为数字式移相信号发生器、模拟移相网络及相位测量部分等三个模块。
模拟移相网络已由题目给出,以下对另两部分实现方案进行论证。
(一)数字式移相信号发生器方案论证方案一:用PLL 频率合成技术产生正弦波信号,将其通过FFT 变换到频域,再乘以一定的旋转因子,即相当于时域的时延(移相)。
不同的旋转因子对应不同的移相,但对不同频率的输入信号进行移相时,需要调整滤波器参数或改变滤波器采样率。
前者运算量较大,后者需要用到PLL 技术,硬件繁琐。
方案二:应用单片机产生移相信号。
将正弦波信号数字化,形成数据表存入FLASH 或EPROM 等非易失性存储芯片中,单片机交叉读出该数据表中的数据,形成两路波形信号,送往两路D/A ,得到两路具有一定相位差的正弦波。
这种处理方式的实质是将数据地址的偏移量映射为信号间的相位差。
但受单片机速度限制,这种方法难以产生较高频率的信号。
方案三: 采用DDS 技术产生移相信号。
1、DDS 频率合成DDS 频率合成的基本原理是使用稳定的参考时钟源作为抽样时钟,通过地址累加来寻址波形查找表得到波形的幅度抽样值,然后将抽样值经D/A 转换和低通滤波输出平滑的波形。
图1.1给出了DDS 的工作原理框图。
相位累加器波形查找表DAC低通滤波器系统时钟K频率控制字NN Hf0图1.1 DDS 基本原理框图图1.1中相位累加器(N 为位数)以频率控制字K 为间隔对地址进行累加,将累加结果的最大有效位数H 作为ROM 查找表的地址(ROM 中存储波形数据),通过D/A 转换将所查地址单元的波形数据转化为模拟量,再由低通滤波器滤出其基波成分。
低频数字相位(频率)测量的CPLD实现在电子测量技术中,测频测相是最基本的测量之一。
相位测量仪是电子领域的常用仪器,当前测频测相主要是运用等精度测频、PLL 锁相环测相的方法。
研究发现,等精度测频法具有在整个测频范围内保持恒定的高精度的特点,但是该原理不能用于测量相位。
PLL 锁相环测相可以实现等精度测相,但电路调试较复杂。
因此,选择直接测相法作为低频测相仪的测试方法[1、2、3、4]。
设计的低频测相仪,满足以下的技术指标:a .频率20-20KHz;b .输入阻抗≥100KΩ;c.相位测量绝对误差≤1 度; d.具有频率测量和数字显示功能;e.显示相位读数为0 度--359 度。
1 系统工作原理系统工作原理如单片机和CPLD 的数据采用独立接口方式,这样设计比较灵活,可以不受单片机总线时序的影响。
由ADD[0..2]进行控制,分别读取测频测相计数器中的19 位数据,并存于单片机中,进行后续的计算。
单片机完成数据的运算后,将所得数据转化为10 进制,送到显示板进行显示。
显示板共有8 个数码管,其中,前5 位用于显示频率(最大为20000Hz),后三位显示相位(最大为359 度)。
在CPLD 设计中,根据计算,选取测频、测相计数器长度均为19 位,在标频信号为10MHz 时,相位测量精度小于1 度。
若只用89C51,其自带的计数器只有16 位,且不易同时实现测频测相的功能。
故选用CPLD 实现其测频测相的计数功能,并设计了独立的数据接口,以便与单片机交换数据[5、6]。
2 CPLD 测频测相模块工作原理。
低频数字式相位测量仪制作报告摘要本系统由低频数字相位频率测量仪,输入移相网络和数字式移相信号发生器组成。
利用CPLD,单片机控制模块实现了高精度的频率相位测量。
数字式移相信号发生器采用直接数字频率合成(DDFS)技术,输出频率范围宽,控制精度高。
由于在DDFS系统中采用了双D/A输出形式,信号幅度采用数字调节方式,输出信号幅度稳定。
移相网络的输入采用了自动增益控制(AGC),实现了高达48dB的宽范围输入,实现信号的自动稳幅输出。
此外,本系统友好的人机界面,合理实用的功能扩展,使整个系统更利于实际使用。
一.方案设计与论证1.相位频率测量部分方案一:对输入的两路正弦信号分别进行过零比较,并对生成的两路方波信号进行异或运算,得到占空比与相位差成正比的脉冲信号。
将该正弦送入单片机系统,对信号的脉宽进行测量,经计算得到输入的两路正弦信号的相位差。
单片机系统直接对过零比较后的方波信号计数,得到输入信号频率。
经单片机系统处理后,显示测量结果。
此方案电路相对简单,容易实现,但是受到单片机工作速度的限制,精度不高。
方案二:对输入的两路正弦信号分别进行过零比较,并对生成的两路方波信号进行异或运算,得到占空比与相位差成正比的脉冲信号。
由CPLD对相位差脉冲信号和频率信号进行计数,将计数结果送入单片机,单片机经过简单计算后显示测量结果。
此方案可以提高系统的测量精度,单片机要实现的功能相对简单,可以实现友好的人机界面。
缺点是电路相对复杂,成本较高。
系统框图详见图2-1。
综合考虑,这里采用了方案二。
2.移相网络部分方案一:直接采用题目中提供的参考电路。
此电路实现简单,但对于不同幅度的输入信号,不能做到自动稳幅输出。
对于小信号输入,无法满足题目输出峰-峰值0.3~5V的要求,除非采用可变增益放大器,在没有单片机控制的情况下,显然带来诸多不便。
方案二:以题目中提供的参考电路为基础,在信号输入前端加入自动增益控制电路(AGC),以适应各种幅度的信号输入。
低频数字式相位测量仪摘 要此系统由相位测量仪、数字式移相信号发生器和移相网络三部分组成。
为使系统更加稳定,使系统整体精度得以保障,本电路两块T89C52为核心控制器件分别控制相位测量、数字式移相信号发生,在数字式移相信号发生部分采用了锁相技术、CPLD 等技术, 使输出波形精度大大提高,并可对频率自动校验,提高频率稳定性。
一、题目要求(一) 任务设计并制作一个低频相位测量系统,包括相位测量仪、数字式移相信号发生器和移相网络三部分,示意图如下:图2 移相网络(二) 要求1、 基本要求(1)设计并制作一个相位测量仪(参见图1)a. 频率范围:20H z ~20KH z 。
b. 相位测量仪的输入阻抗≥100K Ω。
c. 允许两路输入正弦信号峰—峰值可分别在1V ~5V 内变化。
图1 相位测量仪图2 数字式移相信号发生器d.相位测量绝对误差≤2°e.具有频率测量及数字显示功能.f.相位差数字显示:相位读数为0°~359.9°,分辨率为0.1°。
(2)参考图2制作一个移相网络a.输入信号频率:100H z、1KH z、10KH z。
b.连续相移范围:—45°~+45°。
c.A¹、B¹输出的正弦信号峰—峰值可分别在0.3V~5V内变化。
2、发挥部分(1)设计并制作一个数字式移相信号发生器(图3),用以产生相位测量仪所需的输入正弦信号,要求:a.频率范围:20H z~20KH z,频率步进为20H z,输出频率可预置。
b.A、B输出正弦信号峰—峰值可分别在0.3V~5V内变化。
c.相位差范围0°~359°,相位差步进为1°,相位差可预置。
d.数字显示预置的频率、相位差值。
(2)在保持相位测量仪测量误差和频率范围不变的条件下,扩展相位测量仪输入正弦信号峰—峰值至0.3V~5V范围。
(3)用数字移相信号发生器校验相位测量仪,自选几个频点、相位差值和不同幅度进行校验。
毕业设计论文《低频数字式相位测量仪》摘要该数字式相位测量仪以单片机 (89c52) 为核心 , 通过高速计数器 CD4040 为计数器计算脉冲个数从 , 而达到计算相位的要求 , 通过 8279 驱动数码管显示正弦波的频率,不采用一般的模拟的振动器产生 , 而是采用单片机产生 , 从而实现了产生到显示的数字化 . 具有产生的频率精确 , 稳定的特点 . 相移部分采用一般的 RC 移相电路 , 节省了成本。
一方案论证与比较 :1 常见正弦信号的测量方法 :方案一:采用模拟分离元件如二极管,三极管等非线性元件,实现频率的测量,检相的功能,使用起来方便,价格便宜,但采用分离元件由于分散性太大,不便于集成及数字化,而且测量误差大。
方案二:采用集成的检相器,检频器实现频率及相位的测量。
这种方法的实现框图如下:这种方法虽然可实现比较精确的测量,但由于模拟信号易受外界的干扰,不易调节,无法实现智能化,数字化的缺点,一般在要求较低的情况下使用。
方案三:此方案采用高速信号发生器产生 20MHz 的高频信号,其主要特点是采用 CD4040 高频计数器结合单片机,利用计数脉冲实现测量相位与频率的目标。
这种方法克服了模拟电路的缺点,实现了数字化与集成化。
本设计采用了这种方法。
这种方案的组成框图:二系统总体设计按照题目要求,我们设计的相位测量系统包括三部分:正弦波产生系统(包括频率调整电路),移相电路和相位显视系统,其总体框图如下:三各部分硬件电路设计及参数计算1、正弦波产生电路•方案一:利用 8038 芯片或 MAX038 可以实现压控的函数发生器通过改变少量的外围元件,可实现正弦波,方波,三角波,并可实现频率调节,但采用模拟器件由于元件分散性太大,即使使用单片函数发生器,参数也与外部元件有关,外接的电阻,电容对参数影响很大,因而产生的频率稳定度差,精度低,抗干扰能力差,调节困难,成本也高。
而且灵活性差,不能实现智能化。
、设计任务和技术要求1.1设计内容设计制作一个低频数字相位测量仪,要求使用单片机和 FPGA 来共同实现,FPGA 完成测量时间差,而单片机完成数据的读取、键盘控制和显示等功能。
1.2设计要求频率范围:20Hz~20kHz 。
相位测量仪的输入阻抗:仝 允许两路输入正弦信号峰峰值可分别在 1~5V 变化。
相位测量绝对误差W 2°。
具有频率测量及数字显示功能。
相位差数字显示,分辨力为 0.1 主芯片:Altera 的 FLEX10K10。
要求扩展键盘和显示接口电路,可以进行键盘控制以及显示等功能。
二、系统设计方案2.1方案论证根据系统的设计要求,本系统可分为三大基本组成部分:1. 数据采集电路数据采集电路主要是运用 FP GA/C PLD 采集两个同频待测正弦信号的频率和相位差所对应的时间差。
2. 数据运算控制电路数据运算控制电路主要是运用单片机读取FPGA/CPLD 采集到的数据,并根据这些数据计算待测正弦信号的频率及两路同频正弦信号之间的相位差。
3. 数据显示电路数据显示电路是通过功能键切换用LCD 液晶模块显示出待测信号的频率和相位差。
4. 整形电路由于FPGA 对脉冲信号比较敏感,而被测信号是周期相同、相位不同的两路正弦波信号, 为了准确地测出两路正弦波信号的相位差及其频率,我们需要对输入波形进行整形,使正弦 波变成方波信号,并输入 FPGA 进行处理。
整个系统的总体原理框图如图1) 2) 3) 4) 5) 6)7) 8)lOOkQ 。
2.1所示。
图2.1系统原理框图2.2程序设计框图图22程序设计流程图三、硬件电路图的设计与分析3.1 FPGA数据采集电路图3.1数据采集电路FPGA数据采集电路的功能就是实现将待测正弦信号的周期、相位差变为19位的数字量。
根据系统的总体设计方案,FPGA数据采集电路的输入输出信号有:CLK ――系统工作时钟信号输入端;A,B――两路被测信号输入端;EN ――单片机发出的传送数据使能信号;RSEL ――单片机发出的传送数据类型信号;DATA[18..O] ―― FPGA到单片机的数据输出口。
基于cpld的简易数字频率计的设计
基于CPLD的简易数字频率计的设计如下:
首先,将CPLD作为主控芯片,实现信号的采集、处理和控制。
通过输入的信号,经过滤波器去除噪音和干扰,然后使用计数器模块对输入信号的频率进行测量。
计数器模块将信号的周期转换成相应的脉冲数,再通过单片机进行数据处理,计算出信号的频率。
其次,利用单片机进行数据处理和显示。
单片机通过接收计数器模块的脉冲数,根据测量公式计算出信号的频率,并将结果显示在LCD屏幕上。
同时,单片机还负责控制CPLD的工作流程,实现整个系统的协调工作。
最后,通过仿真和测试验证设计的正确性和可行性。
测试结果表明,该数字频率计具有测量精度高、抗干扰能力强、稳定性好等优点,可以广泛应用于各种需要测量频率的场合。
基于CPLD的简易数字频率计的设计方法包括硬件设计和软件设计两部分。
硬件设计主要是利用CPLD和单片机等芯片进行电路设计和搭建;软件设计主要是利用CPLD编程语言和单片机编程语言进行程序编写和调试。
在实际应用中,需要根据具体需求和条件进行选择和调整。
cpld频率计课程设计一、课程目标知识目标:1. 理解 CPLD 的基本概念、结构和工作原理;2. 掌握频率计的设计原理和实现方法;3. 学会运用 CPLD 技术设计简单的数字电路系统。
技能目标:1. 能够运用 CPLD 设计并实现一个功能完整的频率计;2. 培养学生动手实践能力,提高电路搭建和调试技巧;3. 提高学生分析问题、解决问题的能力。
情感态度价值观目标:1. 培养学生热爱科学,积极探索的精神;2. 培养团队合作意识,增强沟通与协作能力;3. 提高学生的创新意识,激发创新潜能。
课程性质:本课程为电子信息类专业的实践课程,旨在让学生通过实际操作,掌握 CPLD 技术及其在数字电路设计中的应用。
学生特点:学生已具备一定的电子技术和数字电路基础知识,具有一定的动手能力和探究精神。
教学要求:结合课程特点和学生实际情况,注重理论与实践相结合,强调实践操作和创新能力培养,确保学生能够达到课程目标所要求的知识和技能水平。
通过课程学习,使学生能够将所学知识应用于实际工程设计中,提高学生的职业素养和综合能力。
二、教学内容1. CPLD 基础知识回顾:CPLD 的基本概念、结构、工作原理及其特点,涉及课本第三章第一、二节内容。
2. 频率计设计原理:频率计的工作原理、电路组成和设计方法,包括课本第四章第三节内容。
3. CPLD 设计流程:设计输入、综合、布局布线、仿真和下载等步骤,参考课本第五章内容。
4. 频率计电路设计:使用 CPLD 设计频率计电路,包括时钟信号产生、计数器、显示驱动等模块,结合课本实例进行讲解。
5. 实践操作:分组进行频率计电路的搭建、调试和测试,培养学生动手实践能力。
6. 教学大纲:(1)第1周:CPLD 基础知识回顾,频率计设计原理学习。
(2)第2周:CPLD 设计流程讲解,频率计电路设计方法学习。
(3)第3周:分组进行频率计电路设计,教师指导与答疑。
(4)第4周:实践操作,完成频率计电路搭建、调试和测试。
《工业控制计算机》2010年23卷第1期正弦信号υ(t)=υm cos(ωt+φ)有三个要素:振幅、角频率和初相位。
正弦信号经过不同的时间或不同的网络后可以有不同的相位。
通常所谓相位测量是指对两个同频率信号之间相位差的测量。
相位的测量很重要,如测某元件的阻抗Z=UI∠φ,因此要知道复阻抗就要知道电压与电流间的相位差φ。
另外在间接调频电路中,利用电压控制谐振电路的中心频率,从而使载波的相位φ产生漂移Δφ,即频率随控制电压改变。
在这种调频电路中要确定控制电压与相移Δφ间线性变换的范围,因而就需要测量输入与输出信号间的相差Δφ,以便确定线性控制的范围。
低频数字式相位测试仪在工业领域中是经常用到的一般测量工具,比如在电力系统中电网并网合闸时,要求两电网的电信号相同,这就要求精确的测量两工频信号之间的相位差。
还有测量两列同频信号的相位差在研究网络、系统的频率特性中具有重要意义。
近年来,随着科学技术的迅速发展,很多测量仪逐渐向“智能仪器”和“自动测试系统”发展,这使得仪器的使用比较简单,功能越来越多。
1系统组成系统主要包括整形电路,以CPLD为核心的频率、相位差测量电路,以单片机为核心的计算、控制电路以及以8279为核心的键盘显示电路组成。
系统的结构原理图如图1所示。
图1低频数字相位测量仪结构图1.1整形电路整形电路主要用于将两路具有相位差的正弦波都整形成方波,以便让CPLD可以对其进行计数、测频。
本系统中我们使用两个施密特触发器对两路信号进行整形,电路图如图2所示。
施密特触发器在单门限电压比较器的基础上加入了正反馈网络,可以有效提高抗干扰能力,从而避免信号在过零点时多次触发的现象。
另外,为了保证输入电路对相位差测量不带来误差,必须使两个施密特触发器的门限电平相等。
图2施密特整形电路1.2频率、相位差测量电路本系统主要采用测周期的方法来测量信号的频率。
首先,将整形后的信号进行二分频,那么二分频后信号的高电平宽度正好对应于原信号的周期T。
现代电子学实验报告实验题目:低频数字相位测量仪姓名:年级:2012级指导教师:完成日期:2015年10月14日原创性声明本人声明本实验报告涉及的电路图、程序代码均为自己设计,没有抄袭他人的成果。
特此声明!声明人:目录摘要 (1)一、系统设计要求与技术指标 (2)二、方案选择与可行性论证 (2)2.1总体框架 (2)2.2频率测量 (2)2.3相位测量 (3)三、系统模块设计 (3)3.1信号整形电路的设计 (3)3.2 FPGA数据采集电路的设计 (5)3.2.1硬件部分 (5)3.2.2精度分析 (5)3.2.3软件部分 (5)3.3、单片机数据运算控制电路的设计 (6)3.3.1硬件部分 (6)3.3.2软件部分 (7)3.4、数据显示电路的设计 (10)3.4.1显示部分设计方案 (10)3.4.2数据显示电路 (10)四、参考资料 (12)附录 (13)主要器件介绍 (13)FPGA数据采集程序 (15)硬件电路图 (21)低频数字式相位测量仪的设计摘要:基于过零检测法原理,以单片机89C51和可编程逻辑器件CPLD为核心,从数据采集﹑数据运算控制、显示等电路功能电路设计,实现了一个低频数字式相位测量仪系统。
在此过程中,采用MCU与FPGA相结合的方案,将软件部分为数据采集、运算、控制和单片机控制显示两部分,充分发挥单片机具有的控制、运算能力强,FPGA数据采集速度快的特点来对实现各个模块功能进行程序设计,同时还对相关程序进行调试和仿真,验证了其可行性,使其性能接近最优。
而对硬件电路设计包括采用施密特触发器组成的整形电路、显示电路、FPGA 芯片及单片机外围电路等,实现了对频率信号频率、相位差的显示,同时配合系统完成数据采集、运算、控制等功能。
在上述基础上,本文还对有关频率信号的频率、相位测量技术及理论进行了研究和分析,对FPGA可编程芯片、单片机控制等的运用进行了学习,从而为课题研究奠定了理论基础。
引言相位差测量数字化的优点在于硬件成本低、适应性强、对于不同的测量对象只需要改变程序的算法,且精度一般优于模拟式测量。
在电工仪表、同步检测的数据处理以及电工实验中,常常需要测量两列同频率信号之间的相位差。
例如,电力系统中电网并网合闸时,需要求两电网的电信号的相位差。
相位差测量的方法很多,典型的传统方法是通过示波器测量,这种方法误差较大,读数不方便。
为此,我们设计了一种基于锁相环倍(分)频的相位差测量仪,该仪器以锁相环倍(分)频电路为核心,实现了工频信号相位差的自动测量及数字显示。
论文摘要本系统为低频数字式相位/频率测量仪,由移相网络模块、相位差测量模块及频率测量模块三大部份构成,其系统功能主要是进行相位差测量及频率测量。
移相网络主要是由RC移相电路和LM324运放电路组成,将被测信号送入移相网络,经RC移相、LM324隔离放大,产生两路信号,一路为基准信号经过波形转换,另一路为移相后的信号。
分别经过波形转换、整形、二分频送给相位测量模块及频率测量模块。
相位差测量仪主要是由锁相环PLL(Phase Lock Loop)产生360倍频基准信号和移相网络的基准信号与待测信号进行异或后的信号作为显示器的闸门电路和控制信号。
频率测量模块主要是用计数法测量频率的,它是有某个已知标准时间间隔Ts内,测出被测信号重复出现的次数N,然后计算出频率f=N/Ts.显示电路模块主要是由计数器、锁存器、译码器和数码管组成。
低频率数字相位测量仪目录1设计任务书 (3)2设计方案概述 (3)3系统的组成………………………………………………………………………………4.3.1总体框图 (4)3.2移相网络部分 (4)3.3相位测量部分 (6)1)波形转换、整形放大 (8)2)锁相环倍频 (9)3)闸门电路 (11)4)控制门 (11)5)计数器 (11)6)锁存器 (11)7)显示译码器与数码管 (11)3.4频率测量部分 (12)1)数字频率计的基本原理 (12)2)系统框图 (12)4附录………………………………………………………………………一、设计任务书(一)任务设计仿真一数字相位计(二)主要技术指标与要求:(1)输入信号频率为1KHZ~20KHZ可调(2)输入信号的幅度为10mV(3)采用数码管显示结果,相位精确到0.1°(4)采用外部5V直流电源供电(三)对课程设计的成果的要求(包括图表)设计电路,安装调试或仿真,分析实验结果,并写出设计说明书。