概率论与数理统计第一章教案
- 格式:doc
- 大小:642.00 KB
- 文档页数:28
概率论与数理统计教案-参数估计教案章节一:参数估计概述教学目标:1. 理解参数估计的定义及意义;2. 掌握参数估计的两种方法:最大似然估计和最小二乘估计;3. 了解参数估计的假设条件。
教学内容:1. 参数估计的定义及意义;2. 最大似然估计和最小二乘估计的方法及步骤;3. 参数估计的假设条件。
教学方法:1. 讲授法:讲解参数估计的定义、意义、方法及步骤;2. 案例分析法:分析实际案例,让学生更好地理解参数估计的方法及应用。
教学难点:1. 最大似然估计和最小二乘估计的方法及步骤;2. 参数估计的假设条件。
教学准备:1. 教学PPT;2. 相关案例资料。
教学过程:1. 引入参数估计的概念,讲解其意义;2. 讲解最大似然估计和最小二乘估计的方法及步骤;3. 分析实际案例,展示参数估计的应用;4. 讲解参数估计的假设条件;5. 课堂互动,回答学生问题。
作业布置:1. 复习parameter estimation 的定义及意义;2. 学习maximum likelihood estimation 和least squares estimation 的相关知识;3. 思考如何应用parameter estimation 解决实际问题。
教案章节二:最大似然估计教学目标:1. 理解最大似然估计的定义及意义;2. 掌握最大似然估计的计算方法;3. 了解最大似然估计的应用场景。
教学内容:1. 最大似然估计的定义及意义;2. 最大似然估计的计算方法;3. 最大似然估计的应用场景。
教学方法:1. 讲授法:讲解最大似然估计的定义、意义、计算方法;2. 案例分析法:分析实际案例,展示最大似然估计的应用。
教学难点:1. 最大似然估计的计算方法;2. 最大似然估计的应用场景。
教学准备:1. 教学PPT;2. 相关案例资料。
教学过程:1. 引入最大似然估计的概念,讲解其意义;2. 讲解最大似然估计的计算方法;3. 分析实际案例,展示最大似然估计的应用;4. 课堂互动,回答学生问题。
《概率论与数理统计教程》教案第一章随机事件与概率教材:《概率论与数理统计教程》总安排学时:90本章学时:14第一讲:随机事件及其运算教学内容:引言、概率论的基本概念、事件之间的关系及运算、事件之间的运算规律。
教学目的:(1)了解概率论这门学科的研究对象,主要任务和应用领域;(2)深刻理解随机试验、基本事件、样本空间、随机事件的概念;掌握一个随机试验的样本空间、基本事件和有关事件的表示方法。
(3)深刻理解事件的包含关系、和事件、积事件、互斥事件、互逆事件和差事件的意义;掌握事件之间的各种运算,熟练掌握用已知事件的运算表示随机事件;(4)掌握事件之间的运算规律,理解对偶律的意义。
教学的过程和要求:(1)概率论的研究对象及主要任务(10分钟)举例说明概率论的研究对象和任务,与高等数学和其它数学学科的不同之处,简单介绍概率论发展的历史和应用;(i)概率论的研究对象:确定性现象或必然现象:在相同的条件下,每次观察(试验)得到的结果是完全相同的现象。
例:向空中抛掷一物体,此物体上升到一定高度后必然下落;例:在一个标准大气压下把水加热到100℃必然会沸腾等现象。
随机现象或偶然现象:在相同的条件下,每次观察(试验)可能出现不同结果的现象。
例:在相同的条件下抛一枚均匀的硬币,其结果可能是正面(分值面)向上,也可能是反面向上,重复投掷,每次的结果在出现之前都不能确定;例:从同一生产线上生产的灯泡的寿命等现象。
(ii)概率论的研究任务:概率论与数理统计就是研究和揭示随机现象的统计规律性的一门数学学科。
(iii)概率论发展的历史:概率论起源于赌博问题。
大约在17世纪中叶,法国数学家帕斯卡(B•Pascal)、费马(fermat)及荷兰数学家惠更斯(C•Hugeness)用排列组合的方法,研究了赌博中一些较复杂的问题。
随着18、19世纪科学的迅速发展,起源于赌博的概率论逐渐被应用于生物、物理等研究领域,同时也推动了概率理论研究的发展. 概率论作为一门数学分支日趋完善,形成了严格的数学体系。
概率论与数理统计教案-随机变量及其分布教学目标:1. 理解随机变量的概念及其重要性。
2. 掌握随机变量的概率分布及其性质。
3. 学会计算随机变量的期望值和方差。
教学内容:第一章:随机变量的概念1.1 随机试验与样本空间1.2 随机变量及其定义1.3 随机变量的分类第二章:随机变量的概率分布2.1 离散型随机变量的概率分布2.2 连续型随机变量的概率分布2.3 随机变量概率分布的性质第三章:随机变量的期望值3.1 离散型随机变量的期望值3.2 连续型随机变量的期望值3.3 期望值的性质及其计算方法第四章:随机变量的方差4.1 离散型随机变量的方差4.2 连续型随机变量的方差4.3 方差的性质及其计算方法第五章:随机变量的不确定性度量5.1 标准差与协方差5.2 变异系数与相关系数5.3 不确定性度量在实际应用中的意义教学方法:1. 采用讲授法,系统讲解随机变量及其分布的基本概念、性质和计算方法。
2. 利用案例分析,让学生更好地理解随机变量在实际问题中的应用。
3. 布置练习题,巩固所学知识,提高学生的实际操作能力。
教学评估:1. 课堂问答,检查学生对随机变量及其分布的理解程度。
2. 课后作业,检验学生对随机变量期望值和方差的计算能力。
3. 课程报告,让学生运用所学知识解决实际问题,提高学生的综合应用能力。
教学资源:1. 教材:《概率论与数理统计》2. 课件:随机变量及其分布的相关内容3. 案例资料:用于分析随机变量在实际问题中的应用4. 练习题及答案:用于巩固所学知识教学安排:1. 第一章:2课时2. 第二章:3课时3. 第三章:2课时4. 第四章:2课时5. 第五章:2课时总结:通过本章的学习,学生应掌握随机变量及其分布的基本概念、性质和计算方法,并能运用所学知识解决实际问题。
第六章:随机变量的函数6.1 离散型随机变量的函数6.2 连续型随机变量的函数6.3 函数随机变量的性质教学内容:本章主要介绍随机变量的函数,包括离散型随机变量的函数和连续型随机变量的函数。
概率论与数理统计教案-随机变量及其分布教案章节一:随机变量的概念1.1 教学目标了解随机变量的定义与分类理解随机变量分布函数的概念掌握随机变量期望的计算方法1.2 教学内容随机变量的定义随机变量的分类:离散型与连续型随机变量分布函数的定义与性质随机变量期望的计算方法1.3 教学方法采用讲授法,讲解随机变量的概念及其分类通过例题,讲解随机变量期望的计算方法开展小组讨论,巩固随机变量分布函数的理解教案章节二:离散型随机变量的概率分布2.1 教学目标掌握离散型随机变量的概率分布的定义与性质学会计算离散型随机变量的概率分布理解离散型随机变量期望与方差的计算方法2.2 教学内容离散型随机变量的概率分布的定义与性质几种常见的离散型随机变量概率分布:伯努利分布、二项分布、几何分布、泊松分布离散型随机变量期望与方差的计算方法2.3 教学方法采用讲授法,讲解离散型随机变量的概率分布的定义与性质通过例题,讲解几种常见的离散型随机变量概率分布的计算方法开展小组讨论,巩固离散型随机变量期望与方差的计算方法教案章节三:连续型随机变量的概率密度3.1 教学目标理解连续型随机变量的概念掌握连续型随机变量的概率密度的定义与性质学会计算连续型随机变量的概率密度3.2 教学内容连续型随机变量的概念连续型随机变量的概率密度的定义与性质几种常见的连续型随机变量概率密度:均匀分布、正态分布、指数分布3.3 教学方法采用讲授法,讲解连续型随机变量的概念及其概率密度的定义与性质通过例题,讲解几种常见的连续型随机变量概率密度的计算方法开展小组讨论,巩固连续型随机变量概率密度的理解教案章节四:随机变量的期望与方差4.1 教学目标理解随机变量期望与方差的概念与性质掌握计算随机变量期望与方差的方法学会运用期望与方差描述随机变量的特征4.2 教学内容随机变量期望与方差的概念与性质计算随机变量期望与方差的方法期望与方差在描述随机变量特征中的应用4.3 教学方法采用讲授法,讲解随机变量期望与方差的概念与性质通过例题,讲解计算随机变量期望与方差的方法开展小组讨论,巩固期望与方差在描述随机变量特征中的应用教案章节五:随机变量及其分布的综合应用5.1 教学目标掌握随机变量及其分布的基本知识学会运用随机变量及其分布解决实际问题培养运用概率论与数理统计思维分析问题的能力5.2 教学内容随机变量及其分布的综合应用实例实际问题中随机变量及其分布的建模方法运用概率论与数理统计思维分析问题的方法5.3 教学方法采用案例教学法,讲解随机变量及其分布的综合应用实例通过实际问题,讲解随机变量及其分布的建模方法开展小组讨论,培养运用概率论与数理统计思维分析问题的能力教案章节六:大数定律与中心极限定理6.1 教学目标理解大数定律的含义及其在实际中的应用掌握中心极限定理的条件及其意义学会运用大数定律和中心极限定理分析随机变量序列的性质6.2 教学内容大数定律的定义及其表述中心极限定理的定义及其表述大数定律和中心极限定理在实际中的应用6.3 教学方法采用讲授法,讲解大数定律和中心极限定理的定义及其表述通过例题,讲解大数定律和中心极限定理在实际中的应用开展小组讨论,巩固大数定律和中心极限定理的理解教案章节七:随机样本及抽样分布7.1 教学目标理解随机样本的概念掌握抽样分布的定义及其性质学会计算样本统计量的分布7.2 教学内容随机样本的概念抽样分布的定义及其性质样本统计量的分布的计算7.3 教学方法采用讲授法,讲解随机样本的概念和抽样分布的定义及其性质通过例题,讲解计算样本统计量的分布的方法开展小组讨论,巩固抽样分布的理解教案章节八:假设检验与置信区间8.1 教学目标理解假设检验的基本原理掌握构造检验统计量的方法学会判断假设检验的结果8.2 教学内容假设检验的基本原理构造检验统计量的方法假设检验的结果的判断8.3 教学方法采用讲授法,讲解假设检验的基本原理和构造检验统计量的方法通过例题,讲解判断假设检验结果的方法开展小组讨论,巩固假设检验的理解教案章节九:回归分析与相关分析9.1 教学目标理解回归分析的概念及其应用掌握线性回归模型的建立与估计学会利用回归分析解决实际问题9.2 教学内容回归分析的概念及其应用线性回归模型的建立与估计利用回归分析解决实际问题9.3 教学方法采用讲授法,讲解回归分析的概念及其应用和线性回归模型的建立与估计通过例题,讲解利用回归分析解决实际问题的方法开展小组讨论,巩固回归分析的理解教案章节十:总结与展望10.1 教学目标总结本门课程的主要内容和知识点了解概率论与数理统计在实际中的应用激发学生继续学习概率论与数理统计的兴趣10.2 教学内容本门课程的主要内容和知识点的总结概率论与数理统计在实际中的应用对未来学习的展望10.3 教学方法采用讲授法,总结本门课程的主要内容和知识点通过案例分析,讲解概率论与数理统计在实际中的应用鼓励学生发表对概率论与数理统计学习的看法和展望重点和难点解析:1. 随机变量的概念与分类:理解随机变量的定义以及离散型和连续型随机变量的区别是本章节的核心。
概率论与数理统计教案【篇一:概率论与数理统计教案】《概率论与数理统计》课程教案第一章随机事件及其概率一.本章的教学目标及基本要求(1) 理解随机试验、样本空间、随机事件的概念; (2) 掌握随机事件之间的关系与运算,;(3) 掌握概率的基本性质以及简单的古典概率计算; 学会几何概率的计算; (4) 理解事件频率的概念,了解随机现象的统计规律性以及概率的统计定义。
了解概率的公理化定义。
(5) 理解条件概率、全概率公式、bayes 公式及其意义。
理解事件的独立性。
二.本章的教学内容及学时分配第一节随机事件及事件之间的关系第二节频率与概率 2学时第三节等可能概型(古典概型) 2 学时第四节条件概率第五节事件的独立性 2 学时三.本章教学内容的重点和难点1)随机事件及随机事件之间的关系; 2)古典概型及概率计算;3)概率的性质;4)条件概率,全概率公式和bayes公式 5)独立性、n 重伯努利试验和伯努利定理四.教学过程中应注意的问题1)使学生能正确地描述随机试验的样本空间和各种随机事件;2)注意让学生理解事件a?b,a?b,a?b,a?b,ab??,a…的具体含义,理解事件的互斥关系;3)让学生掌握事件之间的运算法则和德莫根定律;4)古典概率计算中,为了计算样本点总数和事件的有利场合数,经常要用到排列和组合,复习排列、组合原理;5)讲清楚抽样的两种方式——有放回和无放回;五.思考题和习题思考题:1. 集合的并运算?和差运算-是否存在消去律?2. 怎样理解互斥事件和逆事件?3. 古典概率的计算与几何概率的计算有哪些不同点?哪些相同点?习题:第二章随机变量及其分布一.本章的教学目标及基本要求(1) 理解随机变量的概念,理解随机变量分布函数的概念及性质, 理解离散型和连续型随机变量的概率分布及其性质,会运用概率分布计算各种随机事件的概率; (2) 熟记两点分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的分布律或密度函数及性质;二.本章的教学内容及学时分配第一节随机变量第二节第二节离散型随机变量及其分布离散随机变量及分布律、分布律的特征第三节常用的离散型随机变量常见分布(0-1分布、二项分布、泊松分布) 2学时第四节随机变量的分布函数分布函数的定义和基本性质,公式第五节连续型随机变量及其分布连续随机变量及密度函数、密度函数的性质 2学时第六节常用的连续型随机变量常见分布(均匀分布、指数分布、正态分布)及概率计算 2学时三.本章教学内容的重点和难点a) 随机变量的定义、分布函数及性质;b) 离散型、连续型随机变量及其分布律或密度函数,如何用分布律或密度函数求任何事件的概率;c) 六个常见分布(二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布);四.教学过程中应注意的问题a) 注意分布函数f(x)?p{x?x}的特殊值及左连续性概念的理解; b)构成离散随机变量x的分布律的条件,它与分布函数f(x)之间的关系;c) 构成连续随机变量x的密度函数的条件,它与分布函数f(x)之间的关系; d) 连续型随机变量的分布函数f(x)关于x处处连续,且p(x?x)?0,其中x为任意实数,同时说明了p(a)?0不能推导a??。
概率论与数理统计教案-随机变量的数字特征教案章节一:随机变量的期望值教学目标:1. 理解期望值的定义及其性质。
2. 学会计算离散随机变量的期望值。
3. 学会计算连续随机变量的期望值。
教学内容:1. 期望值的定义及性质。
2. 离散随机变量的期望值的计算方法。
3. 连续随机变量的期望值的计算方法。
教学方法:1. 采用讲授法,讲解期望值的定义及其性质。
2. 采用案例分析法,分析离散随机变量和连续随机变量的期望值的计算方法。
3. 采用练习法,让学生通过练习巩固期望值的计算方法。
教学评估:1. 课堂练习:计算给定离散随机变量和连续随机变量的期望值。
2. 课后作业:布置相关习题,巩固学生对期望值的理解和计算能力。
教案章节二:随机变量的方差教学目标:1. 理解方差的定义及其性质。
2. 学会计算离散随机变量的方差。
3. 学会计算连续随机变量的方差。
教学内容:1. 方差的定义及其性质。
2. 离散随机变量的方差的计算方法。
3. 连续随机变量的方差的计算方法。
教学方法:1. 采用讲授法,讲解方差的定义及其性质。
2. 采用案例分析法,分析离散随机变量和连续随机变量的方差的计算方法。
3. 采用练习法,让学生通过练习巩固方差的计算方法。
教学评估:1. 课堂练习:计算给定离散随机变量和连续随机变量的方差。
2. 课后作业:布置相关习题,巩固学生对方差的理解和计算能力。
教案章节三:随机变量的标准差教学目标:1. 理解标准差的定义及其性质。
2. 学会计算离散随机变量的标准差。
3. 学会计算连续随机变量的标准差。
教学内容:1. 标准差的定义及其性质。
2. 离散随机变量的标准差的计算方法。
3. 连续随机变量的标准差的计算方法。
教学方法:1. 采用讲授法,讲解标准差的定义及其性质。
2. 采用案例分析法,分析离散随机变量和连续随机变量的标准差的计算方法。
3. 采用练习法,让学生通过练习巩固标准差的计算方法。
教学评估:1. 课堂练习:计算给定离散随机变量和连续随机变量的标准差。
概率论与数理统计教案(48课时)第一章随机事件及其概率本章的教学目标及基本要求(1)理解随机试验、样本空间、随机事件的概念;(2)掌握随机事件之间的关系与运算,;(3)掌握概率的基本性质以及简单的古典概率计算;学会几何概率的计算;(4)理解事件频率的概念,了解随机现象的统计规律性以及概率的统计定义。
了解概率的公理化定义。
(5)理解条件概率、全概率公式、Bayes公式及其意义。
理解事件的独立性。
本章的教学内容及学时分配第一节随机事件及事件之间的关系第二节频率与概率2学时第三节等可能概型(古典概型)2学时第四节条件概率第五节 事件的独立性2学时三.本章教学内容的重点和难点1)随机事件及随机事件之间的关系;2)古典概型及概率计算;3)概率的性质;5)独立性、n 重伯努利试验和伯努利定理四.教学过程中应注意的问题1)使学生能正确地描述随机试验的样本空间和各种随机事件;2)注意让学生理解事件4uB,AuB 、AcB,4-B,4B = ®,A... 的具体含义,理解事件的互斥关系;根定律;4)条件概率, 全概率公式和Bayes 公式 3) 让学生掌握事件之间的运算法则和德莫4)古典概率计算中,为了计算样本点总数和1)事件的有利场合数,经常要用到排列和组合,复习排列、组合原理;2)讲清楚抽样的两种方式有放回和无放回;思考题和习题思考题:1.集合的并运算和差运算-是否存在消去律?2.怎样理解互斥事件和逆事件?3.古典概率的计算与几何概率的计算有哪些不同点?哪些相同点?习题:第二章随机变量及其分布本章的教学目标及基本要求(1)理解随机变量的概念,理解随机变量分布函数的概念及性质,理解离散型和连续型随机变量的概率分布及其性质,会运用概率分布计算各种随机事件的概率;(2)熟记两点分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的分布律或密度函数及性质;二.本章的教学内容及学时分配第一节随机变量第二节第二节离散型随机变量及其分布离散随机变量及分布律、分布律的特征第三节常用的离散型随机变量常见分布(0-1分布、二项分布、泊松分布)2学时第四节随机变量的分布函数分布函数的定义和基本性质,公式第五节连续型随机变量及其分布连续随机变量及密度函数、密度函数的性质2学时第六节常用的连续型随机变量常见分布(均匀分布、指数分布、正态分布)及概率计算2学时三.本章教学内容的重点和难点a)随机变量的定义、分布函数及性质;b)离散型、连续型随机变量及其分布律或密度函数,如何用分布律或密度函数求任何事件的概率;C)六个常见分布(二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布);四.教学过程中应注意的问题a)注意分布函数F(x) P{X x}的特殊值及左连续性概念的理解;b)构成离散随机变量X的分布律的条件,它与分布函数F(x)之间的关系;c)构成连续随机变量X的密度函数的条件,它与分布函数F(x)之间的关系;d)连续型随机变量的分布函数F(x)关于x处处连续,且P(X x) 0,其中x为任意实数,同时说明了P(A) 0不能推导A 。
《概率论与数理统计》教案第一章:概率论的基本概念1.1 随机现象与样本空间1.2 事件及其运算1.3 概率的定义与性质1.4 条件概率与独立性第二章:随机变量及其分布2.1 随机变量的概念2.2 离散型随机变量的概率分布2.3 连续型随机变量的概率密度2.4 随机变量函数的分布第三章:多维随机变量及其分布3.1 二维随机变量的联合分布3.2 边缘分布与条件分布3.3 随机变量的独立性3.4 多维随机变量函数的分布第四章:大数定律与中心极限定理4.1 大数定律4.2 中心极限定理4.3 样本均值的分布4.4 样本方差的估计第五章:数理统计的基本概念5.1 统计量与抽样分布5.2 参数估计与点估计5.3 置信区间与置信水平5.4 假设检验与p值第六章:参数估计6.1 总体参数与样本参数6.2 估计量的性质6.3 最大似然估计6.4 点估计与区间估计第七章:假设检验7.1 假设检验的基本概念7.2 检验的错误与功效7.3 常用检验方法7.4 似然比检验与正态分布检验第八章:回归分析8.1 线性回归模型8.2 回归参数的估计8.3 回归模型的检验与诊断8.4 多元线性回归分析第九章:方差分析9.1 方差分析的基本概念9.2 单因素方差分析9.3 多因素方差分析9.4 协方差分析与重复测量方差分析第十章:时间序列分析10.1 时间序列的基本概念10.2 平稳性检验与时间序列模型10.3 自回归模型与移动平均模型10.4 指数平滑模型与状态空间模型第十一章:非参数统计11.1 非参数统计的基本概念11.2 非参数检验方法11.3 非参数回归分析11.4 非参数时间序列分析第十二章:生存分析12.1 生存分析的基本概念12.2 生存函数与生存曲线12.3 生存分析的统计方法12.4 生存分析的应用实例第十三章:贝叶斯统计13.1 贝叶斯统计的基本原理13.2 贝叶斯参数估计13.3 贝叶斯假设检验13.4 贝叶斯回归分析第十四章:多变量分析14.1 多变量数据分析的基本概念14.2 多元散点图与主成分分析14.3 因子分析与聚类分析14.4 判别分析与典型相关分析第十五章:统计软件与应用15.1 统计软件的基本使用方法15.2 R语言与Python在统计分析中的应用15.3 统计软件的实际操作案例15.4 统计分析在实际领域的应用重点和难点解析本《概率论与数理统计》教案涵盖了概率论的基本概念、随机变量及其分布、多维随机变量、大数定律与中心极限定理、数理统计的基本概念、参数估计、假设检验、回归分析、方差分析、时间序列分析、非参数统计、生存分析、贝叶斯统计、多变量分析以及统计软件与应用等多个方面。
例如:(1) 在抛掷一枚硬币观察其出现正面或反面的试验中有两个样本点:正面、反面. 样本空间为S ={正面,反面}或==121}(,{e e e S 正面,=2e 反面)。
(2) 在将一枚硬币抛掷三次,观察正面H 、反面T 出现情况的试验中,有8个样本点,样本空间:=S },,,,,,,{TTT TTH THT HTT THH HTH HHT HHH 。
(3) 在抛掷一枚骰子,观察其出现的点数的试验中,有6个样本点:1点,2点,3点,4点,5点,6点,样本空间可简记为=S {1,2,3,4,5,6}。
(4) 观察某电话交换台在一天内收到的呼叫次数,其样本点有无穷多个:i 次,
i =0,1,2,3,…,样本空间可简记为=S {0,1,2,3,… }。
(5) 在一批灯泡中任意抽取一个,测试其寿命,其样本点也有无穷多个(且不可数):t 小时,样本空间可简记为=S {t |+∞<≤t 0}=[0,+
]。
注:同一个随机试验,试验的样本点与样本空间是要根据要观察的内容来确定的。
四、随机事件
在概率论中,把具有某一可观察特征的随机试验的结果称为事件,事件可分为以下三类:
(1) 随机事件:在试验中可能发生也可能不发生的事情。
(2) 必然事件:在每次试验中都必然发生的事件。
(3) 不可能事件:在任何一次试验中都不可能发生的事件。
显然,必然事件和不可能事件都是确定性事件,为讨论方便,今后将它们看作是两个特殊的随机事件,并将随机事件简称为事件。
五、事件的集合表示
任何一个事件都可以用S 的某一子集来表示,常用字母 ,,B A 等表示。
称仅含一个样本点的事件为基本事件;含有两个或两个以上样本点的事件为复合事件。
显然,样本空间S 作为事件是必然事件,空集作为一个事件是不可能事件。
六、 事件的关系与运算
事件之间的关系与运算可按集合之间的关系和运算来处理.为了方便,给出下列对照表:
,A B互不相容,则
, 丙三厂生产的产品分别占45%, 35%, 20%, 4%, 2%, 5%, 现从中任取一件
(注:可编辑下载,若有不当之处,请指正,谢谢!)。