蒸发器计算公式设计实例
- 格式:xls
- 大小:29.50 KB
- 文档页数:5
多效蒸发计算实例多效蒸发是一种高效的蒸发过程,通过多个蒸发器的多次蒸发使得产生的蒸汽可以循环利用,提高能源利用率。
下面是一个多效蒸发计算的实例,来说明多效蒸发的工作原理和计算方法。
假设有一台多效蒸发装置,用于处理1000 kg/h的食品浆料,浆料中含有75%的水分。
该多效蒸发装置共有3个蒸发器,设定的蒸发温度为80℃。
第一步,我们先计算浆料中水的质量。
由于浆料含水量为75%,所以浆料中的水质量为1000 kg/h * 75% = 750 kg/h。
第二步,我们需要计算每个蒸发器的蒸汽消耗量。
假设第一个蒸发器的效率为80%,第二个蒸发器的效率为70%,第三个蒸发器的效率为60%。
第一个蒸发器的蒸汽消耗量可以通过以下公式计算:Q1=(1-η1)*m其中,Q1为第一个蒸发器的蒸汽消耗量,η1为第一个蒸发器的效率,m为浆料中水的质量。
Q1 = (1 - 80%) * 750 kg/h = 0.2 * 750 kg/h = 150 kg/h第二个蒸发器的蒸汽消耗量可以通过以下公式计算:Q2=(1-η2)*(m-Q1)其中,Q2为第二个蒸发器的蒸汽消耗量,η2为第二个蒸发器的效率,m为浆料中水的质量,Q1为第一个蒸发器的蒸汽消耗量。
Q2 = (1 - 70%) * (750 kg/h - 150 kg/h) = 0.3 * 600 kg/h =180 kg/h第三个蒸发器的蒸汽消耗量可以通过以下公式计算:Q3=(1-η3)*(m-Q1-Q2)其中,Q3为第三个蒸发器的蒸汽消耗量,η3为第三个蒸发器的效率,m为浆料中水的质量,Q1为第一个蒸发器的蒸汽消耗量,Q2为第二个蒸发器的蒸汽消耗量。
Q3 = (1 - 60%) * (750 kg/h - 150 kg/h - 180 kg/h) = 0.4 *420 kg/h = 168 kg/h第三步,我们需要计算多效蒸发装置的总蒸汽消耗量。
总蒸汽消耗量等于各个蒸发器的蒸汽消耗量之和。
各种蒸发器冷凝器计算蒸发器和冷凝器是热力工程中常见的设备,用于蒸发和冷凝流体。
本文将介绍各种蒸发器和冷凝器的计算方法。
一、蒸发器蒸发器是将液体转化为蒸汽的设备。
根据蒸发器的类型有多种不同的计算方法。
1.蒸发器内换热面积计算蒸发器的内换热面积可以通过以下公式计算:A=Q/(U×ΔTm)其中,A为内换热面积,Q为传热量,U为换热系数,ΔTm为平均温差。
2.各种蒸发器的计算常见蒸发器种类有多效蒸发器、喷雾式蒸发器、蒸镜式蒸发器等。
这些蒸发器的计算方法略有不同。
多效蒸发器的换热器内换热面积计算可以使用以下公式:A = Q / (Ud × ΔTmd)其中,A为内换热面积,Q为传热量,Ud为蒸气侧的换热系数,ΔTmd为蒸汽的平均温差。
喷雾式蒸发器的蒸发速率计算可以使用以下公式:W = (G × H) / (λ × (hlg - hgf))量蒸发潜热,hlg为蒸汽的焓值,hgf为液体的焓值。
蒸镜式蒸发器的换热面积和蒸发速率计算方法类似多效蒸发器。
二、冷凝器冷凝器是将蒸汽或气体转变为液体的设备。
根据冷凝器的类型有多种不同的计算方法。
1.冷凝器的内换热面积计算冷凝器的内换热面积可以通过以下公式计算:A=Q/(U×ΔTm)其中,A为内换热面积,Q为传热量,U为换热系数,ΔTm为平均温差。
2.各种冷凝器的计算常见冷凝器种类有冷却管束冷凝器、冷凝器冷凝管束冷凝器等。
这些冷凝器的计算方法略有不同。
冷却管束冷凝器的换热面积计算可以使用以下公式:A = Q / (Ud × ΔTmd)其中,A为内换热面积,Q为传热量,Ud为冷却侧的换热系数,ΔTmd为冷却水的平均温差。
冷凝器冷凝管束冷凝器的冷凝速率计算可以使用以下公式:W = (G × H) / (λ × (hgf - hfg))量冷凝潜热,hgf为蒸汽的焓值,hfg为液体的焓值。
以上就是各种蒸发器和冷凝器的计算方法。
(完全版本)蒸发器热量和面积的计算法则1. 介绍本文档提供了一种用于计算蒸发器热量和面积的方法,该方法可以帮助用户根据具体需求设计蒸发器,以确保其高效、稳定地运行。
2. 热量计算法则2.1 基本原理蒸发器的热量主要由输入热量、损失热量和有效热量组成。
输入热量是指蒸发器从外界接收的热量,损失热量是指在热量传递过程中产生的热量损失,有效热量是指实际用于蒸发器工作的热量。
2.2 计算公式蒸发器的热量计算公式如下:\[ Q = Q_{\text{输入}} - Q_{\text{损失}} \]\[ Q_{\text{有效}} = Q_{\text{输入}} - Q_{\text{损失}} \]其中:- \( Q \) 表示蒸发器的热量(单位:千瓦时,kWh);- \( Q_{\text{输入}} \) 表示蒸发器的输入热量(单位:千瓦时,kWh);- \( Q_{\text{损失}} \) 表示蒸发器的损失热量(单位:千瓦时,kWh);- \( Q_{\text{有效}} \) 表示蒸发器的有效热量(单位:千瓦时,kWh)。
3. 面积计算法则3.1 基本原理蒸发器的面积主要由传热面积和辅助面积组成。
传热面积是指蒸发器中进行热量传递的面积,辅助面积是指用于支持蒸发器运行的面积。
3.2 计算公式蒸发器的面积计算公式如下:\[ A = A_{\text{传热}} + A_{\text{辅助}} \]其中:- \( A \) 表示蒸发器的总面积(单位:平方米,m²);- \( A_{\text{传热}} \) 表示蒸发器的传热面积(单位:平方米,m²);- \( A_{\text{辅助}} \) 表示蒸发器的辅助面积(单位:平方米,m²)。
4. 应用示例以下是一个简单的应用示例,用于计算一个特定蒸发器的热量和面积。
4.1 假设条件- 输入热量:1000 kWh;- 损失热量:200 kWh;- 传热面积:50 m²;- 辅助面积:10 m²。
蒸发器的设计计算蒸发器设计计算已知条件:工质为R22,制冷量为3kW,蒸发温度为7℃。
进口空气的干球温度为21℃,湿球温度为15.5℃,相对湿度为56.34%;出口空气的干球温度为13℃,湿球温度为11.1℃,相对湿度为80%。
当地大气压力为Pa。
1.蒸发器结构参数选择选择φ10mm×0.7mm紫铜管,厚度为0.2mm的铝套片作为翅片,肋片间距为2.5mm,管排方式采用正三角排列,垂直于气流方向的管间距为25mm,沿气流方向的管排数为4,迎面风速为3m/s。
2.计算几何参数翅片为平直套片,考虑套片后的管外径为10.4mm,沿气流方向的管间距为21.65mm,沿气流方向套片的长度为86.6mm。
设计结果为每米管长翅片表面积为0.3651m²/m。
每米管长翅片间管子表面积为0.03m²/m。
每米管长总外表面积为0.3951m²/m。
每米管长管内面积为0.027m²/m。
每米管长的外表面积为0.m²/m。
肋化系数为14.63.3.计算空气侧的干表面传热系数1)空气的物性空气的平均温度为17℃。
空气在下17℃时的物性参数为:密度为1.215kg/m³,比热容为1005kJ/(kg·K)。
2)空气侧传热系数根据空气侧传热系数的计算公式,计算得到空气侧的干表面传热系数为12.5W/(m²·K)。
根据给定的数据,蒸发器的尺寸为252.5mm×1mm×10.4mm。
空气在最窄截面处的流速为5.58m/s,干表面传热系数可以用小型制冷装置设计指导式(4-8)计算得到,计算结果为68.2W/m2·K。
在确定空气在蒸发器内的变化过程时,根据进出口温度和焓湿图,可以得到空气的进出口状态点1和点2的参数,连接这两个点并延长与饱和气线相交的点w的参数为hw25kJ/kg。
dw6.6g/kg。
tw8℃。
旋转蒸发器蒸发计算方式
旋转蒸发器是一种常用的热传递设备,用于液体蒸发。
蒸发计算是旋转蒸发器设计和操作的重要计算之一。
计算公式
旋转蒸发器的蒸发速率可以通过以下公式计算:
蒸发速率 = (冷却剂流量 ×冷却剂温度差) / (液体进料浓度 ×汽化热)
其中:
- 冷却剂是用来冷却旋转蒸发器的介质,通常是水或其他冷却剂。
- 冷却剂流量是冷却剂的流动速度,通常以单位时间内的体积计量。
- 冷却剂温度差是冷却剂进入和离开旋转蒸发器的温度差。
- 液体进料浓度是待蒸发液体的浓度,通常以质量百分比或体积百分比计量。
- 汽化热是液体蒸发过程中需要吸收的热量,通常根据液体的性质和蒸发温度确定。
蒸发计算示例
假设旋转蒸发器使用水作为冷却剂,冷却剂流量为10 L/min,冷却剂温度差为5 °C,液体进料浓度为20%,汽化热为2500 J/g。
蒸发速率 = (10 L/min × 5 °C) / (20% × 2500 J/g) = 0.1 L/min
根据以上参数,旋转蒸发器的蒸发速率为0.1 L/min。
注意事项
蒸发计算时需要确保参数的准确性和一致性。
液体性质、冷却剂的选择和温度、流量等参数都会对蒸发速率产生影响,因此需要进行适当的实验或参考可靠的数据。
另外,蒸发计算只是旋转蒸发器设计和操作的一部分,还需要
考虑其他因素如设备尺寸、操作条件、传热效率等。
在实际应用中,建议结合实际情况和经验进行综合分析和判断。
以上是关于旋转蒸发器蒸发计算方式的简要介绍,希望能对您
有所帮助。
(实战版)蒸发器热量及面积的实用计算公式在工程和制冷领域,准确计算蒸发器的热量和面积对于系统设计和效率至关重要。
本文档提供了一套实用的计算方法,旨在帮助工程师和相关专业人士在设计、优化和评估蒸发器系统时做出更加精准的决策。
1. 热量计算蒸发器的热量损失或吸收可以通过以下公式进行估算:\[ Q = U \cdot A \cdot (T_{in} - T_{out}) \]- \( Q \) - 热量(单位:千瓦或千焦)- \( U \) - 热传递系数(单位:W/(m²·K))- \( A \) - 热交换面积(单位:m²)- \( T_{in} \) - 进口温度(单位:摄氏度或开尔文)- \( T_{out} \) - 出口温度(单位:摄氏度或开尔文)a. 热传递系数 (U)热传递系数 \( U \) 取决于流体的性质、流速、管壁材料以及换热器的类型。
通常,它可以通过经验公式或者实验数据获得。
在缺乏准确数据的情况下,可以参考行业标准表格进行选取。
b. 热交换面积 (A)热交换面积 \( A \) 是指蒸发器内部可供热量传递的表面积。
这个值可以通过蒸发器的设计图纸或者制造商提供的规格来确定。
c. 进出口温度差温度差 \( (T_{in} - T_{out}) \) 是热量传递的关键驱动因素。
它受到流体性质、流速、换热器的设计以及操作条件的影响。
实际操作中,这个值可以通过测量或者模拟得到。
2. 面积计算在确定了热量需求后,可以通过以下公式计算所需的蒸发器面积:\[ A_{required} = \frac{Q_{required}}{U \cdot (T_{in} - T_{out})} \]- \( A_{required} \) - 所需蒸发器面积(单位:m²)- \( Q_{required} \) - 所需热量(单位:千瓦或千焦)- \( U \), \( T_{in} \), \( T_{out} \) - 含义同前a. 考虑其他因素实际工程中,还需要考虑其他因素,如翅片间距、翅片高度、管子直径、管子排列方式等,这些都可能影响实际的有效换热面积。
风冷式蒸发器换热计算一、设计计算流程图二、 设计计算(以HLR45S 为例)1、已知参数换热参数:冷凝负荷:Q e =31000W 蒸发温度:t k =-1℃回风干球温度:t a1=7℃,湿球温度t s1=6℃ 送风干球温度:t a1=4℃,湿球温度t s1=3.6℃ 工质质量流速:g =140 kg/(m 2*s) 冷凝器结构参数:铜管排列方式:正三角形叉排 翅片型式:开窗片,亲水膜 铜管型式:光管铜管竖直方向间距:S 1=25.4mm 铜管水平方向间距:S 2=22mm 紫铜光管外径:d 0=9.52mm 铜管厚度:δt =0.35mm 翅片厚度:δf =0.115mm 翅片间距:S f =1.8mm 冷凝器尺寸参数排数:N C =3排 每排管数:N B =52排2、计算过程1)冷凝器的几何参数计算翅片管外径:f b d d δ20+== 9.75 mm 铜管内径:t i d d δ-=0=8.82 mm 当量直径:)()(2))((4411f f b f f b eq S d S S d S U Ad δδ-+---===3.04 mm单位长度翅片面积:322110/)4(2-⨯-=f b f S d S S f π=0.537 m 2/m单位长度翅片间管外表面积:310/)(-⨯-=f f f b b s S d f δπ=0.0286 m 2/m 单位长度翅片管总面积:b f t f f f +==0.56666 m 2/m 翅片管肋化系数:it i t d ff f πβ===20.46 2)确定空气在蒸发器内的状态变化过程:进风点:h1=20.74kJ/kg ,d1=5.5g/kg 出风点:h2=16.01kJ/kg ,d2=4.8g/kg在湿空气焓湿图上连接状态点1和2,并延长与饱和空气线相交于饱和点4,如图:饱和点:h4=11.65kJ/kg ,d4=4.2g/kg ,t4=1.2℃ 在蒸发器中空气的平均焓:)42ln(2143h h h h h h --+==18.09 kJ/kgd3=5.1g/kg ,t3=5.3℃ 析湿系数:434346.21t t d d --+=ξ=1.5493) 空气侧换热系数迎面风速假定:f w =2.1 m/s最窄截面处风速:))(/(11max b f f f f d S S w S S w --=δ=3.64m/s 蒸发器空气入口干球温度为:t a1=7℃ 蒸发器空气出口干球温度为:t a2=4℃确定空气物性的温度为:2/)(21a a m t t t +==5.5℃ 在t m =5.5℃下,空气热物性:v f =13.75×10-6m 2/s ,λf =0.02477W/mK ,ρf =1.268kg/m 3,C Pa =1.005kJ/(kg*℃) 空气侧的雷诺数:f eq f v d w /Re max = =805.73由《制冷原理与设备》中公式(7-36),空气侧换热系数meq eq nf f O d d C ⎪⎪⎭⎫ ⎝⎛=γλαRe '=47.98 W/m 2K 其中:362)(103)(000425.0)(02315.0518.0eqeqeqd d d A γγγ-⨯-+-==0.1852⎥⎦⎤⎢⎣⎡⨯-=1000Re 24.036.1f A C =0.216 eq d n γ0066.045.0+==0.59311000Re 08.028.0f m +-==-0.2155铜管差排的修正系数为1.1,开窗片的修正系数为1.3,则空气侧换热系数为:(开窗片、波纹片的修正系数有待实验验证)'oo αα=×1.1×1.3=68.62 W/m 2K 对于叉排翅片管簇:fd s 1=ρ=25.4/9.75=2.6051 3.027.121'-=l l ρρ=2.7681 式中:21,l l 为正六边形对比距离,21l l =翅片当量高度:)'ln 35.01)(1'(5.0'ρρ+-=f d h =0.01169 mδλαa om 2==75.4 m -1翅片效率:')'(mh mh tgh f =η =0.802 表面效率:)1(1f tf s f f ηη--==0.812空气侧当量换热系数为:s o f ηξαα==85.81 W/m 2K 4)冷媒侧换热系数设R22进入蒸发器的干度x 1=0.16,出口蒸发器时x 2=1.0,则R22的总流量为:)(12x x r Q G er -== 0.17901 kg/sR22的总流通截面:gG A r==12.7866×10-4 每根管子的有效流通截面:42i i d A π==6.1067×10-5蒸发器的分路数:iA AZ ==20.9 取Z =21 每一分路的R22流量:ZG G rd ==0.008524 kg/s R22在管内蒸发时换热系数可按下式计算:343.02.02.0i 6.0g 7.2⎪⎪⎭⎫ ⎝⎛=cr c ii P P d q α=8.3766q i 0.6(如果是内螺纹管,换热系数则需乘以系数1.2)由于R22与润滑油能相互溶解,可忽略管内侧污垢。
蒸发器热力计算范文
一、蒸发器热力计算原理
蒸发器是一种热交换设备,它允许在当蒸发液体被加热进入蒸发器时,其余部分的蒸发液体将流入另一容器,在这里蒸发器将蒸汽抽出,以及回
收到液体。
蒸发器的主要工作原理是,将热量从低温的一侧转移到高温的
一侧,从而使热力导致蒸发液体的变化。
蒸发器热力计算通过分子运动理
论来计算蒸发量和蒸汽气体的温升,这将取决于入口温度、出口温度、吸
热量和蒸汽的比体积。
二、蒸发器热力计算方法
1、量热器热力计算。
量热器热力计算的基本原理是:原始液体的流量、温度和比焓都是已知的,从而计算吸热量和蒸发量。
计算的公式为:Q=C*m*ΔT
其中,C为比热容,m为物质的流量,ΔT为原始温度和终温度的差值。
2、熵差热力计算。
熵差热力计算的基本原理是:利用熵差法来计算
蒸发量和吸热量,其中,熵的定义为:当物质进行任意变化时,需要输入
的所有热量都能够用来改变温度。
S=Q/T
其中,S为熵,Q为热量,T为温度。
3、熵回收热力计算。
熵回收热力计算的基本原理是:利用蒸发器的
发热量(Q1)、冷却器的吸热量(Q2)和熵变动量S的关系,来计算蒸发量。
(完整版)蒸发器的设计计算蒸发器设计计算已知条件:工质为R22,制冷量kW 3,蒸发温度C t ?=70,进口空气的干球温度为C t a ?=211,湿球温度为C t b ?=5.151,相对湿度为34.56=φ%;出口空气的干球温度为C t a ?=132,湿球温度为C t b ?=1.112,相对湿度为80=φ%;当地大气压力Pa P b 101325=。
(1)蒸发器结构参数选择选用mm mm 7.010?φ紫铜管,翅片厚度mm f 2.0=δ的铝套片,肋片间距mm s f 5.2=,管排方式采用正三角排列,垂直于气流方向管间距mm s 251=,沿气流方向的管排数4=L n ,迎面风速取s m w f /3=。
(2)计算几何参数翅片为平直套片,考虑套片后的管外径为mm d d f o b 4.102.02102=?+=+=δ沿气流方向的管间距为mm s s 65.21866.02530cos 12=?=?=沿气流方向套片的长度为mm s L 6.8665.21442=?==设计结果为 mm s L 95.892565.2132532=+?=+= 每米管长翅片表面积:f b f s d s s a 100042221?-?=π ()5.210004.10414.365.212522-??= m m 23651.0=每米管长翅片间管子表面积:ff f b b s s d a )(δπ-=()5.210002.05.24.1014.3?-??= m m 203.0=每米管长总外表面积:m m a a a b f of 23951.003.03651.0=+=+=每米管长管内面积:m m d a i i 2027.0)20007.001.0(14.3=?-?==π每米管长的外表面积:m m d a b b 2003267.00104.014.3=?==π肋化系数:63.14027.03951.0===iof a a β每米管长平均直径的表面积:m m d a m m 202983.020086.00104.014.3=??+?==π(3)计算空气侧的干表面传热系数①空气的物性空气的平均温度为C t t t a a f ?=+=+=1721321221 空气在下C ?17的物性参数3215.1m kg f =ρ()K kg kJ c pf ?=1005704.0=rf Ps m v f 61048.14-?=②最窄截面处空气流速()()()()s m s s s s w w f f f d fb 58.52.05.25.24.102525311max =--?=--=δ③干表面传热系数干表面传热系数用小型制冷装置设计指导式(4-8)计算15.04.00max 42618.00014.0--+=bo of f a a v d w α15.04.0603267.03951.01048.140104.058.52168.00014.0---??+=00792.0=()()()km W P c w r pf=23232max 402.68704.0100558.5215.100792.0ραα(4)确定空气在蒸发器内的变化过程根据给定的进出口温度由湿空气的焓湿图可得kg g d kg g d kg kJ h kg kJ h 443.7,723.8,924.31,364.432121====。