多效蒸发器设计计算(精制甲类)
- 格式:doc
- 大小:293.00 KB
- 文档页数:4
多效蒸发计算范文多效蒸发是一种常用于脱水和浓缩溶液的工艺方法。
它利用多组换热器和蒸发器,在不同压力条件下进行多次蒸发,以达到高效的能量利用和浓缩效果。
下面将详细介绍多效蒸发的计算方法。
蒸发率(E)是指单位时间内蒸发的物料质量。
它可以通过下列公式进行计算:E=Q/A其中,Q表示蒸发器中的蒸发热量,单位为焦耳(J),A表示蒸发器的表面积,单位为平方米(m²)。
其次是蒸发温度的计算。
多效蒸发中,各个蒸发器在不同的压力下进行蒸发,所以需要计算每个蒸发器的蒸发温度。
蒸发温度可以通过下列公式计算:T=T1-ΔT*(n-1)-ΔT1/N*(m-1)其中,T表示蒸发温度,T1表示蒸发器1的温度,ΔT表示每个蒸发器的温度压降,n表示蒸发器的级数,N表示蒸发器总数,m表示当前所在的蒸发器级数。
蒸发器数量的计算可以通过下列公式进行:N = log(D / D1) / log(α)其中,N表示蒸发器数量,D表示溶液初始浓度与最终浓度的比值,D1表示溶液的初始浓度,α表示溶液的浓缩系数。
最后是热效率的计算。
多效蒸发的热效率是指单位蒸发量所需的热量与总热量的比值。
热效率可以通过下列公式计算:η=Q/(Q+QF)其中,η表示热效率,Q表示蒸发器中的蒸发热量,QF表示各种热损失的热量。
除了上述的计算方法,还有一些附加的计算,如换热器的表面积计算和管路的尺寸计算等。
换热器的表面积可以通过下列公式计算:A=Q/(U*ΔTm)其中,A表示换热器的表面积,U表示传热系数,ΔTm表示温度驱动因数。
管路的尺寸计算可以通过下列公式计算:A=m*V/ρ*t其中,A表示管路的截面面积,m表示液体的质量流速,V表示液体的体积流速,ρ表示液体的密度,t表示液体在管路内停留的时间。
综上所述,多效蒸发的计算主要包括蒸发率、蒸发温度、蒸发器数量和热效率的计算。
通过这些计算,可以有效地设计和操作多效蒸发设备,达到预期的脱水和浓缩效果。
多效蒸发器设计计算 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】多效蒸发器设计计算(一)蒸发器的设计步骤多效蒸发的计算一般采用迭代计算法(1)根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强及冷凝器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环蒸发器、刮膜蒸发器)、流程和效数。
(2)根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。
(3)根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有效总温差。
(4)根据蒸发器的焓衡算,求各效的蒸发量和传热量。
(5)根据传热速率方程计算各效的传热面积。
若求得的各效传热面积不相等,则应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5),直到所求得的各效传热面积相等(或满足预先给出的精度要求)为止。
(二)蒸发器的计算方法下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。
1.估值各效蒸发量和完成液组成总蒸发量(1-1)在蒸发过程中,总蒸发量为各效蒸发量之和W = W1 + W2 + … + W n (1-2)任何一效中料液的组成为(1-3)一般情况下,各效蒸发量可按总政发来那个的平均值估算,即(1-4)对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。
例如,三效W1:W2:W3=1:: (1-5) 以上各式中 W — 总蒸发量,kg/h ;W 1,W 2 ,… ,W n — 各效的蒸发量,kg/h ;F — 原料液流量,kg/h ;x 0, x 1,…, x n — 原料液及各效完成液的组成,质量分数。
2.估值各效溶液沸点及有效总温度差 欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。
即 (1-6)式中 — 各效加热蒸汽压强与二次蒸汽压强之差,Pa ;— 第一效加热蒸汽的压强,Pa ;— 末效冷凝器中的二次蒸汽的压强,Pa 。
多效蒸发器设计计算Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT多效蒸发器设计计算(一)蒸发器的设计步骤多效蒸发的计算一般采用迭代计算法(1)根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强及冷凝器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环蒸发器、刮膜蒸发器)、流程和效数。
(2)根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。
(3)根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有效总温差。
(4)根据蒸发器的焓衡算,求各效的蒸发量和传热量。
(5)根据传热速率方程计算各效的传热面积。
若求得的各效传热面积不相等,则应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5),直到所求得的各效传热面积相等(或满足预先给出的精度要求)为止。
(二)蒸发器的计算方法下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。
1.估值各效蒸发量和完成液组成总蒸发量(1-1)在蒸发过程中,总蒸发量为各效蒸发量之和W = W1 + W2 + … + W n (1-2)任何一效中料液的组成为(1-3)一般情况下,各效蒸发量可按总政发来那个的平均值估算,即(1-4)对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。
例如,三效W1:W2:W3=1:: (1-5)以上各式中 W — 总蒸发量,kg/h ;W 1,W 2 ,… ,W n — 各效的蒸发量,kg/h ;F — 原料液流量,kg/h ;x 0, x 1,…, x n — 原料液及各效完成液的组成,质量分数。
2.估值各效溶液沸点及有效总温度差 欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。
即(1-6)式中 — 各效加热蒸汽压强与二次蒸汽压强之差,Pa ;— 第一效加热蒸汽的压强,Pa ;— 末效冷凝器中的二次蒸汽的压强,Pa 。
多效蒸发器设计计算
多效蒸发器设计计算
(一)蒸发器的设计步骤
多效蒸发的计算一般采用迭代计算法
(1)根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强及冷凝器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环蒸发
器、刮膜蒸发器)、流程和效数。
(2)根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。
(3)根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有效总温差。
(4)根据蒸发器的焓衡算,求各效的蒸发量和传热量。
(5)根据传热速率方程计算各效的传热面积。
若求得的各效传热面积不相等,则应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5),
直到所求得的各效传热面积相等(或满足预先给出的精度要求)为止。
(二)蒸发器的计算方法
下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。
1. 估值各效蒸发量和完成液组成
W F(1 ^0)
总蒸发量x i (1-
1 )
在蒸发过程中,总蒸发量为各效蒸发量之和
W = W1 + W2 + …+ W n (1-2 )
任何一效中料液的组成为。
(详尽版)蒸发器的热量和面积计算公式
1. 引言
本文档旨在提供关于蒸发器热量和面积计算的详细公式和方法。
蒸发器是一种常见的热交换设备,用于将液体转化为气体,通常用
于工业生产中的蒸发过程。
正确计算蒸发器所需的热量和面积对于
设备设计和操作至关重要。
2. 蒸发器热量计算公式
蒸发器的热量计算涉及液体的蒸发过程,其中涉及到以下参数:
- 初始液体温度(T1)
- 终止液体温度(T2)
- 需要蒸发的液体质量(m)
- 液体的蒸发潜热(L)
蒸发器的热量计算公式如下:
Q = m * L
其中,Q表示蒸发器所需的热量。
3. 蒸发器面积计算公式
蒸发器的面积计算涉及到传热过程,其中涉及到以下参数:
- 热传导率(k)
- 温度差(ΔT)
- 热阻(R)
蒸发器的面积计算公式如下:
A = ΔT / (k * R)
其中,A表示蒸发器的面积。
4. 其他考虑因素
蒸发器的热量和面积计算公式提供了基本的计算方法,但在实际应用中,还需要考虑其他因素,如流体流动情况、传热系数、壁面阻力等。
这些因素会对蒸发器的设计和性能产生影响,需要根据具体情况进行综合考虑和调整。
5. 结论
本文档介绍了蒸发器热量和面积计算的详细公式和方法。
在设计和操作蒸发器时,正确计算所需的热量和面积对于设备的正常运行和效率至关重要。
然而,在实际应用中,还需要综合考虑其他因素,以确保蒸发器的性能和稳定性。
以上所述仅为计算公式和基本方法,具体应用时请根据实际情况进行调整和验证。
(完整版)蒸发器的设计计算蒸发器设计计算已知条件:工质为R22,制冷量kW 3,蒸发温度C t ?=70,进口空气的干球温度为C t a ?=211,湿球温度为C t b ?=5.151,相对湿度为34.56=φ%;出口空气的干球温度为C t a ?=132,湿球温度为C t b ?=1.112,相对湿度为80=φ%;当地大气压力Pa P b 101325=。
(1)蒸发器结构参数选择选用mm mm 7.010?φ紫铜管,翅片厚度mm f 2.0=δ的铝套片,肋片间距mm s f 5.2=,管排方式采用正三角排列,垂直于气流方向管间距mm s 251=,沿气流方向的管排数4=L n ,迎面风速取s m w f /3=。
(2)计算几何参数翅片为平直套片,考虑套片后的管外径为mm d d f o b 4.102.02102=?+=+=δ沿气流方向的管间距为mm s s 65.21866.02530cos 12=?=?=沿气流方向套片的长度为mm s L 6.8665.21442=?==设计结果为 mm s L 95.892565.2132532=+?=+= 每米管长翅片表面积:f b f s d s s a 100042221?-?=π ()5.210004.10414.365.212522-??= m m 23651.0=每米管长翅片间管子表面积:ff f b b s s d a )(δπ-=()5.210002.05.24.1014.3?-??= m m 203.0=每米管长总外表面积:m m a a a b f of 23951.003.03651.0=+=+=每米管长管内面积:m m d a i i 2027.0)20007.001.0(14.3=?-?==π每米管长的外表面积:m m d a b b 2003267.00104.014.3=?==π肋化系数:63.14027.03951.0===iof a a β每米管长平均直径的表面积:m m d a m m 202983.020086.00104.014.3=??+?==π(3)计算空气侧的干表面传热系数①空气的物性空气的平均温度为C t t t a a f ?=+=+=1721321221 空气在下C ?17的物性参数3215.1m kg f =ρ()K kg kJ c pf ?=1005704.0=rf Ps m v f 61048.14-?=②最窄截面处空气流速()()()()s m s s s s w w f f f d fb 58.52.05.25.24.102525311max =--?=--=δ③干表面传热系数干表面传热系数用小型制冷装置设计指导式(4-8)计算15.04.00max 42618.00014.0--+=bo of f a a v d w α15.04.0603267.03951.01048.140104.058.52168.00014.0---??+=00792.0=()()()km W P c w r pf=23232max 402.68704.0100558.5215.100792.0ραα(4)确定空气在蒸发器内的变化过程根据给定的进出口温度由湿空气的焓湿图可得kg g d kg g d kg kJ h kg kJ h 443.7,723.8,924.31,364.432121====。
(一)蒸发器的设计步骤多效蒸发的计算一般采用迭代计算法(1)根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强及冷凝器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环蒸发器、刮膜蒸发器)、流程和效数。
(2)根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。
(3)根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有效总温差。
(4)根据蒸发器的焓衡算,求各效的蒸发量和传热量。
(5)根据传热速率方程计算各效的传热面积。
若求得的各效传热面积不相等,则应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5),直到所求得的各效传热面积相等(或满足预先给出的精度要求)为止。
(二)蒸发器的计算方法下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。
1.估值各效蒸发量和完成液组成总蒸发量(1-1)在蒸发过程中,总蒸发量为各效蒸发量之和W = W1 + W2+ … + Wn(1-2)任何一效中料液的组成为(1-3)一般情况下,各效蒸发量可按总政发来那个的平均值估算,即(1-4)对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。
例如,三效W1:W2:W3=1::(1-5)以上各式中W —总蒸发量,kg/h;W 1,W2,… ,Wn—各效的蒸发量,kg/h;F —原料液流量,kg/h;x 0, x1,…, xn—原料液及各效完成液的组成,质量分数。
2.估值各效溶液沸点及有效总温度差欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。
即(1-6)式中—各效加热蒸汽压强与二次蒸汽压强之差,Pa;—第一效加热蒸汽的压强,Pa;—末效冷凝器中的二次蒸汽的压强,Pa。
多效蒸发中的有效传热总温度差可用下式计算:(1-7)式中—有效总温度差,为各效有效温度差之和,℃;—第一效加热蒸汽的温度,℃;—冷凝器操作压强下二次蒸汽的饱和温度,℃;—总的温度差损失,为各效温度差损失之和,℃。
多效蒸发器设计计算
多效蒸发器是一种用于蒸发液体中的溶质以实现浓缩的设备。
在多效蒸发器设计计算中,需要考虑到以下几个关键因素:蒸发程式、物料平衡、能量平衡、传热方程、精馏器和破坏机理。
1. 蒸发过程:多效蒸发器的基本原理是通过将溶液在多个蒸发室中进行连续蒸发,并利用蒸汽冷凝来提供热量。
在多效蒸发器设计中,需要确定合适的蒸发程式,例如同时蒸发或逐级蒸发。
2. 物料平衡:在多效蒸发器中,各个蒸发室之间的物料平衡是一个重要考虑因素。
物料平衡可以通过输入和输出流量的计算来确定。
3. 能量平衡:能量平衡是多效蒸发器设计的另一个关键点。
通过计算蒸汽冷凝所释放的热量和蒸发过程中所需的热量,可以确定能量平衡。
4. 传热方程:多效蒸发器中传热方程的计算是非常重要的。
传热方程通常包括表面传热系数、传热面积和温度差等参数,可以用于计算所需热量。
5. 精馏器:多效蒸发器中通常使用精馏器来分离液体中的溶质。
设计精馏器需要考虑到馏分和留渣的要求,以及精馏塔的塔盘或填料。
6. 破坏机理:在多效蒸发器设计中,需要考虑到溶质可能遭受
的破坏机理,例如结晶、析出或水解等。
这些因素可以影响到设计的操作条件和设备需求。
在多效蒸发器设计计算中,还需要考虑到其他因素,如设备材料的选择、蒸汽压力和温度、环境影响等。
以上只是多效蒸发器设计计算的一些参考内容,具体设计仍然需要根据实际情况和要求进行。
多效蒸发器设计计算(一) 蒸发器的设计步骤多效蒸发的计算一般采用迭代计算法(1) 根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强 及冷凝器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环 蒸发器、刮膜蒸发器)、流程和效数。
(2) 根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。
(3) 根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有 效总温差。
(4) 根据蒸发器的焓衡算,求各效的蒸发量和传热量。
(5) 根据传热速率方程计算各效的传热面积。
若求得的各效传热面积不相 等,则应按下面介绍的方法重新分配有效温度差, 重复步骤(3)至(5), 直到所求得的各效传热面积相等(或满足预先给出的精度要求)为止。
(二) 蒸发器的计算方法下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。
1. 估值各效蒸发量和完成液组成总蒸发量W =F (1-西)X i在蒸发过程中,总蒸发量为各效蒸发量之和W = W 1 + W 2 + …+ W(1-2 )任何一效中料液的组成为Fx oxi 'F -W 1-W 2-…Wi般情况下,各效蒸发量可按总政发来那个的平均值估算,即(1-4)因有自蒸发现象,课按如下比例进行估计。
例如,(1-5)以上各式中W —总蒸发量,kg/h ;W 1,W 2,…,Wi —各效的蒸发量,kg/h ; F —原料液流量,kg/h ; X 0,为,…,X n —原料液及各效完成液的组成,质量分数。
2. 估值各效溶液沸点及有效总温度差欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或 末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。
即“ n (1-6)式中p —各效加热蒸汽压强与二次蒸汽压强之差,Pa ;»—第一效加热蒸汽的压强,Pa ;(1-1 )(1-3)W 」对于并流操作的多效蒸发,三效 W1: W2: W3=1: 1.1 : 1.2p k—末效冷凝器中的二次蒸汽的压强,Pa。
多效蒸发器设计计算Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】多效蒸发器设计计算(一) 蒸发器的设计步骤多效蒸发的计算一般采用迭代计算法(1) 根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强及冷凝器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环蒸发器、刮膜蒸发器)、流程和效数。
(2) 根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。
(3) 根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有效总温差。
(4) 根据蒸发器的焓衡算,求各效的蒸发量和传热量。
(5) 根据传热速率方程计算各效的传热面积。
若求得的各效传热面积不相等,则应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5),直到所求得的各效传热面积相等(或满足预先给出的精度要求)为止。
(二) 蒸发器的计算方法下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。
1.估值各效蒸发量和完成液组成总蒸发量 (1-1)在蒸发过程中,总蒸发量为各效蒸发量之和W = W 1 + W 2 + … + W n (1-2) 任何一效中料液的组成为(1-3)一般情况下,各效蒸发量可按总政发来那个的平均值估算,即(1-4)对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。
例如,三效W1:W2:W3=1:: (1-5)以上各式中 W — 总蒸发量,kg/h ;W 1,W 2 ,… ,W n — 各效的蒸发量,kg/h ;F — 原料液流量,kg/h ;x 0, x 1,…, x n — 原料液及各效完成液的组成,质量分数。
2.估值各效溶液沸点及有效总温度差欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。
即(1-6)式中 — 各效加热蒸汽压强与二次蒸汽压强之差,Pa ;— 第一效加热蒸汽的压强,Pa ;— 末效冷凝器中的二次蒸汽的压强,Pa 。
多效蒸发器设计计算多效蒸发器是一种高效能的传热设备,广泛应用于化工、制药、食品等行业。
其设计计算是非常重要的一环,下面将为大家介绍多效蒸发器设计计算的一些基本原理和方法。
多效蒸发器通过多级蒸汽与料液之间的传热交换,实现了能量的连续回收,大大提高了热效率和经济性。
因此,在设计多效蒸发器时,我们需要考虑到以下四个主要方面:料液性质、传热面积、传热系数和设备结构。
首先,料液的性质是设计多效蒸发器的重要参数之一。
常用的性质参数包括物料的沸点、比热容、溶解度等。
这些参数可以通过实验或文献数据获取,以便计算蒸发器的传热量和需要的换热面积。
其次,传热面积是设计多效蒸发器时需要考虑的另一个重要参数。
传热面积的大小直接影响到蒸发器的传热效果。
在计算传热面积时,需要考虑到料液的流动状态、传热介质的温度和流量等因素。
一般来说,传热面积越大,蒸发器的传热效果越好,但同时也会增加设备的体积和成本。
传热系数也是设计多效蒸发器时需要重点考虑的一个参数。
传热系数是指单位面积传热时的热阻,它与蒸发器的传热效果密切相关。
一般来说,在多效蒸发器设计中,我们会通过改变料液的流速、增加传热介质的流速等方式来提高传热系数。
同时,还可以通过选择合适的传热面积和换热器材料来优化传热效果。
最后,设备结构的设计也非常重要。
多效蒸发器的结构包括蒸发室、蒸发器、冷凝器等部分,其设计与传热效果直接相关。
合理的设备结构能够提高传热效率和操作稳定性。
在设计过程中,我们需要考虑到设备的尺寸、布局、材料等因素,以确保设备能够满足工艺要求并具有良好的性能。
综上所述,多效蒸发器设计计算是一项复杂而又重要的工作。
我们需要综合考虑料液性质、传热面积、传热系数和设备结构等因素,以确保获得高效、经济的蒸发过程。
同时,我们还可以通过合理调整各项参数,优化设备设计,提高蒸发效率,减少能源消耗,实现可持续发展的目标。
因此,在未来的工程实践中,我们要不断探索研究,进一步提升多效蒸发器的设计计算水平,为工业生产的发展做出更大的贡献。
多效蒸发器设计计算(一)蒸发器的设计步骤多效蒸发的计算一般采用迭代计算法(1)根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强及冷凝器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环蒸发器、刮膜蒸发器)、流程和效数。
(2)根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。
(3)根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有效总温差。
(4)根据蒸发器的焓衡算,求各效的蒸发量和传热量。
(5)根据传热速率方程计算各效的传热面积。
若求得的各效传热面积不相等,则应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5),直到所求得的各效传热面积相等(或满足预先给出的精度要求)为止。
(二)蒸发器的计算方法下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。
1. 估值各效蒸发量和完成液组成W F(1 ^0)总蒸发量x i (1-1 )在蒸发过程中,总蒸发量为各效蒸发量之和W = W1 + W2 + …+ W n (1-2 )任何一效中料液的组成为般情况下,各效蒸发量可按总政发来那个的平均值估算,即W W in对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。
例如, 三 效 W1 :W2 : W3=1 : 1.1 : 1.2(1-5)以上各式中 W —总蒸发量,kg/h ;W 1,W 2 ,…,W n —各效的蒸发量,kg/h ;F —原料液流量,kg/h ;X 0, X 1,…,X n —原料液及各效完成液的组成,质量分数。
2. 估值各效溶液沸点及有效总温度差欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。
即p p 1p knp式中 —各效加热蒸汽压强与二次蒸汽压强之差,Pa ;—第一效加热蒸汽的压强,Pa ;多效蒸发中的有效传热总温度差可用下式计算:Fx oX iF W i W 2 W i(1-3 )(1-4)(1-6 )p k—末效冷凝器中的二次蒸汽的压强, Pa 。
多效蒸发器设计计算多效蒸发器是一种高效的物料分离设备,广泛应用于化工、食品、制药等行业。
设计多效蒸发器需要考虑以下几个关键参数:蒸发温度、汽化温度、进料浓度、进料流量、产物浓度、产物流量、加热表面积以及热效率等。
首先,蒸发温度是多效蒸发器设计的重要参数之一。
蒸发温度决定了设备的能耗和产物的质量。
在设计过程中,需要根据物料的性质和工艺要求确定合适的蒸发温度。
其次,汽化温度也是多效蒸发器设计的关键参数。
汽化温度决定了蒸发器中的压力,进而影响设备的操作条件和运行稳定性。
因此,在设计阶段需要确定合适的汽化温度,并选择合适的加热源来提供热量。
进料浓度是多效蒸发器设计中的重要参数之一。
进料浓度直接影响着设备的能耗和产量。
在设计阶段,需要根据物料的性质和工艺要求确定合适的进料浓度,以达到经济高效的目标。
进料流量是多效蒸发器设计中的关键参数之一。
进料流量决定了设备的尺寸和产量的大小。
在设计阶段,需要根据工艺要求和设备的限制条件确定合适的进料流量。
产物浓度和产物流量是多效蒸发器设计中需要考虑的重要参数。
产物浓度和产物流量决定了设备的下游工艺和产品的质量。
在设计阶段,需要根据工艺要求和产品标准确定合适的产物浓度和产物流量。
加热表面积是多效蒸发器设计中的重要参数之一。
加热表面积决定了设备的传热效率。
在设计阶段需要根据进料流量、进料温度和蒸发温度等参数来确定合适的加热表面积,以提高设备的热效率。
热效率是多效蒸发器设计中的关键性能指标之一。
热效率是指蒸发器在单位时间内消耗的热量与传递给物料的热量之间的比例。
在设计阶段,需要通过合理的热平衡分析和传热计算来提高设备的热效率。
在多效蒸发器的设计计算中,需要综合考虑上述参数,并采用合适的数学模型和工程经验进行计算。
通过合理的设计计算,可以提高多效蒸发器的性能,达到经济高效的目标。
多效蒸发器设计计算(一) 蒸发器的设计步骤多效蒸发的计算一般采用迭代计算法根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强及冷凝器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环蒸发器、刮膜蒸发器)、流程和效数。
根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。
根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有效总温差。
根据蒸发器的焓衡算,求各效的蒸发量和传热量。
根据传热速率方程计算各效的传热面积。
若求得的各效传热面积不相等,则应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5),直到所求得的各效传热面积相等(或满足预先给出的精度要求)为止。
蒸发器的计算方法下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。
1.估值各效蒸发量和完成液组成总蒸发量 (1-1)在蒸发过程中,总蒸发量为各效蒸发量之和W = W 1 + W 2 + … + W n (1-2) 任何一效中料液的组成为(1-3)一般情况下,各效蒸发量可按总政发来那个的平均值估算,即(1-4)对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。
例如,三效W1:W2:W3=1:: (1-5)以上各式中 W — 总蒸发量,kg/h ;W 1,W 2 ,… ,W n — 各效的蒸发量,kg/h ;F — 原料液流量,kg/h ;x 0, x 1,…, x n — 原料液及各效完成液的组成,质量分数。
2.估值各效溶液沸点及有效总温度差欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。
即(1-6)式中 — 各效加热蒸汽压强与二次蒸汽压强之差,Pa ;)110x x F W -=(n W W i =i i W W W F Fx x Λ---=210n p p p k '-=∆1p ∆— 第一效加热蒸汽的压强,Pa ;— 末效冷凝器中的二次蒸汽的压强,Pa 。
多效蒸发器设计计算(一) 蒸发器的设计步骤多效蒸发的计算一般采用迭代计算法(1) 根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强及冷凝器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环蒸发器、刮膜蒸发器)、流程和效数。
(2) 根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。
(3) 根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有效总温差。
(4) 根据蒸发器的焓衡算,求各效的蒸发量和传热量。
(5) 根据传热速率方程计算各效的传热面积。
若求得的各效传热面积不相等,则应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5),直到所求得的各效传热面积相等(或满足预先给出的精度要求)为止。
(二) 蒸发器的计算方法下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。
1.估值各效蒸发量和完成液组成总蒸发量 (1-1)在蒸发过程中,总蒸发量为各效蒸发量之和W = W 1 + W 2 + … + W n (1-2) 任何一效中料液的组成为(1-3) 一般情况下,各效蒸发量可按总政发来那个的平均值估算,即(1-4) 对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。
例如,三效W1:W2:W3=1:1.1:1.2 (1-5)以上各式中 W — 总蒸发量,kg/h ;W 1,W 2 ,… ,W n — 各效的蒸发量,kg/h ; F — 原料液流量,kg/h ;x 0, x 1,…, x n — 原料液及各效完成液的组成,质量分数。
2.估值各效溶液沸点及有效总温度差欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。
即(1-6)式中— 各效加热蒸汽压强与二次蒸汽压强之差,Pa ;— 第一效加热蒸汽的压强,Pa ; )110x xF W -=(n W W i =ii W W W F Fx x ---=210n p p p k '-=∆1p ∆1p— 末效冷凝器中的二次蒸汽的压强,Pa 。
目录第一章前言§1·1 概述`第二章蒸发工艺设计计算§2·1蒸浓液浓度计算§2·2溶液沸点和有效温度差的确定§2·2·1各效由于溶液的蒸汽压下降所引起的温度差损失 /§2·2·2各效由于溶液静压强所因引起的温度差损失§2·2·3由经验不计流体阻力产生压降所引起的温度差损失§2·3 加热蒸汽消耗量和各效蒸发水量的计算§2·4 蒸发器的传热面积和有效温度差在各效中的分布以及传热系数K的确定§2·5 温差的重新分配与试差计算§2·5·1重新分配各效的有效温度差,§2·5·2重复上述计算步骤§2·6计算结果列表第三章 NaOH溶液的多效蒸发优化程序部分§3·1 具体的拉格朗日乘子法求解过程§3·2 程序内部变量说明§3·3 程序内容:§3·4 程序优化计算结果§3·5 优化前后费用比较第四章蒸发器工艺尺寸计算§4·1 加热管的选择和管数的初步估计§4·1·1 加热管的选择和管数的初步估计§4·1·2 循环管的选择§4·1·3 加热室直径及加热管数目的确定§4·1·4 分离室直径与高度的确定§4·2 接管尺寸的确定§4·2·1 溶液进出§4·2·2 加热蒸气进口与二次蒸汽出口§4·2·3 冷凝水出口第五章、蒸发装置的辅助设备§5·1 气液分离器§5·2 蒸汽冷凝器§5·2·1 冷却水量§5·2·2 计算冷凝器的直径§5·2·3 淋水板的设计§5·3泵选型计算§5·4预热器的选型第六章主要设备强度计算及校核§6·1蒸发分离室厚度设计§6·2加热室厚度校核第七章小结与参考文献:符号说明希腊字母:c——比热容,KJ/(Kg.h)α――对流传热系数,W/m2.℃d——管径,mΔ――温度差损失,℃D——直径,mη――误差,D——加热蒸汽消耗量,Kg/hη――热损失系数,f——校正系数,η――阻力系数,F——进料量,Kg/hλ――导热系数,W/m2.℃g——重力加速度,9.81m/s2μ――粘度,Pa.sh——高度,mρ――密度,Kg/m3H——高度,mk——杜林线斜率K——总传热系数,W/m2.℃∑――加和L——液面高度,mφ――系数L——加热管长度,mL——淋水板间距,m 下标:n——效数1,2,3――效数的序号n——第n效0――进料的p——压强,Pa i――内侧q——热通量,W/m2m――平均Q——传热速率,W o――外侧r——汽化潜热,KJ/Kg p――压强R——热阻,m2.℃/W s――污垢的S——传热面积,m2w――水的t——管心距,m w――壁面的T——蒸汽温度,℃u——流速,m/sU——蒸发强度,Kg/m2.h上标:V——体积流量,m3/h′:二次蒸汽的W——蒸发量,Kg/h′:因溶液蒸汽压而引起的W——质量流量,Kg/h 〞:因液柱静压强而引起的x——溶剂的百分质量,%:因流体阻力损失而引起的第一章前言§1·1概述1蒸发及蒸发流程蒸发是采用加热的方法,使含有不挥发性杂质(如盐类)的溶液沸腾,除去其中被汽化单位部分杂质,使溶液得以浓缩的单元操作过程。
多效蒸发器设计计算(一) 蒸发器的设计步骤多效蒸发的计算一般采用迭代计算法(1) 根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强及冷凝器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环蒸发器、刮膜蒸发器)、流程和效数。
(2) 根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。
(3) 根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有效总温差。
(4) 根据蒸发器的焓衡算,求各效的蒸发量和传热量。
(5) 根据传热速率方程计算各效的传热面积。
若求得的各效传热面积不相等,则应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5),直到所求得的各效传热面积相等(或满足预先给出的精度要求)为止。
(二) 蒸发器的计算方法下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。
1.估值各效蒸发量和完成液组成总蒸发量 (1-1)在蒸发过程中,总蒸发量为各效蒸发量之和W = W 1 + W 2 + … + W n (1-2) 任何一效中料液的组成为(1-3) 一般情况下,各效蒸发量可按总政发来那个的平均值估算,即(1-4) 对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。
例如,三效W1:W2:W3=1:1.1:1.2 (1-5)以上各式中 W — 总蒸发量,kg/h ;W 1,W 2 ,… ,W n — 各效的蒸发量,kg/h ; F — 原料液流量,kg/h ;x 0, x 1,…, x n — 原料液及各效完成液的组成,质量分数。
2.估值各效溶液沸点及有效总温度差欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。
即(1-6) 式中— 各效加热蒸汽压强与二次蒸汽压强之差,Pa ; )110x xF W -=(n W W i =ii W W W F Fx x Λ---=210np p p k '-=∆1p ∆— 第一效加热蒸汽的压强,Pa ;— 末效冷凝器中的二次蒸汽的压强,Pa 。
多效蒸发中的有效传热总温度差可用下式计算:(1-7)式中 — 有效总温度差,为各效有效温度差之和,℃;— 第一效加热蒸汽的温度,℃; — 冷凝器操作压强下二次蒸汽的饱和温度,℃;— 总的温度差损失,为各效温度差损失之和,℃。
(1-8)式中— 由于溶液的蒸汽压下降而引起的温度差损失,℃;— 由于蒸发器中溶液的静压强而引起的温度差损失,℃;— 由于管路流体阻力产生压强降而引起的温度差损失,℃。
关于 、和 的求法,分别介绍如下: (1)由于溶液蒸汽压下降多引起的温度差损失可用校正系数法和杜林规则求得。
校正系数法: (1-9)式中— 常压下由于溶液蒸汽压下降引起的温度差损失,℃; 某些溶液在常压下的沸点值可从手册差得;— 校正系数,量纲为一。
一般取 (1-10)式中— 操作压强下水的沸点,亦即二次蒸汽的饱和温度,℃;— 操作压强下二次蒸汽的汽化热,kJ/kg. 杜林规则:某种溶液的沸点和相同压强下标准液体(一般为水)的沸点呈线性关系。
在以水的沸点为横坐标,该溶液的沸点为纵坐标并以溶液的组成为参数的直角坐标图上,可得一组直线,称为杜林直线。
利用杜林线图,可根据溶液的组成及世纪压强下水的沸点查出相同压强下溶液的沸点,从而得出 值。
根据杜林规则也可计算液体在各种压强下沸点的近似值。
此法的依据是:某液体在两种不同压强下两沸点之差与水同样压强下两沸点之差 ,其比值为一常数,即求得k 值,其他任一压强下的沸点就可由下式求得,即 (1-11)所以不用杜林线图也可计算出溶液的值。
(2)由于蒸发器中溶液静压强引起的温度差损失某些蒸汽器在操作室,器内溶液需维持一定的液位,因而蒸发器中溶液内部的压强大于液面的压强,致使溶液内部的沸点较液面处高,二者之差即为因溶液静压强引起的温度差损失 。
为简便起见,溶液内部的沸点可按液面和底层的平均压强来查取。
平均1p k p '∑∑∆-'-=∆)(1k T T t ∑∆t 1T k T '∑∆∑∑∑∑∆'''+∆''+∆'=∆∆'∆''∆'''∆'∆''∆'''∆'∆'0∆'=∆'f 0∆'f A t 21)273(0162.0r T f '+'=1T 'r '∆'21A A t t -21B B t t -k t t t t B B A A =--2121A t ')(11B B A A t t k t t '--='∆'∆''∆''压强近似按静力学方程估算:(1-12)式中— 蒸发器中液面和底部间的平均压强,Pa ;— 二次蒸汽的压强,即液面处的压强,Pa ;— 溶液的平均密度,kg/ m 3;— 液层高度,m ;— 重力加速度,m/ s 2。
(1-13)式中— 根据平局压强 求得水的沸点,℃;— 根据二次蒸汽压强 求得水的沸点,℃。
由于管道流动阻力产生的压强降所引起的温度差损失在多效蒸发中,末效以前各效的二次蒸汽流到次一效的加热室的过程中,由于管道阻力使其压强降低,蒸汽的饱和温度也相应降低,由此而引起的温度插损失即为 。
根据经验,取各效间因管道阻力引起的温度差损失为1℃.根据已估算的各效二次蒸汽压强 及温度差损失 ,即可由下式估算各效溶液的沸点t 。
(1-14) 3.加热蒸汽消耗量和各效蒸发水量的初步计算 第一效的焓衡算式为(1-15)由式(1-15)可求得第I 效的蒸发量。
若在焓衡算式中计入溶液的浓缩热及蒸发器的热损失,尚需考虑热利用系数。
一般溶液的蒸发,可取 为0.98-0.7 (式中 为溶液的组成变化,以质量分数表示)。
(1-16)式中 — 第i 效的加热蒸汽量,kg/h,当无额外蒸汽抽出时,;— 第i 效加热蒸汽的汽化热,kJ/kg ;— 第i 效二次蒸汽的汽化热,kJ/kg ; — 原料液的比热容,kJ/(kg ·℃); — 水的比热容,kJ/(kg ·℃);、 —第i 效及第(i -1)效溶液的沸点,℃;— 第i 效的热利用系数,量纲为一。
对于加热蒸汽(生蒸汽)的消耗量,可列出各效焓衡算式并与式(1-2)联解而求得。
4.蒸发器的传热面积和有效温度差在各效中的分配 任一效的传热速率方程为(1-17) 式中— 第i 效的传热速率,W ;— 第i 效的传热系数,W ; 2gL p p m ρ+'=m p p 'ρL g ppm t t -=∆''pm t p t m p p '∆'''∆'''p '∆∆''+∆'+'=T t i i i i PW i PW PW PO i i i r W t t c W c W c W Fc r D Q '+-----=--))((1121Λ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--'-----+'=r t t W W W F r r D W i i c i c c c i i i i i PW PW PW PO 1121)(Ληi W ηηx ∆i D i r i r 'PO c PW c i t 1-i t i η∆''+∆'+'=T t i i i t S K Q ∆=i i Q i K— 第i 效的传热面积,m 2;— 第i 效的传热温度差,℃。
有效温度分配的目的是为了求取蒸发的传热面积,现以三效为例,即(1-18)式中 (1-19)(1-20)在多效蒸发中,为了便于制造和安装,通常采用各效传热面积相等的蒸发器,即若由式(1-18)求得的传热面积不相等,应依据各效面积的原则重新分配各效的有效温度差。
方法如下:设以表示各效面相等时的有效温度差,则 , , (1-21) 与(1-18)式相比可得, , (1-22) 将式(1-22)中三式相加,得或 (1-23)式中 — 各效的有效温度差之和,称为有效总温度差,℃。
由式(1-23)求得传热面积S 后,即可由式(1-22)重新分配各效的有效温度差。
重复上述步骤,直至求得的各效传热面积相等,该面积即为所求。
i S i t ∆i S 111t K Q S i ∆=222t K Q S i ∆=333t K Q S i ∆=111r D Q =111r W Q '=211r W Q '=11t T t -=∆2122t T t T t -'=-=∆32333t T t T t -'=-=∆S S S S ===321t '∆S K Q t 111='∆S K Q t 222='∆S K Q t 333='∆111t S S t ∆='∆222t ∆='∆S S t 333t S S t ∆='∆332211321t t S S t S S t S S t t t ∆+∆+∆='∆+'∆+'∆=∆∑∑∆∆+∆+∆=t t S t S t S S 332211∑∆t。