自动驾驶汽车硬件系统概述
- 格式:pdf
- 大小:582.10 KB
- 文档页数:22
智能驾驶算力算法-概述说明以及解释1.引言1.1 概述智能驾驶技术的迅猛发展引起了广泛的关注和讨论。
随着各种传感器和计算设备的不断提升,汽车能够感知和理解周围环境,从而实现自主操作和决策,开启了人们对于汽车的全新想象。
智能驾驶技术的核心是算法和算力。
算法是指在智能驾驶系统中使用的一系列规则和程序,这些规则和程序可以让汽车在各种道路情况下做出正确的决策和操作。
算法的复杂性和准确性直接影响到智能驾驶系统的可靠性和安全性。
而算力则是指计算设备的性能和处理能力。
为了实现智能驾驶系统中复杂的算法运算和实时的决策,需要强大的计算能力来支持。
目前,随着计算设备的不断进化和优化,算力已经由传统的中央处理器(CPU)扩展到了图形处理器(GPU)、神经网络处理器(NPU)等协处理器,以满足智能驾驶系统对大规模数据处理和高计算效率的需求。
智能驾驶、算力和算法之间存在着密切的联系和相互影响。
智能驾驶的发展需要强大的算力支持,而算法的不断优化和创新则推动了智能驾驶的进一步发展。
只有在算力和算法的共同作用下,智能驾驶技术才能够实现更高的安全性、可靠性和智能化水平。
在本文中,我们将探讨智能驾驶、算力和算法的关系及其在智能驾驶技术中的应用。
首先,我们将简要介绍智能驾驶技术的发展背景和现状。
接着,我们将详细分析算力在智能驾驶系统中的重要性,并介绍不同类型的计算设备及其在算力方面的特点。
最后,我们将重点讨论智能驾驶系统中所使用的算法类型和优化方法,以及它们对于实现智能驾驶的关键作用。
通过本文的阅读,读者将能够全面了解智能驾驶、算力和算法的概念和关系,并深入了解它们在智能驾驶技术中的应用现状和未来发展方向。
希望本文能够为读者提供有益的信息和思考,促进智能驾驶技术的进一步发展和应用。
1.2 文章结构文章结构部分的内容可以包括以下内容:本文将围绕智能驾驶、算力和算法展开探讨。
在引言中,我们将概述本文的主题和目的,并简要介绍文章的结构。
正文部分将重点介绍智能驾驶、算力和算法三个方面的内容。
汽车行业智能驾驶与交通管理系统第一章智能驾驶技术概述 (2)1.1 智能驾驶的定义与发展 (2)1.1.1 智能驾驶的定义 (2)1.1.2 智能驾驶的发展 (3)1.2 智能驾驶的关键技术 (3)1.2.1 传感器技术 (3)1.2.2 控制技术 (3)1.2.3 人工智能算法 (3)1.2.4 网络通信技术 (3)1.2.5 安全技术 (3)第二章智能驾驶系统架构 (4)2.1 系统组成与功能 (4)2.1.1 感知模块 (4)2.1.2 决策模块 (4)2.1.3 执行模块 (4)2.1.4 通信模块 (4)2.2 系统集成与优化 (5)2.2.1 硬件集成 (5)2.2.2 软件集成 (5)2.2.3 系统优化 (5)第三章感知与决策技术 (5)3.1 感知技术概述 (5)3.2 决策算法与应用 (6)第四章车联网技术 (7)4.1 车联网的基本概念 (7)4.2 车联网技术在智能驾驶中的应用 (7)第五章智能交通管理系统概述 (8)5.1 智能交通管理系统的定义与作用 (8)5.2 智能交通管理系统的关键技术 (9)第六章交通信息采集与处理 (9)6.1 交通信息采集技术 (9)6.1.1 视觉采集技术 (9)6.1.2 雷达采集技术 (10)6.1.3 激光雷达采集技术 (10)6.1.4 卫星导航采集技术 (10)6.2 交通数据处理与分析 (10)6.2.1 交通数据预处理 (10)6.2.2 交通数据分析 (10)6.2.2.1 描述性分析 (10)6.2.2.2 关联性分析 (10)6.2.2.3 聚类分析 (10)6.2.2.4 预测分析 (11)6.2.2.5 优化分析 (11)第七章智能交通信号控制 (11)7.1 信号控制策略 (11)7.1.1 传统信号控制策略 (11)7.1.2 现代信号控制策略 (11)7.2 智能交通信号控制系统 (12)7.2.1 关键技术 (12)7.2.2 功能特点 (12)第八章车辆导航与路径规划 (12)8.1 车辆导航技术 (12)8.2 路径规划算法与应用 (13)第九章智能驾驶与交通管理系统的集成 (14)9.1 系统集成策略 (14)9.1.1 硬件集成 (14)9.1.2 软件集成 (14)9.1.3 系统集成流程 (14)9.2 系统功能评估与优化 (14)9.2.1 系统功能评估指标 (15)9.2.2 系统功能优化策略 (15)第十章智能驾驶与交通管理系统的未来发展趋势 (15)10.1 技术发展趋势 (15)10.1.1 感知与识别技术提升 (15)10.1.2 人工智能算法优化 (15)10.1.3 车联网技术普及 (16)10.1.4 自动驾驶系统安全性提升 (16)10.2 产业政策与市场前景 (16)10.2.1 产业政策支持 (16)10.2.2 市场前景广阔 (16)10.2.3 产业链整合与协同 (16)10.2.4 国际化发展 (16)第一章智能驾驶技术概述1.1 智能驾驶的定义与发展1.1.1 智能驾驶的定义智能驾驶是指在汽车行驶过程中,通过集成先进的传感器、控制器、执行器以及人工智能算法,实现对车辆的自主控制与辅助驾驶的技术。
无人驾驶技术实现的硬件与软件要素自动驾驶汽车一直是科技领域的热门话题,各大汽车厂商和科技公司正投入大量资源进行研发,以实现这一目标。
然而,要实现无人驾驶,需要结合硬件和软件的要素。
本文将讨论无人驾驶技术实现所需的硬件和软件要素,并探讨其影响和挑战。
一、硬件要素1. 传感器技术无人驾驶汽车通过传感器来获取周围环境的信息。
其中最为重要的是激光雷达和摄像头。
激光雷达利用激光束来测量周围物体的距离和形状,而摄像头则用于识别和跟踪道路标志、行人和其他车辆。
这些传感器的准确性和可靠性对于实现无人驾驶至关重要。
另外,惯性测量单元(IMU)也是不可或缺的一部分,用于检测车辆的加速度和角速度。
这些传感器可以提供关键的定位和导航信息,使无人驾驶车辆能够迅速作出准确的决策。
2. 处理器和存储设备为了处理大量的数据和算法,无人驾驶汽车需要强大的处理器和存储设备。
传感器采集到的数据需要通过算法进行处理和分析,从而使车辆能够做出正确的决策。
因此,高性能的处理器和存储设备是实现无人驾驶的关键要素之一。
同时,存储设备也起到了重要的作用,用于保存地图数据、传感器数据和车辆行为记录。
这些数据对于无人驾驶汽车的训练和改进至关重要。
3. 通信技术无人驾驶汽车需要与其他车辆、交通信号灯和云端服务器进行实时通信。
这就需要具备低延迟和高带宽的通信技术,以确保安全和高效的交通系统。
因此,5G通信技术的发展将为无人驾驶带来更多的机会和挑战。
二、软件要素1. 算法和人工智能无人驾驶汽车的核心是算法和人工智能技术。
车辆需要能够感知周围环境、理解道路交通规则并作出相应的决策。
这需要大量的机器学习和深度学习算法来训练车辆识别和预测能力。
此外,路径规划和控制算法也起到了至关重要的作用。
2. 操作系统和软件架构无人驾驶汽车需要一个稳定和安全的软件平台。
操作系统和软件架构必须能够可靠地控制硬件设备,处理传感器数据,并及时作出决策。
此外,软件还需要能够随着时间和环境的变化进行自我学习和优化。
自动驾驶汽车硬件系统概述自动驾驶汽车的硬件架构、传感器、线控等硬件系统如果说人工智能技术将是自动驾驶汽车的大脑,那么硬件系统就是它的神经与四肢。
从自动驾驶汽车周边环境信息的采集、传导、处理、反应再到各种复杂情景的解析,硬件系统的构造与升级对于自动驾驶汽车至关重要。
自动驾驶汽车硬件系统概述从五个方面为大家做自动驾驶汽车硬件系统概述的内容分享,希望大家可以通过我的分享,对硬件系统的基础有个全面的了解:一、自动驾驶系统的硬件架构二、自动驾驶的传感器三、自动驾驶传感器的产品定义四、自动驾驶的大脑五、自动驾驶汽车的线控系统自动驾驶事故分析根据美国国家运输安全委员会的调查报告,当时涉事Uber汽车——一辆沃尔沃SUV系统上的传感器在撞击发生6s前就检测到了受害者,而且在事故发生前1.3秒,原车自动驾驶系统确定有必要采取紧急刹车,此时车辆处于计算机控制下时,原车的紧急刹车功能无法启用。
于是刹车的责任由司机负责,但司机在事故发生前0.5s低头观看视频未能抬头看路。
从事故视频和后续调查报告可以看出,事故的主要原因是车辆不在环和司机不在环造成的。
Uber在改造原车加装自动驾驶系统时,将原车自带的AEB功能执行部分截断造成原车ADAS功能失效。
自动驾驶系统感知到受害者确定要执行应急制动时,并没有声音或图像警报,此时司机正低头看手机也没有及时接管刹车。
目前绝大多数自动驾驶研发车都是改装车辆,相关传感器加装到车顶,改变车辆的动力学模型;改装车辆的刹车和转向系统,也缺乏不同的工况和两冬一夏的测试。
图中Uber研发用车是SUV车型自身重心就较高,车顶加装的设备进一步造成重心上移,在避让转向的过程中转向过急过度,发生碰撞时都会比原车更容易侧翻。
自动驾驶研发仿真测试流程所以在自动驾驶中,安全是自动驾驶技术开发的第一天条。
为了降低和避免实际道路测试中的风险,在实际道路测试前要做好充分的仿真、台架、封闭场地的测试验证。
软件在环(Software in loop),通过软件仿真来构建自动驾驶所需的各类场景,复现真实世界道路交通环境,从而进行自动驾驶技术的开发测试工作。
特斯拉车辆硬件升级方案特斯拉汽车是一家以电动车为主打产品的公司,其创始人埃隆·马斯克在汽车行业掀起了一股电动车潮流。
其车辆采用的先进科技及软件系统备受业界关注。
在这些系统中,硬件升级是一个重要的方面。
本文将探讨特斯拉车辆硬件升级方案相关的内容。
车载计算机车载计算机在特斯拉汽车中扮演着重要角色。
它负责管理车辆的主要系统,例如车辆通讯、导航、娱乐和自动驾驶等。
为了给车辆增加更多的功能,特斯拉公司不断地升级其车载计算机。
当前,在特斯拉汽车中使用的主要车载计算机是EAP(Enhanced Autopilot)和FSD(Full Self-Driving)。
EAP电脑硬件EAP电脑硬件是特斯拉早期采用的自动驾驶控制计算机,主要应用于Autopilot系统中。
其处理器为Nvidia Tegra GPU,内存为4GB。
此版本的硬件不支持FSD系统升级。
FSD电脑硬件FSD电脑硬件是特斯拉最新的自动驾驶控制计算机,可额外提供更多的功能升级。
其处理器为Tesla自主研发的芯片,内存为32GB。
此版本的硬件可以支持FSD系统升级。
对于早期特斯拉汽车车主,如果想要享受后续的FSD功能升级,他们需要通过支付费用并进行硬件升级来获得新的FSD计算机。
传感器特斯拉汽车的自动驾驶功能需要依赖多种传感器来接收外部环境信息。
这些传感器主要包括:摄像头特斯拉汽车上的摄像头分为主相机和多个辅助相机。
通过分析不同位置的图像信息,系统可以判断车辆周围的情况,并做出适当的决策。
雷达雷达是特斯拉汽车上的距离传感器之一。
它可以向车辆周围发射射频信号,并通过对反射信号的接收来确定前方物体的位置和距离。
超声波传感器超声波传感器是特斯拉汽车上的另一种距离传感器,主要用于近距离障碍物检测。
这些传感器是特斯拉汽车自动驾驶系统的重要组成部分,通过传感器之间的信息交换,车辆的自动驾驶能力得以实现。
在特斯拉汽车中,传感器可以通过软件升级获得更加精确的功能。
《无人驾驶汽车概论》教案一、教学目标1. 让学生了解无人驾驶汽车的基本概念、发展历程和现状。
2. 让学生掌握无人驾驶汽车的技术原理及其主要组成部分。
3. 让学生了解无人驾驶汽车在各领域的应用及优缺点。
4. 培养学生的创新意识和关注未来科技发展的兴趣。
二、教学内容1. 无人驾驶汽车概述定义、分类和发展历程市场规模和政策环境2. 无人驾驶汽车技术原理感知环境:视觉、雷达、激光雷达等传感器决策与控制:路径规划、自动驾驶系统通信与协作:车联网、车与车、车与基础设施的通信3. 无人驾驶汽车主要组成部分硬件:车辆平台、传感器、执行器软件:操作系统、算法、应用程序4. 无人驾驶汽车应用领域乘用车、商用车、公共交通物流、农业、无人机配送5. 无人驾驶汽车优缺点分析优点:安全性、效率、便捷性缺点:技术复杂性、成本、法律法规限制三、教学方法1. 讲授法:讲解无人驾驶汽车的基本概念、技术原理和应用领域。
2. 案例分析法:分析具体无人驾驶汽车案例,让学生了解实际应用。
3. 小组讨论法:分组讨论无人驾驶汽车的优缺点,培养学生的批判性思维。
4. 项目实践法:引导学生参与无人驾驶汽车相关项目,提高学生的实际操作能力。
四、教学资源1. 教材:《无人驾驶汽车概论》2. 课件:PPT、图片、视频等3. 网络资源:相关新闻、论文、报告等4. 实物模型:无人驾驶汽车模型五、教学评价1. 课堂问答:检查学生对无人驾驶汽车基本概念的理解。
2. 小组讨论报告:评估学生在讨论中的表现及对无人驾驶汽车优缺点的分析能力。
3. 项目实践报告:评价学生在实践过程中的操作能力和解决问题的能力。
4. 期末考试:全面测试学生对无人驾驶汽车知识的掌握程度。
六、教学安排1. 课时:共计32课时,每课时45分钟。
2. 授课方式:理论课与实践课相结合,各占一半课时。
3. 课程进度安排:无人驾驶汽车概述(2课时)无人驾驶汽车技术原理(6课时)无人驾驶汽车主要组成部分(4课时)无人驾驶汽车应用领域(3课时)无人驾驶汽车优缺点分析(3课时)实践操作与项目展示(6课时)七、教学步骤1. 导入新课:通过相关新闻或视频,引出无人驾驶汽车的话题,激发学生兴趣。
车辆智能驾驶系统的设计与开发近年来,随着科技的快速发展,智能驾驶系统成为了汽车行业的热门话题。
随着人们对交通安全和行车便利性的需求日益增加,车辆智能驾驶系统的设计与开发也愈加重要。
一、车辆智能驾驶系统的概述车辆智能驾驶系统是一种基于先进科技和传感器控制技术的自动驾驶系统,它能够通过计算机自主地规划和执行车辆的行驶路径、控制车辆的行驶速度、识别路况和车辆周围环境,从而达到无人驾驶的效果。
目前,已有多家国内外汽车制造商投入大量资金和人力资源,进行车辆智能驾驶系统的研发和推广。
二、车辆智能驾驶系统的设计原理车辆智能驾驶系统的设计原理主要分为以下几个方面:1.立体感知系统车辆智能驾驶系统通过激光雷达、毫米波雷达和摄像头等传感器,实现车辆对周围环境的三维感知。
立体感知系统可以有效地识别车辆、行人、路标、交通信号灯和障碍物等,并对车辆的行驶路径进行规划和调整。
2.路径规划系统车辆智能驾驶系统通过高精度地图、车辆导航信息和车辆传感器等技术,实现路线规划和路径决策功能。
路径规划系统能够预测车辆的行驶路线、速度和转向等参数,并进行相应的控制和调整。
3.车辆控制系统车辆智能驾驶系统通过电动机、传动系统和刹车系统等技术,实现车辆的自动驾驶控制。
车辆控制系统能够识别车辆当前的行驶状态和路况,并自动进行巡航、转向和制动等控制操作。
三、车辆智能驾驶系统的开发流程车辆智能驾驶系统的开发流程通常包括以下几个阶段:1.系统分析阶段车辆智能驾驶系统的开发需要充分分析车辆的性能和行驶特点,明确智能驾驶系统的应用场景和技术需求,制定相应的技术方案和开发计划。
2.系统设计阶段车辆智能驾驶系统的设计需要充分考虑传感器、控制器和计算机等硬件设备的集成和协同工作,以及软件算法和数据接口的优化和完善。
3.系统开发阶段车辆智能驾驶系统的开发需要进行模型建立、算法实现和电路调试等工作,以完成系统的功能开发和性能优化。
4.系统测试阶段车辆智能驾驶系统的测试需要进行功能测试、性能测试和安全测试等多个方面,以确保系统的稳定性、可靠性和安全性。
无人驾驶汽车的决策与控制体系结构一、无人驾驶汽车的决策与控制体系结构概述无人驾驶汽车,也称为自动驾驶汽车或自驾车,是现代汽车技术发展的重要方向之一。
它通过集成先进的传感器、计算平台和算法,实现对车辆的完全控制,无需人类驾驶员的干预。
无人驾驶汽车的决策与控制系统是其核心组成部分,负责处理各种环境信息,做出驾驶决策,并控制车辆的行驶。
1.1 无人驾驶汽车的核心功能无人驾驶汽车的核心功能包括环境感知、决策规划、控制执行等。
环境感知是指车辆通过各种传感器收集周围环境的信息,包括道路、交通标志、其他车辆和行人等。
决策规划是根据感知到的信息,结合车辆的行驶目标,制定合适的行驶路线和策略。
控制执行则是将决策转化为具体的操作指令,控制车辆的加速、减速、转向等。
1.2 无人驾驶汽车的系统架构无人驾驶汽车的系统架构通常包括感知层、决策层和执行层。
感知层由多种传感器组成,如雷达、摄像头、激光雷达等,负责实时收集车辆周围的环境信息。
决策层是无人驾驶汽车的大脑,通常由高性能的计算平台和复杂的算法组成,负责处理感知层收集的信息,做出驾驶决策。
执行层则包括车辆的驱动系统和转向系统等,根据决策层的指令控制车辆的行驶。
二、无人驾驶汽车的决策与控制关键技术无人驾驶汽车的决策与控制系统涉及到多个关键技术,这些技术共同支撑着无人驾驶汽车的安全、高效和智能行驶。
2.1 环境感知技术环境感知技术是无人驾驶汽车的基础。
它利用各种传感器收集车辆周围的信息,包括但不限于:- 雷达(RADAR):通过发射和接收无线电波来检测物体的位置和速度。
- 摄像头:捕捉道路和交通标志的视觉信息。
- 激光雷达(LiDAR):使用激光测量周围物体的距离和形状。
- 超声波传感器:检测车辆周围的近距离障碍物。
2.2 决策规划技术决策规划技术是无人驾驶汽车的中枢神经。
它包括:- 路径规划:根据车辆的位置、目的地和周围环境,规划出一条最优行驶路径。
- 行为决策:根据交通规则和实时交通状况,决定车辆的行驶行为,如加速、减速、变道等。
自动驾驶汽车硬件系统概述自动驾驶汽车的硬件架构、传感器、线控等硬件系统如果说人工智能技术将是自动驾驶汽车的大脑,那么硬件系统就是它的神经与四肢。
从自动驾驶汽车周边环境信息的采集、传导、处理、反应再到各种复杂情景的解析,硬件系统的构造与升级对于自动驾驶汽车至关重要。
自动驾驶汽车硬件系统概述从五个方面为大家做自动驾驶汽车硬件系统概述的内容分享,希望大家可以通过我的分享,对硬件系统的基础有个全面的了解:一、自动驾驶系统的硬件架构二、自动驾驶的传感器三、自动驾驶传感器的产品定义四、自动驾驶的大脑五、自动驾驶汽车的线控系统自动驾驶事故分析根据美国国家运输安全委员会的调查报告,当时涉事Uber汽车——一辆沃尔沃SUV系统上的传感器在撞击发生6s前就检测到了受害者,而且在事故发生前1.3秒,原车自动驾驶系统确定有必要采取紧急刹车,此时车辆处于计算机控制下时,原车的紧急刹车功能无法启用。
于是刹车的责任由司机负责,但司机在事故发生前0.5s低头观看视频未能抬头看路。
从事故视频和后续调查报告可以看出,事故的主要原因是车辆不在环和司机不在环造成的。
Uber在改造原车加装自动驾驶系统时,将原车自带的AEB功能执行部分截断造成原车ADAS功能失效。
自动驾驶系统感知到受害者确定要执行应急制动时,并没有声音或图像警报,此时司机正低头看手机也没有及时接管刹车。
目前绝大多数自动驾驶研发车都是改装车辆,相关传感器加装到车顶,改变车辆的动力学模型;改装车辆的刹车和转向系统,也缺乏不同的工况和两冬一夏的测试。
图中Uber研发用车是SUV车型自身重心就较高,车顶加装的设备进一步造成重心上移,在避让转向的过程中转向过急过度,发生碰撞时都会比原车更容易侧翻。
自动驾驶研发仿真测试流程所以在自动驾驶中,安全是自动驾驶技术开发的第一天条。
为了降低和避免实际道路测试中的风险,在实际道路测试前要做好充分的仿真、台架、封闭场地的测试验证。
软件在环(Software in loop),通过软件仿真来构建自动驾驶所需的各类场景,复现真实世界道路交通环境,从而进行自动驾驶技术的开发测试工作。
软件在环效率取决于仿真软件可复现场景的程度。
对交通环境与场景的模拟,包括复杂交通场景、真实交通流、自然天气(雨、雪、雾、夜晚、灯光等)各种交通参与者(汽车、摩托车、自行车、行人等)。
采用软件对交通场景、道路、以及传感器模拟仿真可以给自动驾驶的环境感知提供丰富的输入可以对算法进行验证和测试。
硬件在环(Hard-ware in loop),各种传感器类似人的眼睛和耳朵,作为自动驾驶系统的感知部分,该部分的性能决定了自动驾驶车辆能否适应复杂多变的交通环境。
包括,摄像头、毫米波雷达、超声波雷达、激光雷达。
针对不同的传感器,硬件在环会根据不同的传感器和环境因素来部署。
车辆在环(Vehicle in loop),车辆执行系统向传动系统发出执行命令来控制车辆,在自动驾驶中取代了人类的手脚。
自动驾驶系统的执行控制优劣决定了车辆是否能够安全舒适的行驶。
车辆运行在空旷的场地上,自动驾驶系统感知系统模拟的虚拟场景,自动驾驶系统根据虚拟的场景发出控制指令,再通过传感器将车辆的真实轨迹反馈到虚拟环境中,实现真车与虚拟环境的融合,从而进行车辆操控的验证。
司机在环(Driver in loop),基于实时仿真技术开发,结合驾驶员的实际行为,可以实现对车辆和自动驾驶技术开发测试做出主观的评价。
司机在环,可以一方面获得司机的主观评价,另一方面可以验证人机共驾驶的功能。
一、自动驾驶系统的硬件架构就整体而言,汽车是个全社会化管理的产品,其固有的行业特点是相对保守的。
在人工智能的大潮下,面对造车新势力和消费者需求变化的冲击,传统汽车行业渐进式的创新方法已经面临巨大的挑战。
急需改变传统的架构和方法不断创新。
自动驾驶整体的硬件架构不光要考虑系统本身也要考虑人的因素。
自动驾驶的硬件架构自动驾驶系统主要包含三个部分:感知、决策、控制。
从整个硬件的架构上也要充分考虑系统感知、决策、控制的功能要求。
整体设计和生产上要符合相关车规级标准,如ISO26262、AECQ-100、TS16949等相关认证和标准。
目前L1、L2、ADAS系统的硬件架构体系和供应链相对完善符合车规级要求。
感知层:依赖大量传感器的数据,分为车辆运动、环境感知、驾驶员检测三大类。
车辆运动传感器:速度和角度传感器提供车辆线控系统的相关横行和纵向信息。
惯性导航+全球定位系统=组合导航,提供全姿态信息参数和高精度定位信息。
环境感知传感器:负责环境感知的传感器类似于人的视觉和听觉,如果没有环境感知传感器的支撑,将无法实现自动驾驶功能。
主要依靠激光雷达、摄像头、毫米波雷达的数据融合提供给计算单元进行算法处理。
V2X就是周围一切能与车辆发生关的事物进行通信,包括V2V 车辆通信技术、V2I与基础设施如红绿灯的通信技术、V2P车辆与行人的通信。
驾驶员监测传感器:基于摄像头的非接触式和基于生物电传感器的接触式。
通过方向盘和仪表台内集成的传感器,将驾驶员的面部细节以及心脏、脑电等部位的数据进行收集,再根据这些部位数据变化,判断驾驶员是否处于走神和疲劳驾驶状态。
计算单元部分:各类传感器采集的数据统一到计算单元处理,为了保证自动驾驶的实时性要求,软件响应最大延迟必须在可接受的范围内,这对计算的要求非常高。
目前主流的解决方案有基于GPU、FPGA、ASIC等。
车辆控制:自动驾驶需要用电信号控制车辆的转向、制动、油门系统,其中涉及到车辆地盘的线控改装,目前在具备自适应巡航、紧急制动、自动泊车功能的车上可以直接借用原车的系统,通过CAN总线控制而不需要过度改装。
警告系统:主要是通过声音、图像、振动提醒司机注意,通过HMI 的设计有效减少司机困倦、分心的行为。
二、自动驾驶的传感器自动驾驶的传感器摄像头:主要用于车道线、交通标示牌、红绿灯以及车辆、行人检测,有检测信息全面、价格便宜的特定,但会受到雨雪天气和光照的影响。
由镜头、镜头模组、滤光片、CMOS/CCD、ISP、数据传输部分组成。
光线经过光学镜头和滤光片后聚焦到传感器上,通过CMOS或CCD集成电路将光信号转换成电信号,再经过图像处理器(ISP)转换成标准的RAW,RGB或YUV等格式的数字图像信号,通过数据传输接口传到计算机端。
激光雷达:激光雷达使用的技术是飞行时间法(Time of Flight)根据光线遇到障碍的折返时间计算距离。
为了覆盖一定角度范围需要进行角度扫描,从而出现了各种扫描原理。
主要分为:同轴旋转、棱镜旋转、MEMS扫描、相位式、闪烁式。
激光雷达不光用于感知也应用于高精度地图的测绘和定位是公认L3级以上自动驾驶必不可少的传感器。
毫米波雷达:主要用于交通车辆的检测,检测速度快、准确,不易受到天气影响,对车道线交通标志等无法检测。
毫米波雷达由芯片、天线、算法共同组成,基本原理是发射一束电磁波,观察回波与入射波的差异来计算距离、速度等。
成像精度的衡量指标为距离探测精度、角分辨率、速度差分辨率。
毫米波频率越高,带宽越宽,成像约精细,主要分为77GHz和24GHz两种类型。
组合导航:GNSS板卡通过天线接收所有可见GPS卫星和RTK的信号后,进行解译和计算得到自身的空间位置。
当车辆通过遂道或行驶在高耸的楼群间的街道时,这种信号盲区由于信号受遮挡而不能实施导航的风险。
就需要融合INS的信息,INS具有全天候、完全自主、不受外界干扰、可以提供全导航参数(位置、速度、姿态)等优点,组合之后能达到比两个独立运行的最好性能还要好的定位测姿性能。
三、自动驾驶传感器的产品定义自动驾驶的传感器这张表总结了常见自动驾驶功能所使用的传感器,以及各个传感器的应用。
针对L1、L2的自动驾驶功能各国也纷纷出台了相关标准,加速了市场的发展和产品落地。
欧盟新车安全评鉴协会(E-NCAP)从 2013 年起便在评分规则中增加了ADAS内容,到 2017 年速度辅助系统(SAS)、自动紧急制动 (AEB)、车道偏离预警/车道偏离辅助(LDW/LKD)的加分要求为系统,装机量达到100%。
美国国家公路交通安全管理局(NHTSA)和高速公路安全保险协(IIHS)也提出2022年将自动紧急制动(AEB)等 ADAS 功能纳入技术标准。
自动驾驶传感器的产品定义自动驾驶要求局限于车辆的ODD(Operational Design Domain),即设计适用范围。
城市道路+城际高速是自动驾驶汽车普遍的适用范围。
我国城市封闭道路最高限速80公里/小时,高速公路限速120公里/小时。
干燥的柏油路面摩擦系数是0.6,根据刹车距离公式:S=V*V/2gμ去计算刹车距离得出第一行的表格,再结合自动驾驶系统反应时间和制动系统反应时间得出下表。
从两个表格可以看出,刹车距离与速度的平方成正比,与摩擦系数成反比。
当摩擦系数一定时,刹车距离取决于车速,如果车速增加1倍,刹车距离将增大至4倍。
摩擦系数μ主要与路面材质和天气相关。
自动驾驶传感器在中国最高限速120公里的情况下,探测距离达到150m就可以满足需求了,自动驾驶的技术开发者可以根据实际场景的速度来选择所需要的传感器,没有必要一味追求传感器的性能提高整体成本。
自动驾驶传感器的产品定义传感器的分辨率和物体探测的关系可以用atan反正切函数来计算,图中给出的公式多除以了个2,主要是为了保证在传感器探测时当最小角度是最小目标一半时,任意情况都能覆盖到某个像素保证分辨。
避免物体恰好不是在一个角度内而产生漏检。
理论上分辨率0.4度时100m外就可以探测到一辆车,而在0.1度分辨率下400m外就能探测到。
但检测只是识别到有个物体并不代表能识别,从自动驾驶的算法角度来讲,比如激光雷达物体识别需要4到5条线扫描上才能识别出物体的类别。
从这个角度看自动驾驶系统如果用0.4度分辨率的激光雷达在50m范围内才能真正识别出一辆车。
自动驾驶传感器的产品定义自动驾驶离不了多传感器融合,其中激光雷达和摄像头都是光学类的传感器,核心零部件和处理电路相似。
有望将两个传感器前端融合到一起,直接输出R、G、B、X、Y、Z颜色+点云融合信息。
在传感器内部实现数据融合可大幅度降低后端的计算处理量。
其中以AEye为代表,其iDAR智能感知系统能够瞬间将2D真实世界的色彩信息智能地叠加在3D数据上。
其动态扫描和发射图纹技术、通过控制每束激光脉冲的扫描,可查询每个点的三维坐标和像素。
四、自动驾驶的大脑自动驾驶的大脑IPC即工业个人计算机(Industrial Personal Computer─IPC)是一种加固的增强型个人计算机,它可以作为一个工业控制器在工业环境中可靠运行。
采用符合“EIA”标准的全钢化工业机箱,增强了抗电磁干扰能力,采用总线结构和模块化设计技术。