例谈数学解题中的构造法及其应用
- 格式:pdf
- 大小:133.18 KB
- 文档页数:2
例谈 构造法 在高中数学解题中的应用曾㊀智(光泽县第一中学ꎬ福建南平354100)摘㊀要:高中数学新课程提出ꎬ高中数学的教学重点之一就是空间形式与数量关系ꎬ这两点数学知识是探讨研究自然规律与社会规律的基础工具.构造法ꎬ一方面ꎬ它是高中数学学习的一种重要方法ꎬ能够有效帮助学生理解空间形式与数量关系ꎻ另一方面ꎬ它也是培养学生 构造思维 的重要基础ꎬ是高中数学教育的关键之一.本文在此背景下ꎬ总结了在高中数学解题中应用 构造法 的原则ꎬ又进一步分类总结了具体应用 构造法 的解题案例ꎬ以期为我国高中数学教师开展 构造法 教学提供参考.关键词:构造法ꎻ高中数学ꎻ应用中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2024)03-0060-03收稿日期:2023-10-25作者简介:曾智(1984.1-)ꎬ男ꎬ福建省光泽人ꎬ本科ꎬ中学一级教师ꎬ从事高中数学教学研究.㊀㊀高中数学知识相对于初中而言难度更高ꎬ高中生在学习中不免会面临许多难以解决的问题ꎬ尤其是高中生本身解题经验较少ꎬ解题时常常会出现无法找到题目提供的各项条件与问题间的联系的情况ꎬ进而使解题变得十分艰难[1].这种情况一方面会导致学生解题效率降低ꎬ数学考试成绩下降ꎬ另一方面也会使学生长期承受较大的学习压力ꎬ导致对数学学习的兴趣降低ꎬ甚至抵触数学学习[2].此时ꎬ若学生掌握了 构造法 ꎬ则能够以新的角度审视难题ꎬ通过分析问题条件构造与题目本不相关的知识或模型ꎬ间接地解决难题[3].在这一过程中ꎬ高中生的数学思维能力与逻辑推理能力也得到了提高.因此ꎬ对 构造法 在高中数学解题中的应用进行研究ꎬ是具有一定的理论与现实价值的.1在高中数学解题中应用 构造法 的原则在高中数学解题中应用 构造法 是具有一定的原则的ꎬ其具体内容包括:相似性原则㊀在实际应用 构造法 进行解题时ꎬ需要仔细分析题目中提供的条件或题目本身特征ꎬ展开具有相似性的联想ꎬ进而构造出合理的数学对象ꎬ最终通过该数学对象完成数学解题[4].直观性原则㊀高中生在以 构造法 解题时ꎬ应遵循直观性原则ꎬ通过构造某种辅助解题的数学形式ꎬ使得题目中的条件与结论间形成直观的联系ꎬ进而快速地完成解题.熟悉化原则㊀这一原则指的是高中生在解题时应仔细分析题目的结构特征ꎬ并将其与自身熟悉的某种数学式㊁形㊁方程等进行对比ꎬ进而构造出能够与题目相对应的数学形式ꎬ从而解决问题[5].2应用 构造法 进行高中数学解题的案例应用 构造法 进行高中数学解题的重点在于:(1)应用 构造法 的目的ꎬ即想要通过该方法得到的结论是什么ꎻ(2)构造哪种数学形式才能实现应用 构造法 的目的.只有有效实现上述两个重点ꎬ高中生才能够应用 构造法 解决问题[6].本文通过展示几类高中数学常见问题的 构造法 解法ꎬ展示 构造法 的具体应用方法ꎬ如下所示.2.1 函数构造法 解题案例在高中数学学习中ꎬ函数是重点学习的内容之一ꎬ而在实际题目中ꎬ包含函数的题目往往还会与方06程㊁数列㊁图形等其他数学知识结合ꎬ使高中生解题难度增大.在这一类问题中应用 构造法 能够有效降低解题难度ꎬ进而加快学生解题速度[7].具体案例如下.案例1㊀求函数f(x)=lnx-x+1x-1ꎬ讨论f(x)的单调性ꎬ并证明f(x)有且仅有两个零点.解㊀f(x)的定义域为(0ꎬ1)ɣ(1ꎬ+¥)ꎬ因为fᶄ(x)=1x+2(x-1)2>0ꎬ则f(x)在0ꎬ1()和(1ꎬ+ɕ)这两个区间上单调递增.通过分析题意发现该函数有两个零点ꎬ因为f(e)=1-e+1e-1<0ꎬf(e2)=2-e2+1e2-1=e2-3e2-1>0ꎬ则f(x)在(1ꎬ+¥)有唯一零点x1ꎬ即f(x1)=0.又因为0<1x1<1ꎬ则f(1x1)=-lnx1+x1+1x1-1=-f(x1)=0.故f(x)在0ꎬ1()有唯一零点1x1.综上所述ꎬf(x)有且仅有两个零点.2.2 方程构造法 解题案例在 构造法 中ꎬ方程是一种较为常见的数学形式. 方程构造法 是高中数学解题中的常用方法之一ꎬ尤其是在函数相关题目的解题中.这种方法主要是通过分析题目中的数量关系或特征结构ꎬ构造出一组等量的关系式ꎬ并通过解析关系式找到题目中几个未知量间的关系ꎬ进而得到方程中包含的等量关系[8].具体案例如下.案例2㊀若a1ꎬa2ꎬa3ꎬa4均为非零的实数ꎬ且(a21+a22)a24-2a2(a1+a3)a4+a22+a23=0ꎬ证明四个非零实数中a1ꎬa2ꎬa3能够形成一个等比数列ꎬ且该数列的公比为a4.证明㊀分析题目可推导得出ꎬ在四个非零实数中ꎬa4这一非零实数是一元二次方程(a21+a22)x2-2a2(a1+a3)x+(a22+a23)=0的实数根ꎬ则可以推出关系式:ә=4a22(a1+a3)2-4(a21+a22)(a22+a23)=4(2a1a22a3-a21a23-a42)=-4(a22-a1a3)2ȡ0ꎬ因此ꎬ只有当a22-a1a3=0时ꎬ关系式才能成立ꎬ则可推导出a22=a1a3ꎬ同时由于题中表明a1ꎬa2ꎬa3均为非零实数.则可得出a1ꎬa2ꎬa3能够形成等比数列.且通过构造的求根公式可知a4=2a2(a1+a3)2(a21+a22)=a2(a1+a3)a21+a1a3=a2a1ꎬ则a4为该等比数列的公比.综上所述可以证明a1ꎬa2ꎬa3能够形成一个等比数列ꎬ且该数列的公比为a4.2.3 向量构造法 解题案例在高中数学的所有知识点中ꎬ向量的相关知识是教学与学习的重难点之一.在高中数学考试中ꎬ与这一知识点相关的题目大多相对简单ꎬ以选择题或填空题为主ꎬ但当这一知识点出现在解答题中时ꎬ常常与立体几何相联系ꎬ解题难度增加许多ꎬ对学生的数学能力要求也相对较高[9].应用 向量构造法 进行解题ꎬ能够引导高中生将日常学习的向量知识点与三角函数㊁复数㊁函数等知识点联系起来ꎬ进而更加轻松地解决问题ꎬ案例如下.案例3㊀已知cosA+cosB+cosC=sinA+sinB+sinC=0ꎬ求sin2A+sin2B+sin2C的值.解㊀设P(cosAꎬsinA)ꎬQ(cosBꎬsinB)ꎬR(cosCꎬsinC)为单位圆上的三个点ꎬ则根据题意可以推导得出O是әPQR的外心.由此可以得到关系式:OPң=(cosAꎬsinA)ꎬOQң=(cosBꎬsinB)ꎬORң=(cosCꎬsinC).因为cosA+cosB+cosC=sinA+sinB+sinC=0ꎬ则OPң+OQң+ORң=(cosA+cosB+cosCꎬsinA+sinB+sinC)=0ꎬ可以推导得出O是әPQR重心ꎬ也是әPQR的外心ꎬ则әPQR为正三角形.由此可得出关系式B=A+2π3+2kπꎬC=A-2π3+2kπꎬ则sin2A+sin2B+sin2C=sin2A+sin2A+2π3æèçöø÷+sin2A-2π3æèçöø÷=sin2A+sinAcos2π3+cosAsin2π3æèçöø÷2+sinAcos2π3-cosAsin2π3æèçöø÷216=sin2A+12sin2A+32cos2A=32综上所述可得ꎬsin2A+sin2B+sin2C=32.2.4 复数构造法 解题案例复数构造法 的应用ꎬ简单来说可以主要分为两类ꎬ一类题目本身就是复数问题ꎬ通过应用复数本身的性质就可以完成解题ꎻ另一类则是非复数问题ꎬ需要间接构造复数形式来完成解题[10].案例如下.案例4㊀求函数f(x)=(x-5)2+16+(x-1)2+4的最小值.证明:构造复数z1=5-x+4iꎬz2=x-1+2iꎬ则f(x)=z1+z2ȡz1+z2=4+6i=213.当z1=kz2ꎬ即5-x+4i=k(x-1)+2i[]时取等号ꎬ解得x=73ꎬ即x=73时ꎬf(x)有最小值213.2.5 图形构造法 解题案例数形结合思维是高中数学思维培养中的关键ꎬ这一思维的形成与 图形构造法 的应用有着密不可分的关系.应用 图形构造法 进行解题的案例具体如下所示.案例5㊀证明正弦两角和公式sin(α+β)=sinαcosβ+cosαsinβ.证明:如图1所示ꎬ在线段CD上任取一点Aꎬ以A为圆心ꎬ1为半径做圆弧分别过C点和D点ꎬ且和CD垂直的直线相交于点B与点Eꎬ令øBAC=αꎬøEAD=βꎬ则øBAE=π-(α+β)ꎬBC=sinαꎬAC=cosαꎬDE=sinβꎬAD=cosβ.图1㊀案例5证明示意图梯形BCDE=әABC+әADE+әABEꎬ考虑面积相等可得:12(sinα+sinβ)(cosα+cosβ)=12sinαcosα+12sinβcosβ+12ˑ12ˑsin(π-α-β)即(sinα+sinβ)(cosα+cosβ)=sinαcosα+sinβcosβ+sin(α+β)ꎬ展开整理得sin(α+β)=sinαcosβ+cosαsinβ即可得证.3结束语«普通高中数学课程标准»中提出ꎬ数学核心素养包含具有数学基本特征的思维品格和关键能力ꎬ是数学知识㊁技能㊁思想㊁经验及情感㊁态度㊁价值观的综合体现. 构造法 作为高中最常使用的数学思想方法之一ꎬ能够有效培养高中生的创造思维与创新意识ꎬ综合提升其数学学科思维ꎬ但目前我国高中生对于 构造法 的了解大多有限.本文探讨了 构造法 在高中数学解题中的应用ꎬ为 构造法 在我国高中的推广应用贡献力量.㊀参考文献:[1]吴玉辉.构造法在高中数学圆锥曲线解题中的应用[J].华夏教师ꎬ2021(35):31-32.[2]顾建华.基于 构造法 的高中数学解题思路探索[J].科学咨询(教育科研)ꎬ2020(10):166.[3]吴建文.构造法在高中数学教学中的应用[J].华夏教师ꎬ2019(19):40.[4]袁胜蓝ꎬ袁野.高中数学数列通项公式的几种求法[J].六盘水师范学院学报ꎬ2019ꎬ31(03):117-120.[5]杨丽菲.高中数学解题中应用构造法的实践尝试[J].科学大众(科学教育)ꎬ2018(12):7.[6]何婷.构造函数求解高中数学问题[J].科学咨询(科技 管理)ꎬ2018(06):144.[7]李正臣.高中数学解题中应用构造法之实践[J].科学大众(科学教育)ꎬ2018(02):34.[8]罗杰.分析高中数学三角函数的解题技巧[J].中国高新区ꎬ2017(22):102.[9]洪云松.高中数学圆锥曲线解题中构造法的使用[J].农家参谋ꎬ2017(13):160.[10]刘米可.构造函数法在高中数学解题中的应用[J].经贸实践ꎬ2016(23):226.[责任编辑:李㊀璟]26。
高中数学例谈构造法在解题中的应用 学法指导郭春明构造法是指根据题设条件和结论的特征、性质,从新的角度、用新的观点分析、解释对象,抓住反映问题的条件与结论之间的内在联系,用已知数学关系为“支架”,构架出满足条件或数学对象,使原问题隐晦不清的关系或性质在新构造的数学对象中清楚地展现出来,从而借助该数学对象解决数学问题。
本文就一些常见问题,谈谈如何根据所给问题的数学形式,利用构造法解决。
一、构造数列证明不等式例1 证明003.0100000099999914131211109<⨯⨯⨯⨯ 。
分析:此式左端比较繁杂,不易直接解决。
但观察其形式可构造另一数列与分子分母相互抵消,然后根据不等式性质,证明原不等式成立。
证明(简写):令100000099999914131211109x ⨯⨯⨯⨯=,构造999999999998151413121110y ⨯⨯⨯⨯= ,可知0<x<y ,所以10000009y x x 2=⋅<,从而有x<0.003原不等式得证。
注意:在推导过程中注意构造形式及是否符合题意,如y 中因子个数比x 少一个,恰好符合题意。
二、构造函数证明不等式例2 求证:20062006200520052006200620052005e e e e e e e e ----++<--。
分析:上式中涉及无理数e 所以不便求值。
观察不等式知各式分子与分母均为正数,所以原不等式与下不等式等价: 20062006200620062005200620052005ee e e e e e e ----+-<+- 因此可根据该不等式形式构造函数,再根据其单调性来证明。
证明:构造函数)(R x ee e e )x (f x x xx ∈+-=-- 因为1e 21e e e e )x (f x 2x x x x +-=+-=--知f(x)在R 上单调递增 又2005<2006所以)2006(f )2005(f <即20062006200520052006200620052005e e e e e e e e ---++<-- 注意:分式中分子、分母若不均正,则需根据不等式性质在变形中适当改变不等式方向,从而构造符合题意的等价不等式。
构造法在中学数学中的运用引言:构造法是数学中一种常见的解题方法,它利用几何图形的相关性质,通过构造出新的图形或加上新的辅助线,从而达到解题的目的。
构造法在中学数学中具有广泛的应用,能够帮助学生更好地理解数学知识,培养学生的逻辑思维能力和创造性思维能力。
本文将从基本概念、构造方法和案例分析三个方面来探讨构造法在中学数学中的运用。
一、基本概念1. 构造法的定义构造法是数学解题的一种方法,它利用辅助线、辅助角等手段,通过构造新的图形或加入新的元素来解决问题。
构造法主要运用于几何、代数和三角等数学领域,能够帮助学生更深入地理解数学题目,提高解题效率。
构造法在中学数学中的应用具有以下优势:(1)几何直观性:构造图形能够直观地展示几何问题的性质和规律,让学生更容易理解和记忆。
(2)逻辑性强:构造法要求学生通过合理的线索和推理,找到解题的突破口,培养学生的逻辑思维能力。
(3)启发性强:构造法要求学生有创造性地处理数学问题,培养学生的创造性思维,使他们在数学学习中更具探索精神。
二、构造方法1. 构造辅助线构造辅助线是构造法的一种常见操作,它是通过在原有图形中加入一些辅助线,从而使问题得到更好地解决。
在求解三角形中某个角的大小时,可以通过构造高或中线等辅助线,从而将问题转化为更易解的几何问题。
在解决角相关性质问题时,构造辅助角也是一种常用的构造方法。
通过在角的某一边上构造出一个相等的角或互补的角等辅助角,能够为原问题提供更多的线索和信息,帮助学生更好地解决问题。
3. 构造新图形构造新图形是构造法的另一种重要方法,例如在解决圆的性质问题时,可以通过在给定圆上构造出一些特殊的线段,从而使问题得到更好地解决。
三、案例分析1. 例题一如图所示,AB为直径,C为圆上一点,CE⊥AB于E,连接DE交AC于F.如果⊙O经过D,使得EF ⊥AC于F'.(1)证明:D ,F',O三点共线;(2)若AB=2,AC=4,求|CE|.解:由于AD为直径,所以F为90度角,即∠DEF=90度。
“构造法”在数学解题中的应用构造法是数学中常用的基本方法,其本质特征是“构造”.所谓构造法就是综合运用各种知识和方法,根据对条件和结论的观察分析,将问题中条件和结论通过适当的逻辑组合而构造一种新的形式,这种新的形式恰好是熟悉的数学模型从而使解题思路清晰,问题得以解决的一种解题方法.构造性思维方式是数学中一种重要的创造性思维方式,应用构造法解题需要有敏锐的观察、丰富的联想、灵活的构造及创造思维能力.构造法的基本特征表现为描述的直观性和实现的具体性.它对于数学理论的创造、发展和数学问题的解决具有重要的意义,对学生创造性思维素质和能力的培养具有不可忽视的作用.构造法解题大致包括两个方面的内容.其一、辅助手段.通过构造适当的辅助量转换命题加以解决.其二、利用构造法证明某些存在性问题.本文拟举几方面的例子来说明.一、构造数学模型(或对应关系)沟通条件和结论的联系用构造法解题就是要建立对应关系“f”和“s”的映象“s ”.由此得到两条思路:一条是着重构造数学模型s ;另一条是着重建立对应关系f,下面先分别就这两条思路进行讨论.构造法所要构造的数学模型是指那些反映特定问题的数学对象及其关系结构的映象系统,是具体、直观、典型的模式,其中也包括各种数学对象,例如:几何图形、复数、函数、数列、方程等.1.构造几何图形图形在解题中的重要性是人所共知的,我们在解题时经常需要利用某种图形启发思维,这就要人为地使题设条件在构造的图形中完全实现,再利用图形的性质解题.数学的抽象性的一个重要表现是能把大量的实际问题提炼、抽象成数学模型.建立数学模型就是把所要研究的问题归结到某个已知数学模型或图形来求解.其例子、方法、形式很多,由于篇幅有限在这就不再多举例了.我们来看下面几个关于构造存在性实例或反例、特例的实例.二、构造存在反例或特例.综上所述,构造法是解题的一种重要方法,构造时需要机智和灵巧,但更重要的是需要大家反复尝试、探索.在解题中重视应用构造法有利于思维的创造性,可以促进解题能力的再提高.利用构造法解题的类型很多,其应用是广泛的,这里难以一一列举.本文也仅仅列举几个方面的例子来说明构造法在数学解题中的应用,从而加强学生创造能力的培养及对数学方法的重视.。
构造法在高中数学解题中的应用方法1. 了解构造法构造法是一种解题方法,其思路是通过构造一个满足给定条件的对象或模型来证明或求解问题。
构造法常用于数学和物理等领域的问题,其基本思路是通过构造一些特殊的结构和形式,来研究和解决问题。
2. 在代数题中的应用在代数题中,构造法通常用于求解方程、不等式等问题。
在求解一些不等式时,可以使用构造法来构造一个特定的函数形式,将原不等式转化为函数对应的关系。
通过对函数的性质进行分析,可以得到不等式的最优解。
在几何题中,构造法通常用于构造一些特殊的图形或研究图形的性质。
例如,在证明某个定理时,可以通过构造一些特定形状的图形,来展示定理的成立条件或性质。
在求解一些几何问题时,也可以通过构造特定的图形或模型,来研究并得出解题的结论。
在组合数学中,构造法通常用于确定一些特殊的组合形式,并研究它们的性质。
例如,在组合数学中,通常要求计算某个复杂的组合数量。
通过采用构造法,可以将复杂的组合问题转化为简单的计数问题,从而得出组合数量的解。
5. 注意事项在应用构造法解题时,需要注意以下几点:(1)适当灵活:构造法并不是针对每一个问题都适用的解题方法,需要根据具体的问题和情况来选择和应用。
(2)构造条件:构造时需要根据问题中给定的条件和要求,来确定构造的形式、对象和结构。
(3)证明正确性:构造完成后,仍需要进一步证明所构造的对象或结构是满足问题所要求的,并验证结果的正确性。
(4)反复思考:构造法是一种独特而灵活的解题方法,需要反复思考、细心推敲,才能得出理想的解题结果。
总之,构造法是一种实用性强、方法简单、思路清晰的解题方法。
在高中数学学习中,合理应用构造法不仅可以提高学生的数学思维和解题能力,还有助于培养学生的创新意识和发散思维。
例谈构造法在中学数学解题中的应用摘要:构造法是一种重要的数学解题方法,在解题中被广泛应用。
构造法是一种极其富有技巧性和创造性的解题方法,体现了数学中发现、类比、化归的思想,渗透着猜想、探索、特殊化等重要的数学方法。
运用构造法解数学题可从中激发学生的发散思维,使学生的思维和解题能力得到培养,对培养学生的多元化思维和创新精神大有裨益。
关键词:构造法构造数学解题“构造法”是指为解决某个数学问题时先构造一种数学形式(比如几何图形、代数式、方程等),寻求与问题的某种内在联系,使之简单明了,起到化简、转化和桥梁作用,从而找到解决问题的思路、方法。
此法重在“构造”、深刻分析、正确思维和丰富联想,它体现了数学中发现、类比、化归等思想,渗透着猜想、试验、探索、概括等重要方法,是一种富有创造性的解决问题的方法。
下面举一些应用构造法的例题,介绍其在数学解题中的巧妙应用。
一、构造方程方程,作为中学数学的重要内容之一,与数、式、函数等诸多知识密切相关。
根据问题条件中的数量关系和结构特征,构造出一个新的方程,然后依据方程的理论,往往能使问题在新的关系下得以转化而获解。
构造方程是初等代数的基本方法之一。
二、构造几何图形(体)如果问题条件中的数量关系有明显的或隐含的几何意义与背景,或能以某种方式与几何图形建立起联系,则可考虑通过构造几何图形将题设中的数量关系直接在图形中得以实现,然后,借助于图形的性质在所构造的图形中寻求问题的结论。
构造的图形,最好是简单而又熟悉其性质的,这些几何图形包括平面几何图形、立体几何图形及通过建立坐标系得到的解析几何图形。
三、构造函数所谓“构造函数”是指:由题设条件为对象,构想、组合出一种新的函数关系、方程、多项式等具体形式,使问题在新的观点下实现转化而获解。
构造函数证(解)问题是一种创造性思维过程,具有较大的灵活性和技巧性。
在运用过程中,应有目的、有意识地进行构造,始终“盯住”要证、要解的目标。
四、构造模型法数学和其它学科一样,要学以致用。
构造法在高中数学解题中的应用方法
构造法是一种常用的数学解题方法,特别适用于几何问题的解决。
下面我们将介绍在
高中数学解题中构造法的应用方法。
一、构造辅助线:
1. 构造线段、角的等分线:通过构造等分线可以将原先复杂的形状简化为几个简单
的相等的部分,便于解题。
2. 构造三角形的高线、中线、角平分线:通过利用三角形的性质,可以确定三角形
的一些特殊线段,从而解题。
3. 构造平行线、垂直线:通过构造平行线和垂直线,可以得到一些等角关系、相似
三角形等,从而解题。
二、构造形状:
1. 构造圆、三角形、四边形:通过构造几何形状,可以利用其性质来解题。
2. 构造相似形:通过构造相似形状,可以利用相似三角形等性质来解题。
三、构造特殊点:
1. 构造重心、垂心、外心、内心:通过构造特殊点,可以利用它们的性质来解题。
2. 构造交点、中点:通过构造交点和中点,可以得到一些等分线段、等角关系等,
从而解题。
四、构造长度关系:
1. 构造比例关系:通过构造长度的比例,可以利用这些比例关系来解题。
2. 构造勾股定理:通过构造特殊的长度关系,可以利用勾股定理来解题。
构造法是一种灵活但有效的解题方法,在高中数学解题中应用广泛。
通过构造辅助线、形状、特殊点和长度关系等,可以利用它们的性质来解决各种几何问题。
在解题过程中要
善于观察和发现,合理运用构造法,提高解题的效率和准确性。
构造法在高中数学解题中的应用方法构造法是一种解决问题的方法,它主要是通过构造出一些特殊的例子或模型,来推导出问题的一般结论。
在高中数学中,构造法通常运用于解决代数、几何、概率等方面的问题。
以下是构造法在高中数学解题中的应用方法。
1. 代数问题在解决代数问题时,构造法常常要求我们构造出一些具有特殊性质的数,或者通过构造公式来实现目标。
例如,在解决求根式值的问题时,我们可以通过构造一些恰当的分母,使问题化简为有理式,然后再运用有理化技巧解决问题。
同时,在解决分式、数列、函数等问题时,构造法也常常发挥重要的作用。
例如,在求分式的极限时,我们可以通过构造一些满足特定条件的分式数列来逼近极限值;在证明柯西-施瓦茨不等式时,我们可以通过构造分母为1的分式来使不等式满足等号条件。
2. 几何问题在解决几何问题时,构造法常常要求我们构造一些特殊的图形,通过特殊图形的性质来推导出结论。
例如,在证明三角形边长之和大于第三边时,我们可以通过构造一条垂足线来将三角形划分成两个直角三角形,然后再应用勾股定理证明结论。
同时,在解决圆的性质、向量运算、解析几何等问题时,构造法也常常发挥重要的作用。
例如,在求圆心角所对的弧长、向量的模长、直线的方程等问题时,我们可以通过构造特殊的图形和向量来化简问题。
3. 概率问题在解决概率问题时,构造法常常要求我们构造一些概率模型,通过模型的性质来推导出结论。
例如,在求事件总概率时,我们可以通过构造一个具有完备事件的概率空间,然后应用加法原理求出事件总概率。
而在解决独立、互斥事件发生概率的问题时,我们可以通过构造一个特殊的随机事件集合,然后应用乘法原理和加法原理来求解。
总之,在高中数学解题过程中,构造法是一个非常有用的工具。
通过构造出一些特殊的数、图形、概率模型等,我们可以将原问题化为易于解决的子问题,从而实现解题的目的。
因此,掌握构造法的应用技巧对于提高数学解题能力和水平,具有重要的意义。
构造法在中学数学中的运用1. 引言1.1 构造法的概念构造法是数学中一种重要的方法,它主要利用具体的图像或实例来解决问题。
通过构造法,我们可以通过建立几何图形、代数方程或概率模型等手段,来找到问题的解决方案或证明定理的方法。
构造法的核心思想是通过构建某种结构或模型,来揭示问题的本质或得到问题的答案。
在运用构造法时,我们需要具有一定的数学基础和逻辑思维能力,能够将抽象的概念具体化,通过各种图形、符号或模型来进行推理和证明。
构造法既可以用于解决几何问题,也可以用于证明数学定理,甚至可以在代数方程求解和概率统计中发挥作用。
通过构造法,我们可以更直观地理解和解决数学问题,提高数学思维和解题能力。
构造法的灵活性和实用性使其在数学教学中具有重要意义。
教师可以通过引导学生运用构造法来解决问题,培养学生的逻辑思维能力和创造力。
构造法在某些复杂的问题上可能存在局限性,需要结合其他数学方法进行分析和求解。
构造法是数学中一种重要的思维工具,对学生和教师都具有积极的意义。
1.2 构造法的重要性构造法是一种数学问题解决方法,其重要性不容忽视。
构造法在数学教学中能够培养学生的逻辑思维能力和创造力。
通过学习构造法,学生可以培养问题解决的能力,锻炼他们的思维方式。
构造法在解决实际问题中能够提供一种直观的解决思路。
许多数学问题或者实际生活中的问题可以通过构造法找到解决方法,这种方法更符合直觉,让人易于理解。
构造法在证明数学定理的过程中也有重要作用。
通过构造法,可以更清晰地展示问题的解决过程,从而使得数学定理的证明更加严谨和易懂。
构造法对于数学教学和解决数学及实际问题具有重要意义,不容忽视。
2. 正文2.1 构造法在解决几何问题中的运用构造法在解决几何问题中的运用是数学中一个重要且常用的方法。
它通过几何图形的方式来解决问题,通常通过画图、构造辅助线等方式来找到问题的解决方法。
构造法在几何问题中的运用可以帮助学生更直观地理解问题,并且提高他们的解题能力。
构造法在高中数学解题中的应用方法构造法在高中数学解题中的应用方法构造法是一种数学解题方法,通过构造出符合题目要求的具体例子或特殊性质,来证明或推导出一般性的结论。
它在高中数学解题中有着广泛的应用,特别是在几何问题和代数问题中常用。
在几何问题中,构造法常常被用来构造符合题目要求的图形。
在证明两条垂直平分线相交于一个点时,可以通过构造两条垂直平分线的交点,来证明这个结论。
在证明三角形的性质时,也可以通过构造特殊的角度或边长来推导出一般性的结论。
在代数问题中,构造法常常被用来构造出满足特定条件的方程或函数。
在证明关于二次方程的性质时,可以通过构造一个满足特定条件的二次方程,来推导出一般性的结论。
在求解方程组或不等式时,构造法也常常被用来构造出满足条件的解集。
构造法的应用方法可以总结为以下几个步骤:1. 分析题目要求,确定需要构造的对象或性质。
需要构造一个特定的图形、一个满足特定条件的方程等等。
2. 根据题目条件和要求,确定构造的具体步骤和方法。
确定构造一个特定角度的方法是通过画一条与其他角度相等的角,或者确定构造一个方程的方法是通过设立一个满足特定条件的系数等等。
3. 进行实际的构造过程。
根据确定的方法,进行具体的构造过程,得到符合题目要求的对象或性质。
4. 利用构造出的对象或性质,进行证明或推导过程。
如果是证明问题,可以利用构造出的对象或性质来构造出一般性的结论,或者进行逆向推理。
如果是求解问题,可以利用构造出的对象或性质来得到解集的一般性特点。
构造法在高中数学中的应用举例:1. 证明点到直线的距离公式。
通过构造垂直于直线的垂线,并计算垂线的长度,来推导出点到直线的距离公式。
2. 求解二元一次方程组。
通过构造一个方程组,其中一个方程的两个系数相等,来得到相应的解集。
3. 证明勾股定理。
通过构造一个直角三角形,其中两条直角边的长度符合特定关系,来证明勾股定理的一般性。
4. 求解不等式。
通过构造一个满足特定条件的变量取值范围,来确定不等式的解集。
构造法在初中数学解题中的应用所谓构造法就是根据题设条件或结论所具有的特征和性质,构造满足条件或结论的数学对象,并借助该对象来解决数学问题的思想方法。
构造法是一种富有创造性的数学思想方法。
运用构造法解决问题,关键在于构造什么和怎么构造。
充分地挖掘题设与结论的内在联系,把问题与某个熟知的概念、公式、定理、图形联系起来,进行构造,往往能促使问题转化,使问题中原来蕴涵不清的关系和性质清晰地展现出来,从而恰当地构造数学模型,进而谋求解决题目的途径。
下面介绍几种数学中的构造法:一、构造方程构造方程是初中数学的基本方法之一。
在解题过程中要善于观察、善于发现、认真分析,根据问题的结构特征、及其问题中的数量关系,挖掘潜在已知和未知之间的因素,从而构造出方程,使问题解答巧妙、简洁、合理。
1、某些题目根据条件、仔细观察其特点,构造一个"一元一次方程" 求解,从而获得问题解决。
例1:如果关于x的方程ax+b=2(2x+7)+1有无数多个解,那么a、b的值分别是多少?解:原方程整理得(a-4)x=15-b∵此方程有无数多解,∴a-4=0且15-b=0分别解得a=4,b=152、有些问题,直接求解比较困难,但如果根据问题的特征,通过转化,构造"一元二次方程",再用根与系数的关系求解,使问题得到解决。
此方法简明、功能独特,应用比较广泛,特别在数学竞赛中的应用。
3、有时可根据题目的条件和结论的特征,构造出方程组,从而可找到解题途径。
例3:已知3,5,2x,3y的平均数是4。
20,18,5x,-6y的平均数是1。
求的值。
分析:这道题考查了平均数概念,根据题目的特征构造二元一次方程组,从而解出x、y的值,再求出的值。
二、构造几何图形1、对于条件和结论之间联系较隐蔽问题,要善于发掘题设条件中的几何意义,可以通过构造适当的图形把其两者联系起来,从而构造出几何图形,把代数问题转化为几何问题来解决.增强问题的直观性,使问题的解答事半功倍。
构造法在高中数学解题中的应用方法
构造法是一种常用的解题方法,特别适用于高中数学解题。
它通过巧妙地构造某种条件来解决问题,促使问题更加清晰明了,简化复杂的计算和推理过程,提高问题的解决效率。
构造法有以下几种常见的应用方法:
1.构造等式法:通过构造等式或方程来解决问题。
在解决一次方程问题时,可以通过构造等式建立各个未知数之间的关系,从而求得解。
在解决多项式问题时,可以通过构造等式来简化计算过程,找到问题的解。
2.构造图形法:通过构造几何图形来解决问题。
在解决几何问题时,可以通过构造一些辅助线、平行线、垂直线等来简化问题,将复杂的几何问题转化为简单的几何问题。
在解决三角函数问题时,可以通过构造三角形来简化计算,找出问题的解。
5.构造推理法:通过构造推理过程来解决问题。
在解决证明问题时,可以通过构造合适的逻辑推理和论证过程来推导出结论,从而解决问题。
在解决数学推理问题时,可以通过构造直接证明、间接证明等来推导出结论。
通过构造法,在解决高中数学问题时可以提高问题解决的效率,加深对数学知识的理解和掌握。
通过构造过程,可以培养学生的思维能力、观察力和创造力,提高学生的解决问题的能力和创新意识。
构造法是一种非常有用的解题方法,在高中数学学习中应予以充分应用。
构造法在高中数学解题中的应用方法
构造法是一种在数学解题中常用的方法,它通过构造特定的数、图形或形式来解决问题。
构造法在高中数学中的应用十分广泛,不仅能够帮助学生理解问题,还能够培养学生
的逻辑思维和创造力。
一、构造法在代数问题中的应用
1. 构造特殊的数:通过构造特殊的数来解决问题,如通过构造一个满足条件的整数、有理数或无理数等。
在解方程问题中,可以通过构造特殊的数来找到解的规律或确定解的
范围。
2. 构造函数式:通过构造合适的函数式来解决问题。
在函数的极值问题中,可以通
过构造一个函数式来描述问题,并通过分析函数式的性质来确定极值点。
3. 构造方程组:通过构造一组方程来解决问题。
在线性方程组的解题中,可以通过
构造一组满足条件的方程来确定未知数的值。
三、构造法在概率与统计问题中的应用
1. 构造样本空间:通过构造合适的样本空间来解决概率问题。
在求解随机事件的概
率问题中,可以通过构造一个恰当的样本空间来确定事件发生的可能性。
2. 构造频数表或频率分布图:通过构造频数表或频率分布图来解决统计问题。
在统
计一组数据的分布特征时,可以通过构造一个频数表或频率分布图来描述数据的分布情
况。
3. 构造统计模型:通过构造合适的统计模型来解决概率与统计问题。
在求解样本均值、方差等问题时,可以通过构造一个适当的统计模型来计算所需的统计量。
浅谈构造法在解题中的应用内容摘要数学思想方法在中学数学教学中有着十分关键的地位,在高中数学教学中,构造思想方法是一种极具创造性的数学思想方法,它充分渗透在其他的数学思想方法之中。
利用构造法解题可以更直观,更简单的解决比较复杂的数学问题。
鉴于此,本文的重点主要体现在构造法在解题中的应用上。
具体来说,本文将重点阐述以下几个问题:构造法的理论简介及应用:如构造函数、构造向量、构造数列、构造方程、构造几何模型、构造递推关系式、构造等价命题等。
【关键词】数学解题构造法数学问题Construction method in solving problemsAbstractMathematical way of thinking in mathematics teaching in secondary schools has a very key position.mathematics teaching in high school,structure of thinking is a highly creative mathematical thinking.It fully permeate into other mathematical way of thinking.Solving Problems by construction can be more intuitive and easier to solve complicated mathematical problems.In view of this,This article focuses mainly in the construction method in solving problems.Specifically,this article focuses on the following issues:the definition of construction method,In Algebra:Construction expression and formula, structural equation, structural relationship, constructors, construction proposition, construction sequence, structural model, structural vector, etc.【Key words】Mathematical problem solving Construction method Math problems目录一、引言 (2)二、构造法的理论简介 (2)(一)构造法 (2)(二)构造法的历史过程 (3)(三)构造法的特征 (3)三、构造法在解题中的应用 (4)(一)构造函数 (4)(二)构造向量 (5)(三)构造数列 (5)(四)构造方程 (6)(五)构造几何模型 (7)(六)构造递推关系式 (8)(七)构造等价命题 (8)四、结束语 (9)参考文献: (9)致谢: (9)浅谈构造法在解题中的应用学生姓名:指导老师:一、引言数学思想方法是解数学题的灵魂,构造法作为一种传统的数学思想方法,在数学产生时就存在。
谈核心素养下构造法在初中数学解题中的应用策略摘要:《初中数学新课程标准》提出:“为了适应时代发展对人才培养的需要,数学课程要特别注重发展学生的应用意识和创新意识。
” 构造性思想方法作为一种极富创造性的数学思想方法,对于培养学生的数学能力和数学素质有很大的作用,本文结合数学实际,通过一些实例阐述"构造法"在数学教学中的应用。
关键词:构造法:概念;应用构造性思想方法含义很广,通常认为,根据待解问题的特殊性,设计并构造一个新的关系系统,即构造一个新的数学模式(比较熟悉并易于研究和解决的模式),通过对这个数学模式的研究实现原问题的解决。
构造性思想方法具有很大的灵活性,根据待解问题的特征,既可以构造方程、恒等式、不等式、函数等,利用“数”的模式解决有关数或形的问题;也可以通过构造图形、图象等,利用“形”的模式解决有关数或形的问题。
构造性思想方法在初中数学的解题中还是比较常见的,下面,我根据构造性思想方法经常应用的几种形式并结合自己的教学实践,用具体的例子谈谈这一思想方法在初中数学解题中的应用。
一、构造方程方程是中学数学中解决问题的一个重要工具,很多问题若用一般的方法去解决比较繁琐困难,但如果通过构造方程来解决,往往能够化繁为简,化难为易。
在构造方程的解题过程中要善于观察、善于发现、认真分析,根据问题的结构特征、及其问题中的数量关系,挖掘潜在已知和未知之间的因素,从而构造出方程,使问题解答巧妙、简洁、合理。
例1、如图,△ABC中,AB=AC,BC=BD,AD=DE=EB,求∠A的度数。
分析:由题中的已知发现角与角之间要么相等,要么有倍分的关系,因此可设出其中一个角为x,把其他角都表示出来,再找出等量关系,构造一元一次方程来解决。
解:设∠ABD为x,因为DE=EB,则∠EDB=∠ABD=x,∠AED=∠EDB+∠ABD=2x,因为AD=DE,所以∠A=∠AED=2x,∠BDC=∠A+∠ABD=3x,因为BC=BD,所以∠BDC=∠C=3x,因为AB=AC,所以∠ABC=∠C=3x,根据∠A+∠ABC+∠C=180°得8x=180°,所以∠A=2x=45°。
构造法在数学解题中的应用
随着新型数学教学对学生能力和思维开拓的新要求,构造法作为一种独特的数学解决问题的方法,得到了广泛的应用。
通过学生自身创造性的构思,从实际问题中寻找出解决方法的技巧,将巧妙的思维技巧应用在数学解题中,从而提升学生的解题能力。
构造法的核心思想是,结合实际材料,从而构造出相应的解决方案的过程。
无论是数学问题,还是其它类型的问题,学生都可以从它们中构造出一个有效的解决方案。
它教会学生思想的灵活性,激发学生创新思维,促进理解和解决问题的能力。
作为一种先进的教学方法,构造法引入了新的解决问题的方法。
它可以培养学生思维能力和综合素质,培养学生未知领域探索的能力。
通过解决问题,学生需要分析认识问题,并从中找出解决问题的途径。
学生需要学会积极思考,从实际材料和经验中总结出具有普遍性的规律,这有助于他们更好地理解数学概念,在解决实际问题时,可以灵活运用。
此外,构造法也是一种解决数学问题的有效方法。
在解题过程中,学生需要从数学中获取有关的知识,并将其应用到实际问题中。
例如,在解决几何图形问题时,可以通过图形中可以找到的条件,找到几何描述的方法,从而解决问题。
同样,在解决抽象数学问题时,也可以通过对数学定理的利用,将数学定理运用到实际问题中,解决问题。
总之,构造法在数学解题中具有重要的作用。
它不仅可以提高学生独立思考和综合素质,还可以提升学生解题能力,从而避免学生受
到学习困难的影响。
此外,构造法也可以深化学生对数学概念的理解,促进学生对数学问题的独创性解决。
因此,构造法在数学解题中的应用有着重要意义,应受到认真重视。
构造法在高中数学解题中的运用分析摘要:构造法是指在数学解题过程中,按照题目已经给出的条件,通过一定的构造方法得出题目的结论的数学模式。
在高中数学教学中应用构造法进行数学例题的讲解,能够为学生提供快速解题的方法。
利用逆向思维的构造法解决高中数学中的难题,能够充分的提高学生的解题速度和正确率。
本文主要从利用构造法解题的三种途径入手,通过分析例题的解题步骤,讲解具体构造法在其中发挥的重要作用。
关键词:构造法;高中;数学;解题高中数学这门学科要求学生必须能够形成自己的数理思维能力。
为了适应高中数学题目的复杂性和抽象性,教师应当在解题教学中合理引入构造法。
在遇到比较复杂难解的数学试题时,高中生可以利用题目已知的条件,由结论逆推出未知的部分条件,解决题目条件不足的问题,这种逆向推导思维就是构造法。
高中解题过程利用构造法有多种形式,可以构造方程、函数、数列等等形式来解决疑难复杂的数学问题。
利用构造法解题能够简化学生的解题过程,提高高中的解题效率和正确率。
一、利用构造法构造方程解题对于一些比较复杂的高中数学问题的解题过程,常用的构造法解题形式就是构造方程法,通过分析题目中已知的变量条件,构建出一元二次或者二元二次方程,通过方程的跟与题干中系数之间的关系来解决数学题目。
高中数学老师需要重点对构造方程法向学生进行讲解,包括构造方程法使用时的注意事项,题干中出现什么条件时可以使用构造方程法?如何根据题干中出现的部分已知条件构造方程等等,通过合适的例题进行构造方程法使用全过程的演示,保证整个解题的步骤,保证每一个学生都能听懂,并学会熟练的使用构造方程法解决数学难题。
同时,高中数学老师也可以引导学生自行在题目中已有的条件上,选择合适的等量方程,简化数学题目,将已知条件和结论更直观的联系起来,进而快速而正确的解决遇到的数学难题。
例题1:已知x、y分别为实数,且满足如下关系式,(x-1)3+2022(x-1)=-1同时满足(y-1)3+2022(y-1)=1,要求求出x+y=?首先分析这道题目,大部分高中生看到题目的第一部反映就是先求出x的值,然后再求出y的值,最后两者想加,得出题目中要求的答案。