初一正负数的知识点的总结
- 格式:docx
- 大小:21.26 KB
- 文档页数:9
初一上册数学正数和复数知识点总结
初一上册数学正数和复数知识点总结
1、正数:像小学学过的大于0的数叫做正数。
2、负数:在正数前面加上负号“-”的数叫做负数。
3、正数负数的判断方法:
⑴具体的数:看是否有负号“-”,如果有“-”就是负数,否则是正数。
⑵含字母的数:如-a要看a本身的符号,如a是负的,则-a是正数,如a是正的则-a是负数,如a是0则-a是0。
4、0的`含义:①0表示起点。
②0表示没有。
③0表示一种温度。
④0表示编号的位数。
⑤0表示精确度。
⑥0表示正负数的分界。
⑦0表示海拔平均高度。
5、具有相反意义的量;
6、正负数的作用:在同一问题中,用正负数表示的量具有相反的意义。
正负数的复习要点正负数是数学中的重要概念,掌握正负数的基本性质和运算规则对于解决各类数学问题都具有重要意义。
本文将回顾正负数的复习要点,帮助读者巩固相关知识。
1. 正负数的概念在数轴上,我们可以将数轴原点划分为两个部分,左侧为负数,右侧为正数。
正数用“+”表示,负数用“-”表示。
数轴上的每一个点都与一个实数一一对应。
2. 正负数的大小比较对于同一数轴上的两个数,如果一个数的绝对值大于另一个数的绝对值,那么它的值就更大;如果绝对值相等,正数大于负数。
3. 正负数的加减法正负数的加法遵循“同号相加,异号相减”的原则。
即同号数相加时,将它们的绝对值相加,符号保持不变;异号数相加时,将它们的绝对值相减,结果的符号取绝对值大的数的符号。
4. 正负数的乘除法正负数的乘除法同样遵循“同号得正,异号得负”的规则。
即同号数相乘或相除时,结果为正数;异号数相乘或相除时,结果为负数。
5. 正负数的乘方运算对于正数的乘方,按照平方、立方等规律进行运算即可。
对于负数的乘方,规则如下:- 负数的奇次幂仍然为负数。
例如,(-2)^3 = -8。
- 负数的偶次幂为正数。
例如,(-2)^4 = 16。
6. 正负数运算的性质正负数运算具有以下性质:- 加法结合律:(a + b) + c = a + (b + c)。
- 加法交换律:a + b = b + a。
- 乘法结合律:(a * b) * c = a * (b * c)。
- 乘法交换律:a * b = b * a。
- 分配律:a * (b + c) = a * b + a * c。
7. 正负数在实际问题中的应用正负数在实际生活和工作中有广泛应用,例如:- 温度计中的正负数表示温度的高低。
- 银行账户中的存款和支出可以用正负数来表示。
- 坐标系中的正负数表示物体的位置和方向。
总结:通过复习正负数的概念、大小比较、加减乘除法、乘方运算以及运算的性质,我们可以更好地理解和应用正负数。
正负数复习重要知识点正负数是数学中的基本概念之一,具有重要的应用价值。
它们在数轴上有明确的位置,同时也具备相互运算的特性。
本文将重点回顾正负数的基础知识,并探讨其在实际生活和数学问题中的应用。
一、正负数的定义与表示方法正数是指大于零的数,用"+"表示;负数是指小于零的数,用"-"表示。
而0既不是正数也不是负数,它是数轴上的中点。
在数轴上表示正负数时,通常使用一个水平的直线来表示,其左侧为负数部分,右侧为正数部分。
数轴上的每一个点都表示一个数值,正数位于右侧,负数位于左侧。
二、正负数的加减法运算正负数的加法运算遵循“异号相消、同号相加”的原则。
即两个数的符号相同则相加,结果保留原符号;符号不同则相减,结果取绝对值较大的数的符号。
例如,(-5) + (-3) = -8,(-5) + 3 = -2,5 + (-3) = 2。
正负数的减法运算可以转化为加法运算。
例如,5 - (-3) = 5 + 3 = 8。
三、正负数的乘除法运算正负数的乘法运算遵循“同号得正、异号得负”的原则。
即两个数的符号相同则结果为正,符号不同则结果为负。
例如,(-5) × (-3) = 15,(-5) × 3 = -15,5 × (-3) = -15。
正负数的除法运算可以转化为乘法运算。
例如,(-15) ÷ (-3) = 5,(-15) ÷ 3 = -5,15 ÷ (-3) = -5。
四、正负数在实际生活中的应用1. 温度计:温度的正负号表示冷热程度,负数表示低温,正数表示高温。
2. 高低海拔:正数表示高海拔,负数表示低海拔。
3. 账户余额:正数表示存款,负数表示欠款。
4. 科学计数法:正数表示大数,负数表示小数。
五、正负数在数学问题中的应用1. 数轴上点的坐标:数轴上的正负数表示点的位置,可以用来解决线性方程和不等式问题。
2. 债务计算:借贷问题中,正数表示负债,负数表示资产。
七年级上册数学要点
1. 正负数:正数是大于0的数,负数是小于0的数。
0既不是正数也不是负数。
2. 有理数:有理数是可以表示为两个整数之比的数,包括整数和分数。
整数包括正整数、0和负整数,分数包括正分数和负分数。
3. 数轴:数轴是一条直线,可以用来表示所有的有理数。
数轴上的每一个点都对应一个有理数,反之亦然。
数轴上的点有原点(表示0的点)、正方向和单位长度。
在数轴上,右边的数总比左边的数大。
4. 相反数和绝对值:只有符号不同的两个数互为相反数。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
5. 倒数:乘积为1的两个数互为倒数。
0没有倒数。
6. 直线、射线和线段:直线可以向两侧无限延伸,没有端点。
射线有一个端点,可以向一侧无限延伸。
线段有两个端点,长度有限。
7. 角:角是由有公共端点的两条射线组成的图形。
这个公共端点是角的顶点,两条射线是角的两边。
角的度、分、秒是60进制的,即1度等于60分,1分等于60秒。
一、有理数1. 正负数:大于 0 的数叫正数,小于 0 的数叫负数。
0 既不是正数也不是负数。
2. 有理数的分类:按定义分:有理数包括整数(正整数、0、负整数)和分数(正分数、负分数)。
按性质分:有理数包括正有理数(正整数、正分数)、0、负有理数(负整数、负分数)。
3. 数轴:规定了原点、正方向和单位长度的直线叫做数轴。
4. 相反数:只有符号不同的两个数叫做互为相反数。
0 的相反数是 0。
5. 绝对值:数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值。
正数的绝对值是它本身;负数的绝对值是它的相反数;0 的绝对值是 0。
6. 有理数的大小比较:正数大于 0,0 大于负数,正数大于负数。
两个负数,绝对值大的反而小。
二、整式的加减1. 单项式:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。
单项式中的数字因数叫做单项式的系数,单项式中所有字母的指数和叫做单项式的次数。
2. 多项式:几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
3. 整式:单项式和多项式统称为整式。
4. 同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
5. 合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
6. 去括号法则:括号前是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变。
括号前是“”,把括号和它前面的“”去掉后,原括号里各项的符号都要改变。
三、一元一次方程1. 方程:含有未知数的等式叫做方程。
2. 一元一次方程:只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。
3. 方程的解:使方程左右两边相等的未知数的值叫做方程的解。
4. 解方程:求方程的解的过程叫做解方程。
数学正负数复习要点概述一、正负数的定义和表示正数是指大于零的数,用"+"表示;负数是指小于零的数,用"-"表示。
在数轴上,正数位于原点的右侧,负数位于原点的左侧。
二、正负数的加减法1. 相同符号的数相加:将它们的绝对值相加,并保持符号不变。
例如:(+5) + (+3) = +8;(-4) + (-2) = -62. 不同符号的数相加:先计算绝对值差,结果的符号由绝对值较大的数的符号决定。
例如:(+3) + (-5) = -2;(-8) + (+2) = -63. 正数和负数相减:转化为加法问题,加上被减数的相反数即可。
例如:(+7) - (-4) = (+7) + (+4) = +11;(-5) - (+3) = (-5) + (-3) = -8三、正负数的乘法1. 同号相乘:两个数的符号相同,乘积为正数。
例如:(+6) * (+2) = +12;(-3) * (-4) = +122. 异号相乘:两个数的符号不同,乘积为负数。
例如:(+5) * (-2) = -10;(-8) * (+3) = -24四、正负数的除法1. 正数除以正数或负数除以负数,结果为正数。
例如:(+12) / (+4) = (+3);(-18) / (-3) = (+6)2. 正数除以负数或负数除以正数,结果为负数。
例如:(+15) / (-3) = (-5);(-20) / (+5) = (-4)五、正负数的大小比较1. 两个正数比较大小:绝对值大的数大。
例如:|+8| > |+3|2. 两个负数比较大小:绝对值小的数大。
例如:|-6| > |-9|3. 正数和负数比较大小:正数大于负数。
例如:|+5| > |-4|六、正负数在实际生活中的运用1. 温度计:正数表示高温,负数表示低温。
2. 银行存款:正数表示存款,负数表示取款或透支。
3. 海拔高度:正数表示海拔高度,负数表示海拔低度。
初一上册数学知识点归纳整理第一章有理数(一)正负数1.正数:大于0的数。
2.负数:小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数1.有理数:由整数和分数组成的数。
包括:正整数、0、负整数,正分数、负分数。
可以写成两个整之比的形式。
(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。
如:π)2.整数:正整数、0、负整数,统称整数。
3.分数:正分数、负分数。
(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。
(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。
)2.数轴的三要素:原点、正方向、单位长度。
3.相反数:只有符号不同的两个数叫做互为相反数。
0的相反数还是0。
4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
(四)有理数的加减法1.先定符号,再算绝对值。
2.加法运算法那么:同号相加,到一样符号,并把绝对值相加。
异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
一个数同0相加减,仍得这个数。
3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。
4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
5.a-b=a+(-b)减去一个数,等于加这个数的相反数。
(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
2.乘积是1的两个数互为倒数。
3.乘法交换律:ab=ba4.乘法结合律:(ab)c=a(bc)5.乘法分配律:a(b+c)=ab+ac(六)有理数除法1.先将除法化成乘法,然后定符号,最后求结果。
2.除以一个不等于0的数,等于乘这个数的倒数。
七年级下册数学正负数的知识点在七年级下学期的数学中,学习正数和负数是必不可少的一部分。
了解正数和负数的概念,理解它们之间的关系和运算规则,是掌握多项代数和几何概念的前置知识。
本文将为你介绍七年级下学期中的数学正负数知识点。
一、正数和负数正数是指大于零的数字,例如1、2、3等。
负数是指小于零的数字,例如-1、-2、-3等。
需要注意的是,0既不是正数,也不是负数。
二、数轴数轴是正负数的表示方式之一,它是一条直线,用来表示数字随着正负方向的变化。
数轴的左边为负数,右边为正数,0位于中央。
图示:三、相反数相反数是指绝对值相等但符号相反的数字,例如1和-1、3和-3等。
可以用数轴来表示相反数。
不同的相反数在数轴上总是相对称的。
图示:四、加法和减法在数轴上,正数表示向右移动,负数表示向左移动。
而两个相反数相加总是等于0,例如1+(-1)=0,3+(-3)=0。
要计算两个数的和,需要把它们在数轴上相应方向上的距离相加。
使用数轴可以更容易地理解正负数的加法和减法。
图示:五、乘法正数和正数相乘的结果是正数,而正数和负数、负数和负数相乘的结果是负数,如(+3)x(+5)=+15、(+3)x(-5) = -15、(-3)x(-5) =+15。
这个规则可以用来计算正负数的乘法。
六、除法在正负数的除法中,如果除数和被除数符号一致,结果为正数;如果符号不一致,结果为负数。
例如(-10) ÷ (+2) = (-5)、(+10) ÷ (-2) = (-5)。
在除法中,需要注意避免被0除的情况,会出现无穷数或未定义。
七、应用正负数的知识在很多场合都有应用。
例如,气温的正负数表示,水位上升和下降的高度等。
总结正负数是数学中不可忽视的基础概念,在数的运算、方程、不等式等问题中都会用到。
通过本文的介绍,相信你已经掌握正负数的基本知识及其应用。
2024年初一上学期数学知识点总结归纳(一)正负数1. 正数:表示大于零的数值。
2. 负数:表示小于零的数值。
3. 零:既非正数也非负数。
4. 正数大于零,负数小于零,且正数的值大于负数的值。
(二)有理数1. 有理数:由整数或分数构成的数,包括正整数、零、负整数、正分数和负分数。
它们可以表示为两个整数的比例形式。
2. 整数:正整数、零和负整数的统称。
3. 分数:正分数和负分数的统称。
(三)数轴1. 数轴:一种用直线上的点来表示数的工具,该直线称为数轴。
其特征包括原点、正方向和单位长度。
2. 原点:数轴上表示零的点。
3. 相反数:数值相同但符号相反的两个数,零的相反数仍为零。
4. 绝对值:正数的绝对值等于其本身,负数的绝对值等于其相反数,零的绝对值为零。
两个负数比较时,绝对值较大的数反而较小。
(四)有理数的加减法1. 确定符号,然后计算绝对值。
2. 加法规则:同号数相加,取相同的符号并相加绝对值;异号数相加,取绝对值较大数的符号,用较大绝对值减去较小绝对值;互为相反数相加得零;任何数与零相加仍为该数。
3. 加法交换律:加数的位置改变,和保持不变。
4. 加法结合律:三个数相加,先加前两个或先加后两个,和保持不变。
5. 减法规则:减去一个数等于加上该数的相反数。
(五)有理数乘法1. 符号规则:同号得正,异号得负,绝对值相乘。
2. 任何数与零相乘得零,乘积为1的两个数互为倒数。
3. 乘法交换律:乘数位置交换,乘积不变。
4. 乘法结合律:三个数相乘,先乘前两个或先乘后两个,乘积不变。
5. 乘法分配律:一个数与另外两个数的和相乘,等于分别相乘后求和。
(六)有理数除法1. 除法转换为乘法,然后确定符号,最后计算结果。
2. 除以非零数等于乘以该数的倒数。
3. 两数相除,同号得正,异号得负,绝对值相除,且零除以任何非零数得零。
(七)乘方1. 乘方表示相同因数的n次乘积,记作an。
乘方的结果称为幂,原数称为底数,指数n表示乘方次数。
初一数学正数和负数知识点
初一数学正数和负数
知识点一:正数和负数的概念
•正数:大于0的数,例如1、2、3等。
•负数:小于0的数,例如-1、-2、-3等。
知识点二:正数和负数的表示方式
1.正数直接写出,例如1、2、3等。
2.负数在前面加上负号“-”,例如-1、-2、-3等。
知识点三:正数和负数的比较
•正数比较:数值大的正数大,数值小的正数小。
•负数比较:数值大的负数小,数值小的负数大。
•正数和负数比较:正数大于任何一个负数。
知识点四:正数和负数的运算
•正数与正数相加、相减,结果仍为正数。
•负数与负数相加、相减,结果仍为负数。
•正数与负数相加、相减,结果的符号由数值大的数决定。
知识点五:正数和负数在数轴上的表示
•正数在数轴上向右表示。
•负数在数轴上向左表示。
•数轴上的0既不是正数也不是负数。
知识点六:正数和负数的绝对值
•正数的绝对值等于自身,例如|5|=5。
•负数的绝对值等于去掉负号,例如|-5|=5。
结语:
正数和负数是数学中重要的概念,我们需要了解他们的定义、表示方式、比较和运算规则以及在数轴上的表示。
同时,也需要注意正数和负数的绝对值的概念和计算方法。
通过对正数和负数的学习,我们可以更好地理解数学中的各种概念和运算。
七年级正负数有理数知识点在基础数学中,正数与负数是不可或缺的概念。
在七年级数学中,学生开始了解正数、负数以及有理数的概念。
这篇文章将会探讨一些关于正负数有理数的知识点,包括它们的定义、四则运算、绝对值及应用等内容。
一、正负数的定义正数是指大于零的数,符号一般用“+”表示。
例如:1、2、3、4等都是正数。
负数是指小于零的数,符号一般用“-”表示。
例如:-1、-2、-3、-4等都是负数。
有理数是指可以用两个整数的比来表示的数,包括正整数、负整数和分数。
例如:1/2、-3、0、7/5等都是有理数。
二、四则运算1.加法:对于正数加正数、负数加负数,则相加的结果仍为正数或负数,符号取绝对值的和。
如:3 + 2 = 5-3 + (-2) = -52.减法:减去一个数相当于加上它的相反数,如:3 - 2 = 1-3 - (-2) = -13.乘法:如果符号相同,那么它们的积为正数;如果符号不同,那么它们的积为负数,如:3 × 2 = 6-3 × (-2) = 64.除法:同样也需要注意符号的正负,如果被除数和除数符号相同,则结果为正数;如果符号不同,则结果为负数,如:6 ÷ 2 = 3-6 ÷ (-2) = 3三、绝对值绝对值是指一个数到数轴上的距离,不考虑它的正负,在数学中通常用符号“|x|”表示。
如:|5| = 5|-5| = 5在计算中,绝对值可以用来求最大值、最小值等。
例如:|-4| > |-7|,因为-4的绝对值比-7的绝对值大。
四、应用正负数有理数在实际应用中,常常用来表示欠款、温度、高度、海拔等概念,如下例子所示:1.小明欠妈妈10元,小红也欠妈妈10元,那么两人欠妈妈的总共是多少元?答案是:-20元(小明和小红的欠款属于负数,所以答案为负数)2.今天中午的气温是20℃,晚上降温10℃,那么晚上的气温是多少?答案是:10℃(因为减去一个负数相当于加上这个数的绝对值)总之,正数、负数以及有理数是非常重要的概念,在学习数学的同时也能够应用到日常生活中。
七年级正数负数知识点正数和负数是数学中最基本的概念之一,是我们在生活中经常会碰到的数。
在七年级的数学中,学习正数负数的知识点是非常重要的,因此,本文将会就该知识点进行详细的介绍和讲解。
一、正数和负数的概念正数是指大于零的数,例如 1、2、3、4……,用“+”号表示;而负数则是小于零的数,例如-1、-2、-3、-4……,用“-”号表示。
正数和负数是以零为分界点的数轴两侧的数,并且它们可以相加、相减、相乘以及相除。
二、正数和负数的加法正数和正数相加,结果仍然是正数;负数和负数相加,结果仍然是负数;而正数和负数相加,则需要根据两个数的绝对值来判断结果的正负性。
如果两个数的绝对值相等则结果为零,如果两个数的绝对值不相等,则结果的正负性由绝对值大的数所带的符号决定。
例如,3 + 5 = 8;-3 + (-5) = -8;3 + (-5) = -2。
三、正数和负数的减法正数和负数的减法可以转化为加法。
对于两个数 a 和 b,a - b 可以转化为 a + (-b)。
因此,正数和正数、负数和负数相减,结果仍然是正数或负数;而正数和负数相减,结果的正负性由两个数的绝对值大小以及绝对值大的数的符号决定。
例如,5 - 3 = 2;-3 - (-5) = 2;-3 - 5 = -8。
四、正数和负数的乘法正数和正数相乘,结果仍然是正数;负数和负数相乘,结果也是正数。
而正数和负数相乘,则结果为负数。
例如,3 × 4 = 12;-3 × (-4) = 12;-3 × 4 = -12。
五、正数和负数的除法两个负数相除,结果仍然是正数;两个正数相除,结果仍然是正数。
而正数除以负数,结果为负数;负数除以正数,结果也为负数。
例如,12 ÷ 3 = 4;-12 ÷ (-3) = 4;-12 ÷ 3 = -4。
六、正数和负数的性质正数和负数的性质有很多,其中最重要的性质是它们可以彼此抵消。
数的正负数及其运算方法总结数的正负数是数学中的基础概念之一,对于数学的学习和运用具有重要意义。
本文将对数的正负数及其运算方法进行总结,帮助读者更好地理解和应用这一概念。
一、正负数的定义1. 正数:指大于零的数,用正号( + )表示,如1、2、3等都是正数。
2. 负数:指小于零的数,用负号( - )表示,如-1、-2、-3等都是负数。
3. 零:既不是正数也不是负数,用0表示。
二、正负数的表示方法正数、负数和零的表示方法如下:1. 正数:直接写出数字,如1、2、3等。
2. 负数:在数字前面加上负号(-),如-1、-2、-3等。
3. 零:用数字0表示。
三、正负数的运算方法1. 正数与正数的运算:两个正数相加仍为正数,如2 + 3 = 5。
2. 负数与负数的运算:两个负数相加仍为负数,如(-2) + (-3) = -5。
3. 正数与负数的运算:正数与负数相加时,先忽略符号,然后取绝对值较大的数的符号,如2 + (-3) = -1。
4. 正数与零的运算:正数与零相加仍为正数,如2 + 0 = 2。
5. 负数与零的运算:负数与零相加仍为负数,如(-2) + 0 = -2。
6. 正数与正数的比较:绝对值较大的数大于绝对值较小的数,如3 > 2。
7. 负数与负数的比较:绝对值较大的负数小于绝对值较小的负数,如(-3) < (-2)。
8. 正数与负数的比较:正数大于负数,如3 > (-2)。
9. 零与任何数的比较:零与任何正数或负数的比较结果均为相等,如0 = 0,0 = (-1)。
四、正负数的应用正负数在生活和实际问题中有广泛的应用,例如:1. 温度计中的正负数:正数表示高温,负数表示低温。
2. 银行账户中的正负数:正数表示存款,负数表示欠款。
3. 方向和位移中的正负数:正数表示向右或向上,负数表示向左或向下。
4. 收入和支出中的正负数:正数表示收入,负数表示支出。
五、总结正负数是数学中的基本概念,通过正负数的运算方法,我们可以对数的加减运算进行灵活应用。
七年级正数和负数的知识点正数和负数是我们生活中常见的概念,也是数学中非常重要的基础知识。
在七年级数学中,学生需要掌握正数和负数的概念、正负数的加减法、绝对值等知识点。
接下来,我们来详细了解一下这些知识点。
一、正数和负数的概念正数是大于零的数,用“+”表示;负数是小于零的数,用“-”表示。
我们通常用数轴来表示正数和负数。
在数轴上,从原点向右的为正数,向左的为负数。
例如,3表示在数轴上距离原点3个单位,而-3即表示在数轴上距离原点3个单位的相反方向上。
二、正负数的加减法1.同号数的加减法两个同号数相加或相减,先忽略符号,然后按照加减法的规则计算,最后加上符号即可。
例如,5+3=8,-5-3=- 8。
2.异号数的加减法两个异号数相加,先忽略符号,将绝对值较大的数减去绝对值较小的数,最后加上绝对值较大的数的符号即可;两个异号数相减,先转化为加法,将减数的相反数与被减数相加,再加上被减数的符号即可。
例如,-5+3=- 2,5-3=2。
三、绝对值绝对值是一个数距离零点的距离,通常用“|x|”表示。
绝对值是一定大于等于零的。
例如,|5|=5,|-5|=5。
四、应用正数和负数的加减法在生活中经常用到。
例如,目前温度为10℃,明天会降到-3℃,我们需要计算温度降低了多少度。
此时,我们需要用到负数,表示温度的下降。
计算过程为:10-(-3)=13,即温度下降了13℃。
此外,正数和负数在数列中也有应用,例如,在从左到右的数列中,-3, -2, 1, 5, 8,-3为最小值,8为最大值。
我们还可以通过正数和负数来表示收入和支出,存款和贷款等。
综上所述,掌握正数和负数的概念和加减法,以及绝对值的应用是非常重要的。
只有掌握了这些基础知识,才能更好地理解其他数学知识,提高数学水平。
初一数学上册知识点总结初一数学上册知识点总结总结就是把一个时段的学习、工作或其完成情况进行一次全面系统的总结,他能够提升我们的书面表达能力,我想我们需要写一份总结了吧。
我们该怎么写总结呢?下面是小编整理的初一数学上册知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。
一.正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数:比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。
3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
二.有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8也是偶数,-1,-3,-5也是奇数。
2.(1)凡能写成q(p,q为整数且p0)形式的.数,都是有理数.正整数、0、负整数统称整数;正分数、负p分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;提分数学正整数正有理数正分数(2)有理数的分类:①按正、负分类:有理数零负整数负有理数负分数正整数整数零②按有理数的意义来分:有理数负整数正分数分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数0和正整数;a>0a是正数;a<0a是负数;a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.三.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
初一正负数的知识点归纳总结正数和负数是数学中的基本概念,初一阶段学习正负数是为了更好地理解数轴、计算和解决实际问题。
本文将对初一正负数的知识点进行归纳总结,帮助学生理解和巩固这一重要概念。
一、正数和负数的定义与表示方法正数是大于零的数,用"+"表示;负数是小于零的数,用"-"表示。
在数轴上,正数位于原点右侧,负数位于原点左侧。
二、正数和负数的比较正数和负数的比较可以根据它们的绝对值大小来进行。
对比如下:1. 正数之间比较大小:绝对值越大,数值越大。
2. 负数之间比较大小:绝对值越小,数值越大。
3. 正数和负数比较:负数数值一定比正数小。
三、正数和负数的运算1. 加法和减法:- 正数与正数相加,直接将数值相加,符号保持为正。
- 正数与负数相加,将数值相减,符号取数值绝对值较大的数的符号。
- 负数与负数相加,将数值相加,符号保持为负。
- 正数与正数相减,将数值相减,符号取数值绝对值较大的数的符号。
- 正数与负数相减,将数值相加,符号保持为正。
- 负数与负数相减,将数值相减,符号取数值绝对值较大的数的符号。
2. 乘法和除法:- 两个正数相乘或相除,结果为正数。
- 两个负数相乘或相除,结果为正数。
- 正数与负数相乘或相除,结果为负数。
四、正数和负数的应用1. 温度计表示温度:- 正数表示高温,数值越大代表温度越高。
- 负数表示低温,数值越小代表温度越低。
2. 海拔高度表示地势:- 正数表示高山,数值越大代表海拔越高。
- 负数表示洼地或海面下,数值越小代表地势越低。
3. 银行账户表示存取款:- 正数表示存款,数值为存款金额。
- 负数表示取款,数值为取款金额。
五、注意事项与解决问题的方法1. 符号优先原则:乘除法优先于加减法。
2. 两个正数相除,结果可能为正数、负数或零。
3. 零是非负数,既不是正数也不是负数。
4. 解决问题时,要注意符号和数值的对应关系,理解问题背后的实际意义和逻辑关系。
七年级正负数运算知识点在初中数学中,正数和负数的概念是必须学会的,而且正负数的加减乘除也是必备的技能。
下面将为大家详细介绍七年级正负数运算知识点。
一、正数和负数的概念及表示方法正数是指数值大于零的数,用“+”表示;负数是指数值小于零的数,用“-”表示。
例如,3是一个正数,表示为“+3”;-5是一个负数,表示为“-5”。
二、正数和负数的加法1. 正数加正数:正数加正数,结果为正数。
例如,5+3=8。
2. 负数加负数:负数加负数,结果也为负数。
例如,-4+ (-3)=-7。
3. 正数加负数:正数加负数,结果可能为正数、负数或零。
- 如果正数的绝对值大于负数的绝对值,结果为正数。
例如,4+(-2)=2。
- 如果正数的绝对值等于负数的绝对值,结果为零。
例如,3+(-3)=0。
- 如果正数的绝对值小于负数的绝对值,结果为负数。
例如,2+(-5)=-3。
三、正数和负数的减法减法可以转化为加法,所以正数和负数的减法可以看成是正数加负数或负数加正数。
1. 正数减正数:正数减正数,结果可能为正数、负数或零。
- 如果被减数大于减数,结果为正数。
例如,5-2=3。
- 如果被减数等于减数,结果为零。
例如,3-3=0。
- 如果被减数小于减数,结果为负数。
例如,2-5=-3。
2. 负数减负数:负数减负数,结果可能为正数、负数或零。
- 如果被减数的绝对值大于减数的绝对值且两数异号,结果为正数。
例如,-2-(-4)=2。
- 如果被减数的绝对值等于减数的绝对值,结果为零。
例如,-3-(-3)=0。
- 如果被减数的绝对值小于减数的绝对值且两数异号,结果为负数。
例如,-2-(-5)=3。
3. 正数减负数:正数减负数,结果为正数。
例如,8-(-2)=10。
四、正数和负数的乘法1. 正数乘正数:正数乘正数,结果为正数。
例如,3×4=12。
2. 负数乘负数:负数乘负数,结果为正数。
例如,-3×(-4)=12。
3. 正数乘负数:正数乘负数,结果为负数。
正数负数知识点总结正数负数知识点总结一、正数与负数的概念及表示方法1. 正数:表示具有正向数值的数,例如1、2、3等。
正数用“+”号表示。
2. 负数:表示具有负向数值的数,例如-1、-2、-3等。
负数用“-”号表示。
3. 数轴:用于表示正数和负数的图形工具,将数轴分为正半轴和负半轴,以0为中心,正数向右延伸,负数向左延伸。
二、正数与负数的比较与大小关系1. 绝对值:正数的绝对值等于其本身,负数的绝对值等于去掉负号的数值,例如|-5|=5。
2. 比较大小:正数与正数之间,绝对值越大,数值越大;负数与负数之间,绝对值越大,数值越小;正数和负数之间,绝对值越大,负数越小。
3. 相反数:两个数的和为0的两个数,互为相反数。
例如3和-3就是一对相反数,它们的和为0。
三、正数与负数的运算1. 加法:同号相加,不改变符号,异号相加,取绝对值较大的数的符号。
2. 减法:减去一个负数,等于相加这个负数的相反数,减去一个正数,等于加上这个正数的相反数。
3. 乘法:同号相乘,结果为正,异号相乘,结果为负。
4. 除法:正数除以正数,结果为正,负数除以正数或正数除以负数,结果为负,负数除以负数,结果为正。
四、正数与负数的应用领域1. 数学运算:在数学中,正数与负数的运算是基础,涉及到加减乘除等多种运算方法。
2. 温度计量:温度的正数表示高温,负数表示低温,例如摄氏度中0度以下表示零下的温度,0度以上表示零上的温度。
3. 股市涨跌:股票价格的上涨用正数表示,下跌用负数表示。
通过正数和负数的变化,可以分析出股票的涨跌趋势。
五、正数与负数的重要性及思考正数与负数在我们的生活和学习中起着重要的作用,它们不仅仅是数学中的概念,更是我们日常生活中必不可少的工具。
掌握正数和负数的知识,可以帮助我们进行数学运算、理解温度计量、分析股市涨跌等多方面的应用。
同时,正数和负数的概念也教会了我们在生活中面对困难与挫折时保持积极乐观的态度。
正数给我们带来希望和光明,而负数则是一种挑战,提醒着我们要以积极的心态去应对困难,相信事情会好起来。
正负数知识点整理一、正负数的定义。
1. 正数。
- 正数是大于0的数。
例如:1、2、3、1.5、(1)/(2)等都是正数。
在数学中,正数前面的“+”号可以省略不写,所以1和 +1表示的意义相同。
2. 负数。
- 负数是小于0的数。
例如: - 1、 - 2、 - 3、 - 1.5、-(1)/(2)等都是负数。
负数前面必须有“ - ”号,不能省略。
3. 0的特殊性。
- 0既不是正数也不是负数,它是正数和负数的分界点。
二、正负数的表示方法。
1. 在数轴上表示。
- 数轴是规定了原点、正方向和单位长度的直线。
- 原点表示0,原点右边的点表示正数,从原点向右数,数越来越大;原点左边的点表示负数,从原点向左数,数越来越小。
例如:在数轴上表示+2和 - 2,+2在原点右边2个单位长度处, - 2在原点左边2个单位长度处。
2. 用符号表示。
- 正数前面可以加“+”号(通常省略),负数前面必须加“ - ”号。
例如:+5或5表示正数, - 3表示负数。
三、正负数的实际意义。
1. 表示相反意义的量。
- 在生活中,很多情况下会用正负数来表示相反意义的量。
例如:- 盈利和亏损:如果盈利100元记作+100元,那么亏损50元记作 - 50元。
- 上升和下降:气温上升3℃记作+3℃,气温下降2℃记作 - 2℃。
- 向东和向西:如果向东走5米记作+5米,那么向西走3米记作 - 3米。
2. 计算中的意义。
- 在计算中,正负数可以用来表示加减法的方向。
例如:3+( - 2)表示3加上一个与2相反方向的量,结果为1;5 - (-3)表示5减去一个负数,根据减法的运算法则,相当于5+3 = 8。
四、正负数的大小比较。
1. 正数大小比较。
- 正数比较大小,数字大的正数大。
例如:5>3,1.5>1。
2. 负数大小比较。
- 负数比较大小,绝对值大的反而小。
例如:| - 3|=3,| - 2| = 2,因为3>2,所以 - 2> - 3。
初一正负数的知识点的总结正数大于0,负数小于0,正数大于负数。
下面是XXXX为大家整理的关于初一正负数的知识点的总结,希望对您有所帮助。
欢迎大家阅读参考学习!初一正负数的知识点的总结1(一)正负数1.正数:大于0的数。
2.负数:小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数1.有理数:由整数和分数组成的数。
包括:正整数、0、负整数,正分数、负分数。
可以写成两个整之比的形式。
(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。
如:π)2.整数:正整数、0、负整数,统称整数。
3.分数:正分数、负分数。
(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。
(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。
)2.数轴的三要素:原点、正方向、单位长度。
3.相反数:只有符号不同的两个数叫做互为相反数。
0的相反数还是0。
4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。
(四)有理数的加减法1.先定符号,再算绝对值。
2.加法运算法则:同号相加,到相同符号,并把绝对值相加。
异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
一个数同0相加减,仍得这个数。
3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。
4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
5.a?b=a+(?b)减去一个数,等于加这个数的相反数。
(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
2.乘积是1的两个数互为倒数。
3.乘法交换律:ab=ba4.乘法结合律:(ab)c=a(bc)5.乘法分配律:a(b+c)=ab+ac初一正负数的知识点的总结2(一)有理数除法1.先将除法化成乘法,然后定符号,最后求结果。
2.除以一个不等于0的数,等于乘这个数的倒数。
3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。
(二)乘方1.求n个相同因数的积的运算,叫做乘方。
写作an。
(乘方的结果叫幂,a叫底数,n叫指数)2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。
3.同底数幂相乘,底不变,指数相加。
4.同底数幂相除,底不变,指数相减。
(三)有理数的加减乘除混合运算法则1.先乘方,再乘除,最后加减。
2.同级运算,从左到右进行。
3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
(四)科学记数法、近似数、有效数字。
(五)整式1.整式:单项式和多项式的统称叫整式。
2.单项式:数与字母的乘积组成的式子叫单项式。
单独的一个数或一个字母也是单项式。
3.系数;一个单项式中,数字因数叫做这个单项式的系数。
4。
次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。
5.多项式:几个单项式的和叫做多项式。
6.项:组成多项式的每个单项式叫做多项式的项。
7.常数项:不含字母的项叫做常数项。
8.多项式的次数:多项式中,次数的项的次数叫做这个多项式的次数。
9.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。
10.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
(六)整式加减整式加减运算时,如果遇到括号先去括号,再合并同类项。
1.去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。
如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变初一正负数的知识点的总结3教学目标1.使学生理解的概念,并会判断一个给定的数是正数还是负数;2.会初步应用正负数表示具有相反意义的量;3.使学生初步了解有理数的意义,并能将给出的有理数进行分类;4.培养学生逐步树立分类讨论的思想;5.通过本节课的教学,渗透对立统一的辩证思想。
教学建议一、重点、难点分析本课的重点是了解是由实际需要产生的以及有理数包括哪些数。
难点是学习负数的必要性及有理数的分类。
关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。
正、负数的引入,有各种不同的方法。
教材是由学生熟知的两个实例:温度与海拔高度引入的。
比0℃高5摄氏度记作5℃,比0℃低5摄氏度,记作-5℃;比海平面高8848米,记作8848米,比海平面低155米记作-155米。
由这两个实例很自然地,把大于0的数叫做正数,把加“-”号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的“基准”。
这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。
把负数理解为小于0的数。
教材中,没有出现“具有相反意义的量”的概念。
这是有意回避或淡化这个概念。
目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。
关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。
二、知识结构1.正数、负数和零的概念2.有理数的分类三、教法建议这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象、难理解.因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。
例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数).这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了.为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。
通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。
四、概念的理解1﹒对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“-”号的数是负数。
例如:一定是负数吗?答案是不一定。
因为字母可以表示任意的数,若表示正数时,是负数;当表示0时,就在0的前面加一个负号,仍是0,0不分正负;当表示负数时,就不是负数了,它是一个正数,这些下节将进一步研究。
2﹒引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如…-6,-4,-2,0,2,4,6…,不能被2整除的数是奇数,如…-5,-4,-2,1,3,5…3﹒到现在为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。
4﹒通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。
初一正负数的知识点的总结4有理数的分类整数和分数统称为有理数。
1)正整数、零、负整数统称为整数;正分数、负分数统称为分数。
这样有理数按整数、分数的关系分类为:2)整数也可以看作分母为1的分数,但为了研究方便,本章中分数是指不包括整数的分数。
因此,有理数按正数、负数、0的关系还可分类为:3)注意概念中所用“统称”二字,它与说“整数和分数是有理数”的意思不大一样。
前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说“统称”还是不错,而用后一种说法就欠妥了。
4)分数和小数的区别:分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的。
如圆周率就不能表示成分数。
5)到目前为止,所学过的数(除外)都是有理数。
教学设计示例(一)一、素质教育目标(一)知识教学点1.了解:是实际需要的.2.掌握:会判断一个数是正数还是负数.3.应用:会初步应用正负数表示温度、海拔高度等互为相反数意义的量.(二)能力训练点通过正数、负数的学习,培养学生应用数学知识的意识,训练学生善于运用新知识解决实际问题的能力.(三)德育渗透点1.从实际问题引入正数、负数,然后通过实例巩固,让学生感知到数学知识来源于生活并为生活服务.2.通过正负数的学习,渗透对立、统一的辩证思想.(四)美育渗透点通过引人负数,学生会感觉得小学里学的数是“不全”的,从而通过本节课的教学,给学生以完整美的享受.二、学法引导1.教学方法:采用直观演示法,教师注意创设问题情境并及时点拨,让学生从实例之中自得知识.2.学生学法:研究实际问题→认识负数→负数在实际中的应用三、重点、难点、疑点及解决办法1.重点:会判断正数、负数,运用正负数表示具有相反意义的量.2.难点:负数的引入.3.疑点:负数概念的建立.四、课时安排2课时五、教具学具准备投影仪(电脑)、自制活动胶片、中国地图.六、师生互动活动设计教师通过投影给出实际问题,学生研究讨论,认识负数,教师再给出投影,学生练习反馈.七、教学步骤(一)创设情境,复习导入师:提出问题:举例说明小学数学中我们学过哪些数?看谁举得全?学生活动:思考讨论,学生们互相补充,可以回答出:整数,自然数,分数,小数,奇数,偶数……师小结:为了实际生活需要,在数物体个数时,1、2、3……出现了自然数,没有物体时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示.【教法说明】学生对小学学过的各种数是非常熟悉的,教师提出问题后学生会非常积极地回忆、回答,这时教师注意理清学生的思路,点出小学学过的数的精华部分.提出问题:小学数学中我们学过的最小的数是谁?有没有比零还小的数呢?学生活动:学生们思考,头脑中产生疑问.【教法说明】教师利用问题“有没有比0小的数?”制造悬念,并且这时学生有一种急需知道结果的要求.(二)探索新知,讲授新课师:为了研究这个问题,我们看两个实例(出示投影1)用复合胶片翻四次在冬日一天中,一个测量员测了中午12点,晚6点,夜间12点,早6点的气温如下:你能读出它们所表示的温度各是多少吗?(单位℃)学生活动:看图回答10℃,5℃,零下5℃,零下10℃.初一正负数的知识点的总结5教学目标:1、在熟悉的生活情境中,了解负数的意义,会读写负数。
2、会用负数表示一些日常生活中的量,体验数学的应用价值。
3、在认识负数和应用负数解决问题的过程中获得成功的体验,坚定学好数学的信心。