2008年高考理科数学试题及答案-全国卷2
- 格式:doc
- 大小:801.43 KB
- 文档页数:11
2008年普通高等学校招生全国统一考试(全国卷2数学)理科数学(必修+选修Ⅱ)第Ⅰ卷一、选择题1.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z I 则,≤≤( ) A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,,2.设a b ∈R ,且0b ≠,若复数3()a bi +是实数,则( ) A .223b a = B .223a b =C .229b a =D .229a b =3.函数1()f x x x=-的图像关于( ) A .y 轴对称 B . 直线x y -=对称 C . 坐标原点对称 D . 直线x y =对称4.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a5.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值( )A .2-B .4-C .6-D .8-6.从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( ) A .929B .1029C .1929D .20297.64(1(1的展开式中x 的系数是( )A .4-B .3-C .3D .48.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( ) A .1BCD .29.设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( ) A. B.C .(25),D.(210.已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( )A .13B C D .2311.等腰三角形两腰所在直线的方程分别为20x y +-=与740x y --=,原点在等腰三角形的底边上,则底边所在直线的斜率为( ) A .3B .2C .13-D .12-12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( ) A .1B .2C .3D .2第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ . 14.设曲线axy e =在点(01),处的切线与直线210x y ++=垂直,则a = .15.已知F 是抛物线24C y x =:的焦点,过F 且斜率为1的直线交C 于A B ,两点.设FA FB >,则FA 与FB 的比值等于 .16.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在ABC △中,5cos 13B =-,4cos 5C =. (Ⅰ)求sin A 的值;(Ⅱ)设ABC △的面积332ABC S =△,求BC 的长. 18.(本小题满分12分)购买某种保险,每个投保人每年度向保险公司交纳保费a 元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为41010.999-.(Ⅰ)求一投保人在一年度内出险的概率p ;(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).19.(本小题满分12分)如图,正四棱柱1111ABCD A B C D -中,124AA AB ==,点E 在1CC 上且EC E C 31=.(Ⅰ)证明:1AC ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小. 20.(本小题满分12分)设数列{}n a 的前n 项和为n S .已知1a a =,13n n n a S +=+,*n ∈N .(Ⅰ)设3nn n b S =-,求数列{}n b 的通项公式;(Ⅱ)若1n n a a +≥,*n ∈N ,求a 的取值范围.21.(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点.(Ⅰ)若6ED DF =u u u r u u u r,求k 的值;(Ⅱ)求四边形AEBF 面积的最大值. 22.(本小题满分12分) 设函数sin ()2cos xf x x=+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.AB CD EA 1B 1C 1D 12008年参考答案和评分参考一、选择题1.B 2.A 3.C 4.C 5.D 6.D 7.B 8.B 9.B 10.C 11.A 12.C部分题解析:2. 设a b ∈R ,且0b ≠,若复数3()a bi +是实数,则( )A .223b a =B .223a b =C .229b a =D .229a b =,解:33223()33()()a bi a a bi a bi bi +=+++gg (←考查和的立方公式,或二项式定理) 3223(3)(3)a a b a b b i =-+-gg (←考查虚数单位i 的运算性质) R ∈ (←题设条件)∵a b ∈R ,且0b ≠∴ 2330a b b -=g(←考查复数与实数的概念) ∴ 223b a =. 故选A.6. 从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( ) A .929B .1029C .1929D .2029思路1:设事件A :“选到的3名同学中既有男同学又有女同学”,其概率为:211220102010330()C C C C P A C += (←考查组合应用及概率计算公式) 201910910202121302928321⨯⨯⨯+⨯⨯⨯=⨯⨯⨯⨯ (←考查组合数公式) 10191010109102914⨯⨯+⨯⨯=⨯⨯ (←考查运算技能)2029=故选D.思路2:设事件A :“选到的3名同学中既有男同学又有女同学”,事件A 的对立事件为A :“选到的3名同学中要么全男同学要么全女同学”其概率为:()1()P A P A =- (←考查对立事件概率计算公式)3320103301C C C +=- (←考查组合应用及概率计算公式)2019810983213211302928321⨯⨯⨯⨯+⨯⨯⨯⨯=-⨯⨯⨯⨯(←考查组合数公式) 2019181098302928⨯⨯+⨯⨯=⨯⨯ (←考查运算技能)2029=故选D.12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( ) A .1B .2C .3D .2分析:如果把公共弦长为2的相互垂直的两个截球面圆,想成一般情况,问题解决起来就比较麻烦,许多考生就是因为这样思考的,所以浪费了很多时间才得道答案;但是,如果把公共弦长为2的相互垂直的两个截球面圆,想成其中一个恰好是大圆,那么两圆的圆心距就是球心到另一个小圆的距离3,问题解决起来就很容易了. 二、填空题13.2 14.2 5.3+16.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形. 注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分. 三、解答题 17.解:(Ⅰ)由5cos 13B =-,得12sin 13B =, 由4cos 5C =,得3sin 5C =.所以33sin sin()sin cos cos sin 65A B C B C B C =+=+=. ···································· 5分 (Ⅱ)由332ABC S =△得133sin 22AB AC A ⨯⨯⨯=, 由(Ⅰ)知33sin 65A =,故65AB AC ⨯=, ························································································ 8分又sin 20sin 13AB B AC AB C ⨯==, 故2206513AB =,132AB =. 所以sin 11sin 2AB A BC C ⨯==. ········································································· 10分18.解:各投保人是否出险互相独立,且出险的概率都是p ,记投保的10 000人中出险的人数为ξ,则4~(10)B p ξ,.(Ⅰ)记A 表示事件:保险公司为该险种至少支付10 000元赔偿金,则A 发生当且仅当0ξ=, ·················································································································· 2分()1()P A P A =-1(0)P ξ=-=4101(1)p =--,又410()10.999P A =-,故0.001p =. ······························································································ 5分 (Ⅱ)该险种总收入为10000a 元,支出是赔偿金总额与成本的和. 支出 1000050000ξ+,盈利 10000(1000050000)a ηξ=-+,盈利的期望为 100001000050000E a E ηξ=--, ·········································· 9分由43~(1010)B ξ-,知,31000010E ξ-=⨯, 4441010510E a E ηξ=--⨯4443410101010510a -=-⨯⨯-⨯. 0E η≥4441010105100a ⇔-⨯-⨯≥1050a ⇔--≥ 15a ⇔≥(元).故每位投保人应交纳的最低保费为15元. ························································· 12分19.解法一:依题设知2AB =,1CE =.(Ⅰ)连结AC 交BD 于点F ,则BD AC ⊥. 由三垂线定理知,1BD A C ⊥. ········································································ 3分 在平面1A CA 内,连结EF 交1A C 于点G ,由于1AA ACFC CE== AB CD EA 1B 1C 1D 1FH G故1Rt Rt A AC FCE △∽△,1AA C CFE ∠=∠,CFE ∠与1FCA ∠互余.于是1A C EF ⊥.1A C 与平面BED 内两条相交直线BD EF ,都垂直,所以1A C ⊥平面BED . ················································································· 6分 (Ⅱ)作GH DE ⊥,垂足为H ,连结1A H .由三垂线定理知1A H DE ⊥,故1A HG ∠是二面角1A DE B --的平面角. ······················································· 8分EF =CE CF CG EF ⨯==EG == 13EG EF =,13EF FD GH DE ⨯=⨯=.又1AC ==11A G A C CG =-=.11tan AG A HG HG∠== 所以二面角1A DE B --的大小为arctan . ·················································· 12分 解法二:以D 为坐标原点,射线DA 为x 轴的正半轴, 建立如图所示直角坐标系D xyz -.依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,.(021)(220)DE DB ==u u u r u u u r,,,,,,11(224)(204)AC DA =--=u u u r u u u u r,,,,,. ···································································· 3分 (Ⅰ)因为10AC DB =u u u r u u u r g ,10AC DE =u u u r u u u rg, 故1A C BD ⊥,1A C DE ⊥. 又DB DE D =I ,所以1AC ⊥平面DBE .·················································································· 6分 (Ⅱ)设向量()x y z =r,,n 是平面1DA E 的法向量,则DE ⊥u u ur r n ,1DA ⊥u u u u r r n .故20y z +=,240x z +=.令1y =,则2z =-,4x =,(412)=-r,,n . ····················································· 9分 1AC u u u rr ,n 等于二面角1A DE B --的平面角,111cos A C A C A C==u u u r r u u u r r g u u u r r ,n n n . 所以二面角1A DE B --的大小为. ················································· 12分 20.解:(Ⅰ)依题意,113nn n n n S S a S ++-==+,即123n n n S S +=+,由此得1132(3)n n n n S S ++-=-. ······································································· 4分因此,所求通项公式为13(3)2n n n n b S a -=-=-,*n ∈N .① ····························································· 6分(Ⅱ)由①知13(3)2n n n S a -=+-,*n ∈N ,于是,当2n ≥时,1n n n a S S -=-1123(3)23(3)2n n n n a a ---=+-⨯---⨯ 1223(3)2n n a --=⨯+-, 12143(3)2n n n n a a a --+-=⨯+-22321232n n a --⎡⎤⎛⎫=+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦g ,当2n ≥时,21312302n n n a a a -+⎛⎫⇔+- ⎪⎝⎭g ≥≥9a ⇔-≥.又2113a a a =+>.综上,所求的a 的取值范围是[)9-+∞,. ························································· 12分 21.(Ⅰ)解:依题设得椭圆的方程为2214x y +=, 直线AB EF ,的方程分别为22x y +=,(0)y kx k =>. ····································· 2分 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <, 且12x x ,满足方程22(14)4k x +=,故21x x =-=.①由6ED DF =u u u r u u u r 知01206()x x x x -=-,得021215(6)77x x x x =+==;由D 在AB 上知0022x kx +=,得0212x k=+. 所以212k =+,化简得2242560k k -+=,解得23k =或38k =. ····················································································· 6分 (Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F ,到AB 的距离分别为1h ==2h ==. ······················································ 9分又AB ==,所以四边形AEBF 的面积为121()2S AB h h =+ 12===≤当21k =,即当12k =时,上式取等号.所以S 的最大值为 ························· 12分 解法二:由题设,1BO =,2AO =.设11y kx =,22y kx =,由①得20x >,210y y =->, 故四边形AEBF 的面积为BEF AEF S S S =+△△222x y =+ ··································································································· 9分===当222x y =时,上式取等号.所以S 的最大值为. ······································· 12分 22.解: (Ⅰ)22(2cos )cos sin (sin )2cos 1()(2cos )(2cos )x x x x x f x x x +--+'==++.····························· 2分当2π2π2π2π33k x k -<<+(k ∈Z )时,1cos 2x >-,即()0f x '>; 当2π4π2π2π33k x k +<<+(k ∈Z )时,1cos 2x <-,即()0f x '<.因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,(k ∈Z )是增函数, ()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,(k ∈Z )是减函数. ···························· 6分 (Ⅱ)令()()g x ax f x =-,则第11页(共11页) 22cos 1()(2cos )x g x a x +'=-+ 2232cos (2cos )a x x =-+++ 211132cos 33a x ⎛⎫=-+- ⎪+⎝⎭. 故当13a ≥时,()0g x '≥. 又(0)0g =,所以当0x ≥时,()(0)0g x g =≥,即()f x ax ≤. ······················· 9分 当103a <<时,令()sin 3h x x ax =-,则()cos 3h x x a '=-. 故当[)0arccos3x a ∈,时,()0h x '>.因此()h x 在[)0arccos3a ,上单调增加.故当(0arccos3)x a ∈,时,()(0)0h x h >=,即sin 3x ax >.于是,当(0arccos3)x a ∈,时,sin sin ()2cos 3x x f x ax x =>>+. 当0a ≤时,有π1π0222f a ⎛⎫=> ⎪⎝⎭g ≥. 因此,a 的取值范围是13⎡⎫+∞⎪⎢⎣⎭,. ··································································· 12分。
2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.不能答在试题卷上.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径一、选择题1.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,,【答案】B【解析】{}1,0,1,2--=M ,{}3,2,1,0,1-=N ,∴{}1,0,1-=N M【高考考点】集合的运算,整数集的符号识别。
【评注】历年来高考数学第一个小题一般都是集合问题,都超简单。
其实集合问题是可以出难题的,但高考中的集合问题比较简单。
需要注意的是:很多复习书都把集合作为高考数学复习的起点,我认为这是不妥当的,高中的集合问题涉及到的集合知识并不多(就是一种表达方式),其难度主要体现在知识的综合性上,学生应当先学习其他知识,再在集合中综合。
建议把“数学的基本运算”作为高考数学复习的起点,学生花1个月的时间温习、强化初等数学的基本运算是必要的,重要的,也是值得的。
数学的基本运算具体包括的内容可以参考本人编写的《高考数学复习专用教材》 2.设a b ∈R ,且0b ≠,若复数3()a bi +是实数,则( ) A .223b a = B .223a b =C .229b a =D .229a b =【答案】A【解析】i b b a ab a i b ab bi a a bi a )3()3(33)(322332233-+-=--+=+,因是实数且0b ≠,所以2232303a b b b a =⇒=-【高考考点】复数的基本概念、基本运算,立方和公式(基本运算)【评注】很多学生没有学习过立方和公式,不会用立方和公式一步到位地展开,有人按32()()()a bi a bi a bi +=++进行展开,也有人按3()()()()a bi a bi a bi a bi +=+++进行展开,还有人用二项式定理进行展开,这都是可行的思路。
2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,, 2.设a b ∈R ,且0b ≠,若复数3()a bi +是实数,则 A .223b a = B .223a b =C .229b a =D .229a b =3.函数1()f x x x=-的图像关于 A .y 轴对称 B . 直线x y -=对称 C . 坐标原点对称 D . 直线x y =对称4.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则 A .a <b <cB .c <a <bC . b <a <cD . b <c <a5.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值A .2-B .4-C .6-D .8-6.从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为 A .929B .1029C .1929D .20297.64(1(1+的展开式中x 的系数是A .4-B .3-C .3D .48.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为A .1BCD .29.设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是 A. B.C .(25),D.(210.已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为A .13B C D .2311.等腰三角形两腰所在直线的方程分别为20x y +-=与740x y --=,原点在等腰三角形的底边上,则底边所在直线的斜率为 A .3B .2C .13-D .12-12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于 A .1B .2C .3D .2二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ . 14.设曲线axy e =在点(01),处的切线与直线210x y ++=垂直,则a = . 15.已知F 是抛物线24C y x =:的焦点,过F 且斜率为1的直线交C 于A B ,两点.设FA FB >,则FA 与FB 的比值等于 .16.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在ABC △中,5cos 13B =-,4cos 5C =. (Ⅰ)求sin A 的值; (Ⅱ)设ABC △的面积332ABC S =△,求BC 的长. 18.(本小题满分12分) 购买某种保险,每个投保人每年度向保险公司交纳保费a 元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为(Ⅰ)求一投保人在一年度内出险的概率p ;(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).19.(本小题满分12分)如图,正四棱柱1111ABCD A B C D -中,124AA AB ==,点E 在1CC 上且EC E C 31=.(Ⅰ)证明:1AC ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小. 20.(本小题满分12分)设数列{}n a 的前n 项和为n S .已知1a a =,13nn n a S +=+,*n ∈N .(Ⅰ)设3nn n b S =-,求数列{}n b 的通项公式;(Ⅱ)若1n n a a +≥,*n ∈N ,求a 的取值范围.21.(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点.(Ⅰ)若6ED DF =,求k 的值;(Ⅱ)求四边形AEBF 面积的最大值. 22.(本小题满分12分) 设函数sin ()2cos xf x x=+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.AB CD EA 1B 1C 1D 1参考答案和评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要 考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和 难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.一、选择题1.B 2.A 3.C 4.C 5.D 6.D 7.B 8.B 9.B 10.C 11.A 12.C 二、填空题13.2 14.2 15.3+16.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分. 三、解答题 17.解:(Ⅰ)由5cos 13B =-,得12sin 13B =, 由4cos 5C =,得3sin 5C =.所以33sin sin()sin cos cos sin 65A B C B C B C =+=+=. ··············································· 5分 (Ⅱ)由332ABC S =△得133sin 22AB AC A ⨯⨯⨯=, 由(Ⅰ)知33sin 65A =,故65AB AC ⨯=, ················································································································ 8分又sin 20sin 13AB B AC AB C ⨯==,故2206513AB =,132AB =. 所以sin 11sin 2AB A BC C ⨯==. ····························································································· 10分 18.解:各投保人是否出险互相独立,且出险的概率都是p ,记投保的10 000人中出险的人数为ξ, 则4~(10)B p ξ,.(Ⅰ)记A 表示事件:保险公司为该险种至少支付10 000元赔偿金,则A 发生当且仅当0ξ=, ··································································································································· 2分 ()1()P A P A =-1(0)P ξ=-= 4101(1)p =--,又410()10.999P A =-,故0.001p =. ························································································································ 5分 (Ⅱ)该险种总收入为10000a 元,支出是赔偿金总额与成本的和. 支出 1000050000ξ+,盈利 10000(1000050000)a ηξ=-+, 盈利的期望为 1000010000500E a E ηξ=--, ······················································ 9分 由43~(1010)B ξ-,知,31000010E ξ-=⨯, 4441010510E a E ηξ=--⨯4443410101010510a -=-⨯⨯-⨯. 0E η≥4441010105100a ⇔-⨯-⨯≥1050a ⇔--≥15a ⇔≥(元). 故每位投保人应交纳的最低保费为15元.········································································· 12分19.解法一:依题设知2AB =,1CE =.(Ⅰ)连结AC 交BD 于点F ,则BD AC ⊥.由三垂线定理知,1BD AC ⊥. ···························································································· 3分 在平面1A CA 内,连结EF 交1AC 于点G ,由于1AA ACFC CE== 故1Rt Rt A AC FCE △∽△,1AAC CFE ∠=∠, CFE ∠与1FCA ∠互余. 于是1AC EF ⊥. 1AC 与平面BED 内两条相交直线BDEF ,都垂直, 所以1AC ⊥平面BED . ······································································································· 6分 (Ⅱ)作GH DE ⊥,垂足为H ,连结1A H .由三垂线定理知1A H DE ⊥,故1A HG ∠是二面角1A DE B --的平面角. ······································································ 8分EF ==CE CF CG EF ⨯==,EG ==13EG EF =,13EF FD GH DE ⨯=⨯=又1A C ==11AG AC CG =-=11tan AG A HG HG∠== 所以二面角1A DE B --的大小为arctan ······························································· 12分 解法二:以D 为坐标原点,射线DA 为x 轴的正半轴, 建立如图所示直角坐标系D xyz -.依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,.(021)(220)DE DB ==,,,,,,11(224)(204)AC DA =--= ,,,,,. ······················································································· 3分 (Ⅰ)因为10AC DB = ,10AC DE =,A B CDEA 1B 1C 1D 1 FH G故1AC BD ⊥,1AC DE ⊥. 又DB DE D = ,所以1AC ⊥平面DBE . ········································································································ 6分 (Ⅱ)设向量()x y z =,,n 是平面1DA E 的法向量,则DE ⊥n ,1DA ⊥ n .故20y z +=,240x z +=.令1y =,则2z =-,4x =,(412)=-,,n . ··································································· 9分 1A C ,n 等于二面角1A DE B --的平面角,111cos 42AC AC AC ==,n n n . 所以二面角1A DE B --的大小为arccos 42······························································ 12分 20.解:(Ⅰ)依题意,113nn n n n S S a S ++-==+,即123nn n S S +=+, 由此得1132(3)n n n n S S ++-=-. ·························································································· 4分因此,所求通项公式为13(3)2n n n n b S a -=-=-,*n ∈N .① ·············································································· 6分(Ⅱ)由①知13(3)2nn n S a -=+-,*n ∈N ,于是,当2n ≥时,1n n n a S S -=-1123(3)23(3)2n n n n a a ---=+-⨯---⨯ 1223(3)2n n a --=⨯+-, 12143(3)2n n n n a a a --+-=⨯+- 22321232n n a --⎡⎤⎛⎫=+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当2n ≥时,21312302n n n a a a -+⎛⎫⇔+- ⎪⎝⎭≥≥9a ⇔-≥.又2113a a a =+>.综上,所求的a 的取值范围是[)9-+∞,. ········································································· 12分21.(Ⅰ)解:依题设得椭圆的方程为2214x y +=,直线AB EF ,的方程分别为22x y +=,(0)y kx k =>. ··············································· 2分 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <, 且12x x ,满足方程22(14)4k x +=,故21x x =-=由6ED DF = 知01206()x x x x -=-,得021215(6)77x x x x =+==;由D 在AB 上知0022x kx +=,得0212x k=+. 所以212k =+,化简得2242560k k -+=,解得23k =或38k =. ············································································································ 6分 (Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F ,到AB 的距离分别为1h ==2h ==. ····································································· 9分又AB ==,所以四边形AEBF 的面积为121()2S AB h h =+12===≤当21k =,即当12k =时,上式取等号.所以S 的最大值为 ······························· 12分 解法二:由题设,1BO =,2AO =.设11y kx =,22y kx =,由①得20x >,210y y =->, 故四边形AEBF 的面积为BEF AEF S S S =+△△222x y =+ ······························································································································ 9分===当222x y =时,上式取等号.所以S 的最大值为 ·················································· 12分 22.解: (Ⅰ)22(2cos )cos sin (sin )2cos 1()(2cos )(2cos )x x x x x f x x x +--+'==++. ····································· 2分当2π2π2π2π33k x k -<<+(k ∈Z )时,1cos 2x >-,即()0f x '>; 当2π4π2π2π33k x k +<<+(k ∈Z )时,1cos 2x <-,即()0f x '<. 因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,(k ∈Z )是增函数,()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,(k ∈Z )是减函数. ···································· 6分 (Ⅱ)令()()g x ax f x =-,则22cos 1()(2cos )x g x a x +'=-+ 2232cos (2cos )a x x =-+++ 211132cos 33a x ⎛⎫=-+- ⎪+⎝⎭.故当13a ≥时,()0g x '≥. 又(0)0g =,所以当0x ≥时,()(0)0g x g =≥,即()f x ax ≤. ······························ 9分 当103a <<时,令()sin 3h x x ax =-,则()cos 3h x x a '=-. 故当[)0arccos3x a ∈,时,()0h x '>. 因此()h x 在[)0arccos3a ,上单调增加. 故当(0arccos3)x a ∈,时,()(0)0h x h >=, 即sin 3x ax >.于是,当(0arccos3)x a ∈,时,sin sin ()2cos 3x xf x ax x =>>+.当0a ≤时,有π1π0222f a ⎛⎫=>⎪⎝⎭ ≥. 因此,a 的取值范围是13⎡⎫+∞⎪⎢⎣⎭,.--------------------------------------------------------- 12分。
2008年高考真题精品解析2008年普通高等学校招生全国统一考试(全国卷Ⅱ)(理科) 测试题 2019.91,设变量满足约束条件:,则的最小值( )A .B .C .D .2,从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( )A .B .C .D .3,的展开式中x 的系数是( )A .B .C .3D .44,若动直线与函数和的图像分别交于两点,则的最大值为( ) A .1BCD .25,设,则双曲线的离心率的取值范围是( )A .B .C .D . 6,已知正四棱锥的侧棱长与底面边长都相等,是的中点,则所成的角的余弦值为( )A .B .C .D .7,等腰三角形两腰所在直线的方程分别为与,原点在等腰三角形的底边上,则底边所在直线的斜率为( )A .3B .2C .D .8,已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( )x y ,222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥y x z 3-=2-4-6-8-92910291929202964(1(1+4-3-x a =()sin f x x =()cos g x x =M N ,MN 1a >22221(1)x y a a -=+e 2)(25),(2S ABCD -E SB AE SD ,132320x y +-=740x y --=13-12-A .1B .2C .3D .2 9,在中,,. (Ⅰ)求的值;(Ⅱ)设的面积,求的长.10,购买某种保险,每个投保人每年度向保险公司交纳保费元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为.(Ⅰ)求一投保人在一年度内出险的概率;(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).测试题答案1, D【解析】如图作出可行域,知可行域的顶点是A (-2,2)、B(32,32)及C(-2,-2)于是8)(min -=A z2, D【解析】2920330110220210120=+=C C C C C P 3, BABC △5cos 13B =-4cos 5C =sin A ABC △332ABC S =△BC a 41010.999-p【解析】324156141604262406-=-+=-+C C C C C C4, B【解析】在同一坐标系中作出x x f sin )(1=及x x g cos )(1=在]2,0[π的图象,由图象知,当43π=x ,即43π=a 时,得221=y ,222-=y ,∴221=-=y y MN5, B【解析】222222)11(1)1()(a a a a a c e ++=++==,因为a 1是减函数,所以当时110<<a ,所以522<<e ,即52<<e6, C【解析】连接AC 、BD 交于O ,连接OE ,因OE ∥SD.所以∠AEO 为所求。
绝密★启用前 【考试时间:6月7日 15:00—17:00】2008年普通高等学校招生全国统一考试理科数学本试卷分第Ⅰ(选择题)卷和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
满分150分,考试用时120分钟。
第Ⅰ卷(选择题,共60分)注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚,并认真核准条形码的准考证号码、姓名、考场号、座位号及科目,在规定的位置贴好条形码。
2.每小题选出答案后,用2B 铅笔吧答题卡上对应题目的答案涂黑。
如需改动用橡皮擦擦干净后,再选涂其它答案标号。
答在试卷上的答案无效。
参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k n P k (1-P)n -k本卷12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一.选择题(1)设集合}23{<<-∈=m Z m M ,}31{≤≤-∈=n Z n N ,则=⋂N MA .}1,0{ B. }1,0,1{- C. }2,1,0{ D }2,1,0,1{- (2)设a ,b ∈R 且b ≠0,若复数3bi)(a +是实数,则A . 223a b = B. 223b a = C. 229a b = D.229b a =球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径(3)函数x xx f -=1)(的图像关于 A . y 轴对称 B.直线y=-x C.坐标原点对称 D.直线y=x (4)若)1,(1-∈e x ,x ln =a ,x ln 2=b ,x 3ln =c ,则A .c b a << B. b a c << C. c a b << D. a c b <<(5)设变量x,y 满足约束条件:2,22,-≥≤+≥x y x x y 则y x z 3-=的最小值为:A .-2 B.-4 C. -6 D.-8(6)从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为 A .299 B. 2910 C. 2919 D. 2920 (7)()()4611x x +-的展开式中x 的系数是A .-4 B.-3 C.3 D.4(8)若动直线a x =与函数x x f sin )(=和x x g cos )(=的图像分别交于M 、N 两点,则MN 的最大值为A .1 B. 2 C.3 D.2(9)设1>a ,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是 A .)2,2( B. )5,2( C. )5,2( D. )5,2((10)已知正四棱锥S-ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE 、SD 所成的角的余弦值为 A .31 B. 32 C. 33 D. 32(11)等腰三角形两腰所在直线的方程分别为02=-+y x 和047=--y x ,原点在等腰三角形的底边上,则底边所在直线的斜率为 A .3 B. 2 C. 31-D. 21-(12)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于A .1 B. 2 C. 3 D. 2第Ⅱ卷(非选择题,共90分)二.填空题:(本大题共4个小题,每小题5分,共20分。
数学练习题2008年数学(理科)试卷(全国2卷)(word版+详细解析)2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.不能答在试题卷上.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径()()()P A B P A P B =g g 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34π3V R = n次独立重复试验中事件A恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n k k n P k C p p k n -=-=L ,,,,一、选择题1.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z I 则,≤≤( )A .{}01,B .{}101-,,C .{}012,, D .{}1012-,,, 【答案】B【解析】{}1,0,1,2--=M ,{}3,2,1,0,1-=N ,∴{}1,0,1-=N M I【高考考点】集合的运算,整数集的符号识别 2.设a b ∈R ,且0b ≠,若复数3()a bi +是实数,则( ) A .223ba = B .223ab = C .229ba = D .229ab =【答案】A 【解析】ib b a ab a i b ab bi a a bi a )3()3(33)(322332233-+-=--+=+,因是实数且b ≠,所以2232303a b bb a =⇒=-【高考考点】复数的基本运算3.函数1()f x x x =-的图像关于( ) A .y 轴对称 B . 直线x y -=对称 C . 坐标原点对称 D . 直线x y =对称 【答案】C【解析】1()f x x x =-是奇函数,所以图象关于原点对称 【高考考点】函数奇偶性的性质 4.若13(1)ln 2ln ln x ea xb xc x-∈===,,,,,则( )A .a <b <cB .c <a <bC . b <a <cD . b <c <a 【答案】C 【解析】由0ln 111<<-⇒<<-x x e,令x t ln =且取21-=t 知b <a <c 5.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值( )A .2-B .4-C .6-【答案】D是A (-2,2)、B(32,32)及C(-2,-2) 于是8)(min-=A z6.从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( )A .929B .1029C .1929D .2029【答案】D 【解析】2920330110220210120=+=C C C C C P7.64(1(1+的展开式中x 的系数是( )A .4-B .3-C .3D .4 【答案】B 【解析】32415614160426246-=-+=-+C C C C CC【易错提醒】容易漏掉1416C C 项或该项的负号8.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N,两点,则MN 的最大值为( )A .1 BCD .2 【答案】B【解析】在同一坐标系中作出x x f sin )(1=及x x g cos )(1=在]2,0[π的图象,由图象知,当43π=x ,即43π=a 时,得221=y,222-=y,∴221=-=y yMN【高考考点】三角函数的图象,两点间的距离 【备考提示】函数图象问题是一个常考常新的问题 9.设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( ) A.2)B. C .(25), D.(2【答案】B 【解析】222222)11(1)1()(a a a a a c e ++=++==,因为a1是减函数,所以当1a >时110<<a,所以522<<e,即52<<e【高考考点】解析几何与函数的交汇点10.已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( )A .13B .3C .3 D .23【答案】C【解析】连接AC 、BD 交于O ,连接OE ,因OE ∥SD.所以∠AEO 为所求。
2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.不能答在试题卷上.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k k n kk nP k C p p k n -=-=,,,, 一、选择题1.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,,【答案】B【解析】{}1,0,1,2--=M ,{}3,2,1,0,1-=N ,∴{}1,0,1-=N M 【高考考点】集合的运算,整数集的符号识别。
【评注】历年来高考数学第一个小题一般都是集合问题,都超简单。
其实集合问题是可以出难题的,但高考中的集合问题比较简单。
需要注意的是:很多复习书都把集合作为高考数学复习的起点,我认为这是不妥当的,高中的集合问题涉及到的集合知识并不多(就是一种表达方式),其难度主要体现在知识的综合性上,学生应当先学习其他知识,再在集合中综合。
2008 年全国统一高考数学试卷(理科)(全国卷Ⅱ)一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)设集合M={m∈Z|﹣3<m<2},N={n∈Z|﹣1≤n≤3},则M∩N=()A.{0,1} B.{﹣1,0,1}C.{0,1,2} D.{﹣1,0,1,2}2.(5 分)设a,b∈R 且b≠0,若复数(a+bi)3是实数,则()A.b2=3a2B.a2=3b2C.b2=9a2D.a2=9b23.(5分)函数f(x)=﹣x 的图象关于()A.y 轴对称B.直线y=﹣x 对称C.坐标原点对称D.直线y=x 对称4.(5 分)若x∈(e﹣1,1),a=lnx,b=2lnx,c=ln3x,则()A.a<b<c B.c<a<b C.b<a<c D.b<c<a5.(5 分)设变量x,y 满足约束条件:,则z=x﹣3y 的最小值()A.﹣2 B.﹣4 C.﹣6 D.﹣86.(5分)从20 名男同学,10 名女同学中任选3 名参加体能测试,则选到的3 名同学中既有男同学又有女同学的概率为()A.B.C.D.7.(5 分)(1﹣)6(1+)4的展开式中x 的系数是()A.﹣4 B.﹣3 C.3 D.48.(5分)若动直线x=a 与函数f(x)=sinx 和g(x)=cosx 的图象分别交于M,N 两点,则|MN|的最大值为()A.1 B.C.D.29.(5 分)设a>1,则双曲线的离心率e 的取值范围是()A.B.C.(2,5)D.10.(5分)已知正四棱锥S﹣ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE、SD 所成的角的余弦值为()A.B.C.D.11.(5 分)等腰三角形两腰所在直线的方程分别为x+y﹣2=0 与x﹣7y﹣4=0,原点在等腰三角形的底边上,则底边所在直线的斜率为()A.3 B.2 C.D.12.(5 分)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为2,则两圆的圆心距等于()A.1 B.C.D.2二、填空题(共4 小题,每小题5 分,满分20 分)13.(5 分)设向量,若向量与向量共线,则λ=.14.(5分)设曲线y=e ax在点(0,1)处的切线与直线x+2y+1=0 垂直,则a=.15.(5 分)已知F 是抛物线C:y2=4x 的焦点,过F 且斜率为1 的直线交C 于A,B 两点.设|FA|>|FB|,则|FA|与|FB|的比值等于.16.(5 分)平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件①;充要条件②.(写出你认为正确的两个充要条件)三、解答题(共6 小题,满分70 分)17.(10 分)在△ABC 中,cosB=﹣,cosC=.(1)求sinA 的值(2)设△ABC 的面积S△ABC=,求BC 的长.18.(12 分)购买某种保险,每个投保人每年度向保险公司交纳保费a 元,若投保人在购买保险的一年度内出险,则可以获得10 000 元的赔偿金.假定在一年度内有10 000 人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000 元的概率为1﹣0.999 .(I)求一投保人在一年度内出险的概率p;(II)设保险公司开办该项险种业务除赔偿金外的成本为50 000 元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).19.(12 分)如图,正四棱柱ABCD﹣A1B1C1D1 中,AA1=2AB=4,点E 在CC1 上且C1E=3EC.(I)证明:A1C⊥平面BED;(II)求二面角A1﹣DE﹣B 的大小.20.(12 分)设数列{a n}的前n 项和为S n.已知a1=a,a n+1=S n+3n,n∈N*.(I)设b n=S n﹣3n,求数列{b n}的通项公式;(II)若a n+1≥a n,n∈N*,求a 的取值范围.21.(12 分)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB 相交于点D,与椭圆相交于E、F 两点.(I)若,求k 的值;(II)求四边形AEBF 面积的最大值.22.(12 分)设函数.(I)求f(x)的单调区间;(II)如果对任何x≥0,都有f(x)≤ax,求a 的取值范围.2008 年全国统一高考数学试卷(理科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)设集合M={m∈Z|﹣3<m<2},N={n∈Z|﹣1≤n≤3},则M∩N=()A.{0,1} B.{﹣1,0,1}C.{0,1,2} D.{﹣1,0,1,2}【考点】1E:交集及其运算.【分析】由题意知集合M={m∈z|﹣3<m<2},N={n∈z|﹣1≤n≤3},然后根据交集的定义和运算法则进行计算.【解答】解:∵M={﹣2,﹣1,0,1},N={﹣1,0,1,2,3},∴M∩N={﹣1,0,1},故选:B.【点评】此题主要考查集合和交集的定义及其运算法则,是一道比较基础的题.2.(5 分)设a,b∈R 且b≠0,若复数(a+bi)3是实数,则()A.b2=3a2B.a2=3b2C.b2=9a2D.a2=9b2【考点】A5:复数的运算.【分析】复数展开,化为a+bi(a、b∈R)的形式,虚部为0 即可.【解答】解:(a+bi)3=a3+3a2bi﹣3ab2﹣b3i=(a3﹣3ab2)+(3a2b﹣b3)i,因是实数且b≠0,所以3a2b﹣b3=0⇒b2=3a2故选:A.【点评】本题考查复数的基本运算,是基础题.3.(5 分)函数f(x)=﹣x 的图象关于()A.y 轴对称B.直线y=﹣x 对称C.坐标原点对称D.直线y=x 对称【考点】3M:奇偶函数图象的对称性.【分析】根据函数f(x)的奇偶性即可得到答案.【解答】解:∵f(﹣x)=﹣+x=﹣f(x)∴是奇函数,所以f(x)的图象关于原点对称故选:C.【点评】本题主要考查函数奇偶性的性质,是高考必考题型.4.(5 分)若x∈(e﹣1,1),a=lnx,b=2lnx,c=ln3x,则()A.a<b<c B.c<a<b C.b<a<c D.b<c<a【考点】4M:对数值大小的比较.【分析】根据函数的单调性,求a 的范围,用比较法,比较a、b 和a、c 的大小.【解答】解:因为a=lnx 在(0,+∞)上单调递增,故当x∈(e﹣1,1)时,a∈(﹣1,0),于是b﹣a=2lnx﹣lnx=lnx<0,从而b<a.又a﹣c=lnx﹣ln3x=a(1+a)(1﹣a)<0,从而a<c.综上所述,b<a<c.故选:C.【点评】对数值的大小,一般要用对数的性质,比较法,以及0 或1 的应用,本题是基础题.5.(5 分)设变量x,y 满足约束条件:,则z=x﹣3y 的最小值()A.﹣2 B.﹣4 C.﹣6 D.﹣8【考点】7C:简单线性规划.【专题】11:计算题.【分析】我们先画出满足约束条件:的平面区域,求出平面区域的各角点,然后将角点坐标代入目标函数,比较后,即可得到目标函数z=x﹣3y 的最小值.【解答】解:根据题意,画出可行域与目标函数线如图所示,由图可知目标函数在点(﹣2,2)取最小值﹣8故选:D.【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.6.(5分)从20 名男同学,10 名女同学中任选3 名参加体能测试,则选到的3 名同学中既有男同学又有女同学的概率为()A.B.C.D.【考点】C6:等可能事件和等可能事件的概率.【分析】由题意知本题是一个古典概型,试验发生的所有事件从30 名同学中任选3 名参加体能测试共有C303 种结果,而满足条件的事件是选到的3 名同学中既有男同学又有女同学共有C201C102+C202C101 种结果.代入公式得到结果.【解答】解:由题意知本题是一个古典概型,;3020 10 20 10 ∵试验发生的所有事件从 30 名同学中任选 3 名参加体能测试共有 C 3 种结果,满足条件的事件是选到的 3 名同学中既有男同学又有女同学共有C 1C 2+C 2C 1 种结果,∴由古典概型公式得到,故选:D .【点评】本题考查的是古典概型,可以从它的对立事件来考虑,概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象.7.(5 分)(1﹣)6(1+)4 的展开式中 x 的系数是() A .﹣4B .﹣3C .3D .4【考点】DA :二项式定理. 【专题】11:计算题.【分析】展开式中 x 的系数由三部分和组成: 的常数项与展开式的 x 的系数积 的展开式的 x 的系数与的常数项的积;的的系数与的的系数积.利用二项展开式的通项求得各项系数.【解答】解: 的展开式的通项为∴展开式中常数项为 C 60,含 x 的项的系数为 C 62,含的项的系数为﹣C 61的展开式的通项为∴ 的展开式中的 x 的系数为 C 42,常数项为 C 40,含的项的系数为 C 41故的展开式中 x 的系数是:C 60C 42+C 62C 40﹣C 61C 41=6+15﹣24=﹣3 故选:B .【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.8.(5 分)若动直线 x=a 与函数 f (x )=sinx 和 g (x )=cosx 的图象分别交于 M , N 两点,则|MN |的最大值为( )A .1B .C .D .2【考点】H2:正弦函数的图象;H7:余弦函数的图象. 【分析】可令 F (x )=|sinx ﹣cosx |求其最大值即可. 【解答】解:由题意知:f (x )=sinx 、g (x )=cosx 令 F (x )=|sinx ﹣cosx |= |sin (x ﹣)|当 x ﹣=+kπ,x=+kπ,即当 a=+kπ 时,函数 F (x )取到最大值故选:B .【点评】本题主要考查三角函数的图象和函数解析式的关系.属基础题.9.(5 分)设 a >1,则双曲线的离心率 e 的取值范围是()A .B .C .(2,5)D .【考点】KC :双曲线的性质. 【专题】11:计算题. 【分析】根据题设条件可知 ,然后由实数 a的取值范围可以求出离心率 e 的取值范围.【解答】解:,因为是减函数,所以当a>1 时,所以2<e2<5,即,故选:B.【点评】本题的高考考点是解析几何与函数的交汇点,解题时要注意双曲线性质的灵活运用.10.(5分)已知正四棱锥S﹣ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE、SD 所成的角的余弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】11:计算题;35:转化思想.【分析】由于是正方体,又是求角问题,所以易选用向量量,所以建立如图所示坐标系,先求得相关点的坐标,进而求得相关向量的坐标,最后用向量夹角公式求解.【解答】解:建立如图所示坐标系,令正四棱锥的棱长为2,则A(1,﹣1,0),D(﹣1,﹣1,0),S(0,0,),E,= ,=(﹣1,﹣1,﹣)∴cos<>=故选:C.【点评】本题主要考查多面体的结构特征和空间角的求法,同时,还考查了转化思想和运算能力,属中档题.11.(5 分)等腰三角形两腰所在直线的方程分别为x+y﹣2=0 与x﹣7y﹣4=0,原点在等腰三角形的底边上,则底边所在直线的斜率为()A.3 B.2 C.D.【考点】IQ:与直线关于点、直线对称的直线方程.【专题】16:压轴题.【分析】利用原点在等腰三角形的底边上,可设底边方程y=kx,用到角公式,再借助草图,选项判定结果即可.【解答】解:l1:x+y﹣2=0,k1=﹣1,,设底边为l3:y=kx 由题意,l3 到l1 所成的角等于l2 到l3 所成的角于是有,解得k=3 或k=﹣,因为原点在等腰三角形的底边上,所以k=3.k= ,原点不在等腰三角形的底边上(舍去),故选:A.【点评】两直线成角的概念及公式;本题是由教材的一个例题改编而成.(人教版P49 例7)解题过程值得学习.12.(5 分)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为2,则两圆的圆心距等于()A.1 B.C.D.2【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】求解本题,可以从三个圆心上找关系,构建矩形利用对角线相等即可求解出答案.【解答】解:设两圆的圆心分别为O1、O2,球心为O,公共弦为AB,其中点为E,则OO1EO2 为矩形,于是对角线O1O2=OE,而OE==,∴O1O2=故选:C.【点评】本题考查球的有关概念,两平面垂直的性质,是基础题.二、填空题(共4 小题,每小题5 分,满分20 分)13.(5 分)设向量,若向量与向量共线,则λ= 2 .【考点】96:平行向量(共线).【分析】用向量共线的充要条件:它们的坐标交叉相乘相等列方程解.【解答】解:∵a=(1,2),b=(2,3),∴λα+b=(λ,2λ)+(2,3)=(λ+2,2λ+3).∵向量λα+b 与向量c=(﹣4,﹣7)共线,∴﹣7(λ+2)+4(2λ+3)=0,∴λ=2.故答案为2【点评】考查两向量共线的充要条件.14.(5分)设曲线y=e ax在点(0,1)处的切线与直线x+2y+1=0 垂直,则a= 2 .【考点】6H:利用导数研究曲线上某点切线方程.【专题】11:计算题.【分析】根据导数的几何意义求出函数f(x)在x=0 处的导数,从而求出切线的斜率,再根据两直线垂直建立等式关系,解之即可.【解答】解:∵y=e ax∴y′=αe ax∴曲线y=e ax在点(0,1)处的切线方程是y﹣1=a(x﹣0),即ax﹣y+1=0∵直线ax﹣y+1=0 与直线x+2y+1=0 垂直∴﹣a=﹣1,即a=2.故答案为:2【点评】本题主要考查了利用导数研究曲线上某点切线方程,以及两直线垂直的应用等有关问题,属于基础题.15.(5 分)已知F 是抛物线C:y2=4x 的焦点,过F 且斜率为1 的直线交C 于A,B 两点.设|FA|>|FB|,则|FA|与|FB|的比值等于.【考点】K8:抛物线的性质.【专题】11:计算题;16:压轴题.【分析】先设点A,B 的坐标,求出直线方程后与抛物线方程联立消去y 得到关于x 的一元二次方程,求出两根,再由抛物线的定义得到答案.【解答】解:设A(x1,y1)B(x2,y2)由,,(x1>x2)∴由抛物线的定义知故答案为:【点评】本题主要考查直线与抛物线的位置关系,抛物线定义的应用16.(5 分)平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件①三组对面分别平行的四棱柱为平行六面体;充要条件②平行六面体的对角线交于一点,并且在交点处互相平分;.(写出你认为正确的两个充要条件)【考点】29:充分条件、必要条件、充要条件;L2:棱柱的结构特征.【专题】16:压轴题;21:阅读型.【分析】本题考查的知识点是充要条件的定义及棱柱的结构特征及类比推理,由平行六面体与平行四边形的定义相似,故我们可以类比平行四边形的性质,类比推断平行六面体的性质.【解答】解:类比平行四边形的性质:两组对边分别平行的四边形为平行四边形,则我们类比得到:三组对面分别平行的四棱柱为平行六面体.类比平行四边形的性质:两条对角线互相平分,则我们类比得到:平行六面体的对角线交于一点,并且在交点处互相平分;故答案为:三组对面分别平行的四棱柱为平行六面体;平行六面体的对角线交于一点,并且在交点处互相平分;【点评】类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).三、解答题(共6 小题,满分70 分)17.(10 分)在△ABC 中,cosB=﹣,cosC=.(1)求sinA 的值(2)设△ABC 的面积S△ABC=,求BC 的长.【考点】HT:三角形中的几何计算.【专题】11:计算题.【分析】(Ⅰ)由cosB,cosC 分别求得sinB 和sinC,再通过sinA=sin(B+C),利用两角和公式,进而求得sinA.(Ⅱ)由三角形的面积公式及(1)中的sinA,求得AB•AC的值,再利用正弦定理求得AB,再利用正弦定理进而求得BC.【解答】解:(Ⅰ)由,得,由,得.所以.(Ⅱ)由得,由(Ⅰ)知,故AB×AC=65,又,故,.所以.【点评】本题主要考查了正弦定理及三角形的面积公式在解三角形中的应用.属基础题.18.(12 分)购买某种保险,每个投保人每年度向保险公司交纳保费a 元,若投保人在购买保险的一年度内出险,则可以获得10 000 元的赔偿金.假定在一年度内有10 000 人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000 元的概率为1﹣0.999 .(I)求一投保人在一年度内出险的概率p;(II)设保险公司开办该项险种业务除赔偿金外的成本为50 000 元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).【考点】C8:相互独立事件和相互独立事件的概率乘法公式;CH:离散型随机变量的期望与方差.【专题】11:计算题.【分析】(1)由题意知各投保人是否出险互相独立,且出险的概率都是p,记投保的10000 人中出险的人数为ξ,由题意知ξ服从二项分布一投保人在一年度内出险的对立事件是没有一个人出险.(2)写出本险种的收入和支出,表示出它的盈利期望,根据为保证盈利的期望不小于0,列出不等式,解出每位投保人应交纳的最低保费.【解答】解:由题意知各投保人是否出险互相独立,且出险的概率都是p,记投保的10000 人中出险的人数为ξ,由题意知ξ~B(104,p).(I)记A 表示事件:保险公司为该险种至少支付10000 元赔偿金,则发生当且仅当ξ=0,=1﹣P(ξ=0)=1﹣(1﹣p)104,又P(A)=1﹣0.999104,故p=0.001.(II)该险种总收入为10000a 元,支出是赔偿金总额与成本的和.支出10000ξ+50000,盈利η=10000α﹣(10000ξ+50000),盈利的期望为Eη=10000α﹣10000Eξ﹣50000,由ξ~B(104,10﹣3)知,Eξ=10000×10﹣3,Eη=104a﹣104Eξ﹣5×104=104a﹣104×104×10﹣3﹣5×104.Eη≥0⇔104a﹣104×10﹣5×104≥0⇔a﹣10﹣5≥0⇔a≥15(元).∴每位投保人应交纳的最低保费为15 元.【点评】解决离散型随机变量分布列问题时,主要依据概率的有关概念和运算,同时还要注意题目中离散型随机变量服从什么分布,若服从特殊的分布则运算要简单的多.19.(12 分)如图,正四棱柱ABCD﹣A1B1C1D1 中,AA1=2AB=4,点E 在CC1 上且C1E=3EC.(I)证明:A1C⊥平面BED;(II)求二面角A1﹣DE﹣B 的大小.【考点】LW:直线与平面垂直;MJ:二面角的平面角及求法.【专题】14:证明题;15:综合题;35:转化思想.【分析】法一:(Ⅰ)要证A1C⊥平面BED,只需证明A1C 与平面BED 内两条相交直线BD,EF 都垂直;(Ⅱ)作GH⊥DE,垂足为H,连接A1H,说明∠A1HG 是二面角A1﹣DE﹣B 的平面角,然后解三角形,求二面角A1﹣DE﹣B 的大小.法二:建立空间直角坐标系,(Ⅰ)求出,证明A1C⊥平面DBE.(Ⅱ)求出平面DA1E 和平面DEB 的法向量,求二者的数量积可求二面角A1﹣DE﹣B 的大小.【解答】解:解法一:依题设知AB=2,CE=1.(I)连接AC 交BD 于点F,则BD⊥AC.由三垂线定理知,BD⊥A1C.(3分)在平面A1CA 内,连接EF 交A1C 于点G,由于,故Rt△A1AC∽Rt△FCE,∠AA1C=∠CFE,∠CFE 与∠FCA1 互余.于是A1C⊥EF.A1C 与平面BED 内两条相交直线BD,EF 都垂直,所以A1C⊥平面BED.(6 分)(II)作GH⊥DE,垂足为H,连接A1H.由三垂线定理知A1H⊥DE,故∠A1HG 是二面角A1﹣DE﹣B 的平面角.(8分),. ,又,..所以二面角 A 1﹣DE ﹣B 的大小为.((12 分))解法二:以 D 为坐标原点,射线 DA 为 x 轴的正半轴,建立如图所示直角坐标系 D ﹣xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).,.(3 分)(Ⅰ)因为,,故 A 1C ⊥BD ,A 1C ⊥DE . 又 DB ∩DE=D ,所以 A 1C ⊥平面 DBE .(6 分)(Ⅱ)设向量=(x ,y ,z )是平面 DA 1E 的法向量,则,.故 2y +z=0,2x +4z=0.令 y=1,则 z=﹣2,x=4,=(4,1,﹣2).(9 分) 等于二面角 A 1﹣DE ﹣B 的平面角,所以二面角 A 1﹣DE ﹣B 的大小为.(12 分),.n n n n ﹣n +1 n n +1 n n nnn nn +1 n n +1 nn n nn ﹣1【点评】本题考查直线与平面垂直的判定,二面角的求法,考查空间想象能力,逻辑思维能力,是中档题.20.(12 分)设数列{a n }的前 n 项和为 S n .已知 a 1=a ,a n +1=S n +3n ,n ∈N *.(I ) 设 b n =S n ﹣3n ,求数列{b n }的通项公式; (II ) 若 a n +1≥a n ,n ∈N *,求 a 的取值范围.【考点】81:数列的概念及简单表示法;8H :数列递推式. 【专题】11:计算题;16:压轴题.【分析】(Ⅰ)依题意得 S =2S +3n ,由此可知 S ﹣3n +1=2(S ﹣3n ).所以 b =S ﹣3n =(a ﹣3)2n ﹣1,n ∈N *.( Ⅱ ) 由题设条件知 S =3n + ( a ﹣ 3 ) 2n ﹣ 1 , n ∈ N * , 于是, a =S ﹣ S 1=,由此可以求得 a 的取值范围是[﹣9,+∞).【解答】解:(Ⅰ)依题意,S n +1﹣S n =a n +1=S n +3n ,即 S n +1=2S n +3n ,由此得 S ﹣3n +1=2S +3n ﹣3n +1=2(S ﹣3n ).(4 分) 因此,所求通项公式为 b =S ﹣3n =(a ﹣3)2n ﹣1,n ∈N *.①(6 分) (Ⅱ)由①知 S =3n +(a ﹣3)2n ﹣1,n ∈N *,于是,当 n ≥2 时,a =S ﹣S =3n +(a ﹣3)×2n ﹣1﹣3n ﹣1﹣(a ﹣3)×2n ﹣2=2×3n ﹣1+(a ﹣3)2n ﹣2, a ﹣a =4×3n ﹣1+(a ﹣3)2n ﹣2= ,当 n ≥2 时, ⇔a ≥﹣9.又 a 2=a 1+3>a 1.综上,所求的 a 的取值范围是[﹣9,+∞).(12 分)【点评】本题考查数列的综合运用,解题时要仔细审题,注意挖掘题设中的隐含条件.21.(12 分)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB 相交于点D,与椭圆相交于E、F 两点.(I)若,求k 的值;(II)求四边形AEBF 面积的最大值.【考点】96:平行向量(共线);KH:直线与圆锥曲线的综合.【专题】11:计算题;16:压轴题.【分析】(1)依题可得椭圆的方程,设直线AB,EF 的方程分别为x+2y=2,y=kx,D(x0,kx0),E(x1,kx1),F(x2,kx2),且x1,x2 满足方程(1+4k2)x2=4,进而求得x2 的表达式,进而根据求得x0 的表达式,由D 在AB 上知x0+2kx0=2,进而求得x0 的另一个表达式,两个表达式相等求得k.(Ⅱ)由题设可知|BO|和|AO|的值,设y1=kx1,y2=kx2,进而可表示出四边形AEBF 的面积进而根据基本不等式的性质求得最大值.【解答】解:(Ⅰ)依题设得椭圆的方程为,直线AB,EF 的方程分别为x+2y=2,y=kx(k>0).如图,设D(x0,kx0),E(x1,kx1),F(x2,kx2),其中x1<x2,且x1,x2 满足方程(1+4k2)x2=4,故.①由知x0﹣x1=6(x2﹣x0),得;由D 在AB 上知x0+2kx0=2,得.所以,化简得24k2﹣25k+6=0,解得或.(Ⅱ)由题设,|BO|=1,|AO|=2.由(Ⅰ)知,E(x1,kx1),F(x2,kx2),不妨设y1=kx1,y2=kx2,由①得x2>0,根据E 与F 关于原点对称可知y2=﹣y1>0,故四边形AEBF 的面积为S=S△OBE +S△OBF+S△OAE+S△OAF=•(﹣y1)==x2+2y2===,当x2=2y2时,上式取等号.所以S 的最大值为.【点评】本题主要考查了直线与圆锥曲线的综合问题.直线与圆锥曲线的综合问题是支撑圆锥曲线知识体系的重点内容,问题的解决具有入口宽、方法灵活多样等,而不同的解题途径其运算量繁简差别很大.22.(12 分)设函数.(I)求f(x)的单调区间;(II)如果对任何x≥0,都有f(x)≤ax,求a 的取值范围.【考点】3R:函数恒成立问题;6B:利用导数研究函数的单调性.【专题】11:计算题;16:压轴题.【分析】(1)先确定函数的定义域然后求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0 和fˊ(x)<0,求出单调区间.(2)令g(x)=ax﹣f(x),根据导数研究单调性的方法,即转化成研究对任何x≥0,都有g(x)≥0 恒成立,再利用分类讨论的方法求出a 的范围.【解答】解:(Ⅰ).(2 分)当(k∈Z)时,,即f'(x)>0;当(k∈Z)时,,即f'(x)<0.因此f(x)在每一个区间(k∈Z)是增函数,f(x)在每一个区间(k∈Z)是减函数.(6分)(Ⅱ)令g (x )=ax ﹣ f (x ),则= = .故当时,g'(x)≥0.又g(0)=0,所以当x≥0 时,g(x)≥g(0)=0,即f(x)≤ax.(9 分)当时,令h(x)=sinx﹣3ax,则h'(x)=cosx﹣3a.故当x∈[0,arccos3a)时,h'(x)>0.因此h(x)在[0,arccos3a)上单调增加.故当x∈(0,arccos3a)时,h(x)>h(0)=0,即sinx>3ax.于是,当x∈(0,arccos3a)时,.当a≤0 时,有.因此,a 的取值范围是.(12 分)【点评】本小题主要考查函数的导数、单调性、不等式等基础知识,考查综合利用数学知识分析问题、解决问题的能力.。
选择题:1. 若函数f(x) = x^2 + 2x + 1,则f(-1)的值为:a) -2b) 0c) 2d) 42. 若a和b是实数,且a ≠ 0,那么方程ax^2 + bx + c = 0有两个不相等的实根的条件是:a) b^2 - 4ac < 0b) b^2 - 4ac = 0c) b^2 - 4ac > 0d) b^2 - 4ac ≠ 03. 一辆汽车以每小时60公里的速度行驶,行驶了2小时,其行驶的路程是:a) 60公里b) 120公里c) 240公里d) 360公里4. 若在某个区间上,函数f(x) = x^3 + 2x^2 + x + 1是增函数,那么该区间的可能取值为:a) (-∞, -1)b) (0, ∞)c) (-1, 0)d) (1, ∞)5. 若函数f(x) = (x + 1)^2 - 4,则f(x)与x轴交点的个数为:a) 0b) 1c) 2d) 3填空题:1. 一瓶药水中溶有6克的盐,溶液的浓度是每升_________克。
答案:6克2. 若a^2 - b^2 = 16,且a - b = 4,则a + b的值是_________。
答案:83. 已知函数f(x) = 3x - 4,解方程f(x) = 5的解为_________。
答案:34. 若对所有的x,有f(x) = f(x + 1),则函数f(x)的周期是_________。
答案:15. 若a:b = 2:3,且b:c = 5:7,则a:c的比值是_________。
答案:10:21应用题:1. 某学校有1000名学生,其中男生占总人数的60%,女生占总人数的40%。
男生中有20%是高三年级的学生,求高三男生的人数。
答案:高三男生的人数是120人。
2. 在一个等差数列中,第1项是3,第10项是15,求该等差数列的公差及第15项的值。
答案:公差为1,第15项的值为29。
3. 在一个等比数列中,第1项是2,公比是3,求该等比数列的第5项及总和。
2008年普通高等学校招生全国统一考试(全国卷H .理)数学(必选+选修I )本试卷分第I 卷(选择题)和第H 卷(非选择题)两部分。
参考公式:如果事件A 、 B 互斥,那么P (A+B ) =P(A) +P ( B )R (AB )= P (A ) P ( B )P n (k)=C ;k P k (1 —p)2 ( k=0,1,2,•- n )、选择题1.设集合M={m € Z|-3< m <2}, N={n € Z|- 1< n w 3},则 M N=A . {0 , 1}B . { — 1, 0, 1}C . {0 , 1, 2}D . { — 1, 0,1 ,2}2 .设 a ,b :=R ,且b MQ 若复数(a + bi ) 3是实数,则A . b 2 =3a 2B . a 2 =3b 2C . b 2 =9a 2D . a 2 =9b 213 .函数 f(x):x-x 的图像关于A . y 轴对称B .直线y - -x 对称C .坐标原点对称D .直线y = x 对称4 .若 x (e',1), 3a =1 nx, b=2lnx, c=ln x ,贝yA . a : b ::: cB . c ■ a :: bC . b a :: cD . b ::c :: ay-x,5.设变量x, y 满足条件 x 22,则z = x-3y 的最小值为x _ -2A . - 2B . - 4C . - 6D . - 86•从20名男同学,10名女同学中任选 3名参加体能测试,则选到的 3名同学中既有男同学又有女同学的概率为如果事件A 、 B 相互独立,那么 其中R 表示球的半径 如果事件A 在一次试验中发生的概率是P ,那么V =4 n R 33n 次独立重复试验中事件 A 恰好发生k 次的概率其中R 表示球的半径球的表面积公式球的体积公式4成的角的余弦值为2 D .311.等腰三角形两腰所在直线的方程分别为 x ,y-2=0和x-7y-4=0,原点在等腰三角形的底边上,则底边所在直线的斜率为12 .已知球的半径为2,相互垂直的两个平面分别截球面得两个圆, 若两圆的公共弦长为 2,则两圆的圆心距等于第n 卷(非选择题,共 90分)二、填空题:(本大题共4个小题,每小题5分,共20分)把答案填在答题卡上。
2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分、第Ⅰ卷1至2页、第Ⅱ卷3至10页、考试结束后,将本试卷和答题卡一并交回、第Ⅰ卷注意事项:1、答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上、2、每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑、如需改动,用橡皮擦干净后,再选涂其他答案标号、不能答在试题卷上、3、本卷共12小题,每小题5分,共60分、在每小题给出的四个选项中,只有一项是符合题目要求的、参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k k n kk n P k C p p k n -=-=,,,,一、选择题1、设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A 、{}01,B 、{}101-,,C 、{}012,,D 、{}1012-,,,2、设a b ∈R ,且0b ≠,若复数3()a bi +是实数,则( ) A 、223b a = B 、223a b =C 、229b a =D 、229a b =3、函数1()f x x x=-的图像关于( )A 、y 轴对称B 、 直线x y -=对称C 、 坐标原点对称D 、 直线x y =对称4、若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A 、a <b <cB 、c <a <bC 、 b <a <cD 、 b <c <a5、设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值( )A 、2-B 、4-C 、6-D 、8-6、从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( ) A 、929B 、1029C 、1929D 、20297、64(1(1的展开式中x 的系数是( ) A 、4-B 、3-C 、3D 、48、若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( )A 、1BCD 、29、设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( ) A、B、C 、(25),D、(210、已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( ) A 、13B、3C、3D 、2311、等腰三角形两腰所在直线的方程分别为20x y +-=与740x y --=,原点在等腰三角形的底边上,则底边所在直线的斜率为( ) A 、3B 、2C 、13-D 、12-12、已知球的半径为2,相互垂直的两个平面分别截球面得两个圆、若两圆的公共弦长为2,则两圆的圆心距等于( ) A 、1B 、2C 、3D 、22008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分、把答案填在题中横线上、13、设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ 、 14、设曲线ax y e =在点(01),处的切线与直线210x y ++=垂直,则a = 、 15、已知F 是抛物线24C y x =:的焦点,过F 且斜率为1的直线交C 于A B ,两点、设FA FB >,则FA 与FB 的比值等于 、16、平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② 、 (写出你认为正确的两个充要条件)三、解答题:本大题共6小题,共70分、解答应写出文字说明,证明过程或演算步骤、 17、(本小题满分10分) 在ABC △中,5cos 13B =-,4cos 5C =、 (Ⅰ)求sin A 的值;(Ⅱ)设ABC △的面积332ABC S =△,求BC 的长、 18、(本小题满分12分)购买某种保险,每个投保人每年度向保险公司交纳保费a 元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金、假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立、已知保险公司在一年度内至少支付赔偿金10 000元的概率为41010.999-、(Ⅰ)求一投保人在一年度内出险的概率p ;(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元)、19、(本小题满分12分)如图,正四棱柱1111ABCD A BC D -中,124AA AB ==,点E 在1CC 上且EC E C 31=、 (Ⅰ)证明:1AC ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小、20、(本小题满分12分)设数列{}n a 的前n 项和为n S 、已知1a a =,13n n n a S +=+,*n ∈N 、(Ⅰ)设3n n n b S =-,求数列{}n b 的通项公式; (Ⅱ)若1n n a a +≥,*n ∈N ,求a 的取值范围、21、(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点、 (Ⅰ)若6ED DF =,求k 的值; (Ⅱ)求四边形AEBF 面积的最大值、 22、(本小题满分12分) 设函数sin ()2cos xf x x=+、(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围、ABCD EA 1B 1C 1D 12008年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案和评分参考评分说明:1、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要 考查内容比照评分参考制订相应的评分细则、2、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和 难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分、3、解答右端所注分数,表示考生正确做到这一步应得的累加分数、4、只给整数分数、选择题不给中间分、一、选择题1、B2、A3、C4、C5、D6、D7、B8、B9、B 10、C 11、A 12、C 二、填空题13、2 14、2 5、3+16、两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形、注:上面给出了四个充要条件、如果考生写出其他正确答案,同样给分、 三、解答题 17、解:(Ⅰ)由5cos 13B =-,得12sin 13B =, 由4cos 5C =,得3sin 5C =、所以33sin sin()sin cos cos sin 65A B C B C B C =+=+=、 ····································· 5分 (Ⅱ)由332ABC S =△得 133sin 22AB AC A ⨯⨯⨯=, 由(Ⅰ)知33sin 65A =,故 65AB AC ⨯=, ·············································································· 8分又 sin 20sin 13AB B AC AB C ⨯==, 故 2206513AB =,132AB =、 所以 sin 11sin 2AB A BC C ⨯==、 ································································· 10分18、解:各投保人是否出险互相独立,且出险的概率都是p ,记投保的10 000人中出险的人数为ξ, 则4~(10)B p ξ,、(Ⅰ)记A 表示事件:保险公司为该险种至少支付10 000元赔偿金,则A 发生当且仅当0ξ=, ····································································································· 2分()1()P A P A =-1(0)P ξ=-=4101(1)p =--,又410()10.999P A =-,故0.001p =、 ······························································································· 5分 (Ⅱ)该险种总收入为10000a 元,支出是赔偿金总额与成本的和、 支出 1000050000ξ+,盈利 10000(1000050000)a ηξ=-+,盈利的期望为 1000010000500E aE ηξ=--, ·········································· 9分由43~(1010)B ξ-,知,31000010E ξ-=⨯,4441010510E a E ηξ=--⨯4443410101010510a -=-⨯⨯-⨯、0E η≥4441010105100a ⇔-⨯-⨯≥1050a ⇔--≥ 15a ⇔≥(元)、故每位投保人应交纳的最低保费为15元、 ························································· 12分19、解法一:依题设知2AB =,1CE =、(Ⅰ)连结AC 交BD 于点F ,则BD AC ⊥、由三垂线定理知,1BD AC ⊥、 ········································································· 3分 在平面1ACA 内,连结EF 交1AC 于点G ,由于1AA ACFC CE== 故1Rt Rt A AC FCE △∽△,1AAC CFE ∠=∠, CFE ∠与1FCA ∠互余、于是1AC EF ⊥、 1AC 与平面BED 内两条相交直线BD EF ,都垂直, 所以1AC ⊥平面BED 、 ·················································································· 6分 (Ⅱ)作GH DE ⊥,垂足为H ,连结1A H 、由三垂线定理知1A H DE ⊥,故1A HG ∠是二面角1A DE B --的平面角、························································ 8分EF =CE CF CG EF ⨯==EG ==、 13EG EF =,13EF FD GH DE ⨯=⨯=又1AC ==11AG AC CG =-=、11tan A GA HG HG∠== 所以二面角1A DE B --的大小为 ················································· 12分 解法二:以D 为坐标原点,射线DA 为x 轴的正半轴, 建立如图所示直角坐标系D xyz -、依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,、(021)(220)DE DB ==,,,,,,AB CDEA 1B 1C 1D 1 FH G11(224)(204)AC DA =--=,,,,,、 ····································································· 3分 (Ⅰ)因为10AC DB =,10AC DE =, 故1AC BD ⊥,1AC DE ⊥、 又DBDE D =,所以1AC ⊥平面DBE 、 ·················································································· 6分 (Ⅱ)设向量()x y z =,,n 是平面1DA E 的法向量,则DE ⊥n ,1DA ⊥n 、故20y z +=,240x z +=、令1y =,则2z =-,4x =,(412)=-,,n 、 ····················································· 9分1AC ,n 等于二面角1A DE B --的平面角, 11114cos 42AC AC AC ==,nn n 、 所以二面角1A DE B --的大小为、 ················································· 12分 20、解:(Ⅰ)依题意,113n n n n n S S a S ++-==+,即123n n n S S +=+,由此得1132(3)n n n n S S ++-=-、 ······································································· 4分 因此,所求通项公式为13(3)2n n n n b S a -=-=-,*n ∈N 、① ······························································ 6分 (Ⅱ)由①知13(3)2n n n S a -=+-,*n ∈N , 于是,当2n ≥时,1n n n a S S -=-1123(3)23(3)2n n n n a a ---=+-⨯---⨯ 1223(3)2n n a --=⨯+-,12143(3)2n n n n a a a --+-=⨯+-22321232n n a --⎡⎤⎛⎫=∙+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 当2n ≥时,21312302n n n a a a -+⎛⎫⇔∙+- ⎪⎝⎭≥≥9a ⇔-≥、又2113a a a =+>、综上,所求的a 的取值范围是[)9-+∞,、 ························································· 12分 21、(Ⅰ)解:依题设得椭圆的方程为2214x y +=, 直线AB EF ,的方程分别为22x y +=,(0)y kx k =>、 ····································· 2分 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <, 且12x x ,满足方程22(14)4k x +=,故21x x =-=、①由6ED DF =知01206()x x x x -=-,得021215(6)77x x x x =+==; 由D 在AB 上知0022x kx +=,得0212x k=+、 所以212k =+, 化简得2242560k k -+=,解得23k =或38k =、 ······················································································ 6分 (Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F ,到AB 的距离分别为1h ==2h==·······················································9分又AB==AEBF的面积为121()2S AB h h=+1525(14k=+==≤当21k=,即当12k=时,上式取等号、所以S的最大值为 ························ 12分解法二:由题设,1BO=,2AO=、设11y kx=,22y kx=,由①得2x>,21y y=->,故四边形AEBF的面积为BEF AEFS S S=+△△222x y=+ ····································································································9分===当222x y=时,上式取等号、所以S的最大值为······································· 12分22、解:(Ⅰ)22(2cos)cos sin(sin)2cos1()(2cos)(2cos)x x x x xf xx x+--+'==++、 ·····························2分2008年高考各省各科真题及解析11 / 11当2π2π2π2π33k x k -<<+(k ∈Z )时,1cos 2x >-,即()0f x '>; 当2π4π2π2π33k x k +<<+(k ∈Z )时,1cos 2x <-,即()0f x '<、 因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,(k ∈Z )是增函数, ()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,(k ∈Z )是减函数、 ····························· 6分 (Ⅱ)令()()g x ax f x =-,则22cos 1()(2cos )x g x a x +'=-+ 2232cos (2cos )a x x =-+++ 211132cos 33a x ⎛⎫=-+- ⎪+⎝⎭、 故当13a ≥时,()0g x '≥、 又(0)0g =,所以当0x ≥时,()(0)0g x g =≥,即()f x ax ≤、 ························ 9分 当103a <<时,令()sin 3h x x ax =-,则()cos 3h x x a '=-、 故当[)0arccos3x a ∈,时,()0h x '>、因此()h x 在[)0arccos3a ,上单调增加、故当(0arccos3)x a ∈,时,()(0)0h x h >=, 即sin 3x ax >、于是,当(0arccos3)x a ∈,时,sin sin ()2cos 3x x f x ax x =>>+、 当0a ≤时,有π1π0222f a ⎛⎫=>∙ ⎪⎝⎭≥、 因此,a 的取值范围是13⎡⎫+∞⎪⎢⎣⎭,、 ··································································· 12分。
2008年普通高等学校招生全国统一考试(全国卷2数学)理科数学( 必修+选修Ⅱ)第Ⅰ卷一、选择题1.设集合M{ m Z| 3 m 2} ,N { n Z| 1 ≤n ≤3},则M N ()A.0,1 B.1,0,1 C.0,1,2 D.1,0,1,22.设a,b R且b 0 ,若复数 3( a bi ) 是实数,则()A. 2 2b a B.32 2a b C.32 2b a D.92 2a 9b3.函数1f ( x)xx的图像关于()A.y 轴对称B.直线y x 对称C.坐标原点对称D.直线y x 对称4.若 1 3x ( e ,1), a ln x,b 2 ln x,c ln x ,则()A.a < b < c B.c <a < b C. b < a < c D. b < c < a≥,yx≤5.设变量x,y 满足约束条件:x 2 y 2 ,则z x 3 y 的最小值(),≥x 2.A. 2 B. 4 C. 6 D.86.从20 名男同学,10 名女同学中任选 3 名参加体能测试,则选到的 3 名同学中既有男同学又有女同学的概率为()A.929B.1029C.1929D.20297. 6 4(1 x ) (1 x ) 的展开式中x 的系数是()A. 4 B. 3 C.3 D.48.若动直线x a 与函数 f ( x ) sin x 和g ( x) cos x 的图像分别交于M ,N 两点,则MN 的最大值为()A.1 B. 2 C. 3 D.22 2x y9.设a 1 ,则双曲线 2 2 1的离心率 e 的取值范围是()a (a 1)A.( 2,2) B.( 2,5)C.(2 ,5) D.(2 ,5 )第1 页(共11 页)10.已知正四棱锥 S AB C D 的侧棱长与底面边长都相等, E 是 SB 的中点,则 AE , SD 所成的角的余弦值为( )1 23 2A .B .C .D .333311.等腰三角形两腰所在直线的方程分别为 x y 2 0 与 x 7 y 4 0 ,原点在等腰三角形的底边上,则底边所在直线的斜率为( ) A .3B .2C .1 3D .1 212.已知球的半径为 2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为 2,则两圆的圆心距等于( )A .1B . 2C . 3D .2第Ⅱ卷二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.把答案填在题中横线上.13.设向量 a (1,2) , b(2 ,3) ,若向量ab 与向量 c( 4, 7) 共线,则.14.设曲线 axye 在点 (0 ,1) 处的切线与直线 x 2 y 1 0 垂直,则 a.15.已知 F 是抛物线 2C : yx 的焦点,过 F 且斜率为 1 的直线交 C 于 A , B 两点.设 FA FB ,4则 FA 与 FB 的比值等于 .16.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空 间中的一个四棱柱为平行六面体的两个充要条件: 充要条件① ; 充要条件②.(写出你认为正确的两个充要条件) 三、解答题:本大题共6 小题,共 70 分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分 10 分)在 △ A B C 中, cos 5 B ,13cos 4 C .5(Ⅰ)求 sin A 的值; (Ⅱ)设 △ A B C 的面积 33△,求 B C 的长.SA BC218.(本小题满分 12 分)购买某种保险, 每个投保人每年度向保险公司交纳保费a 元,若投保人在购买保险的一年度内出险,则可以获得 10 000 元的赔偿金. 假定在一年度内有 10 000 人购买了这种保险, 且各投保人是否出险 相互独立.已知保险公司在一年度内至少支付赔偿金 10 000 元的概率为4101 0.999 .(Ⅰ)求一投保人在一年度内出险的概率p ;(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000 元,为保证盈利的期望不小于 0,求每位投保人应交纳的最低保费(单位:元).第2 页(共11 页)19.(本小题满分12 分)如图,正四棱柱A BC D ABCD 中,AA1 2 AB 4 ,点E 在CC 1 上且C1 E 3EC .1 1 1 1(Ⅰ)证明:A C 平面B E D ;1 D1 C1(Ⅱ)求二面角 A D E B 的大小.1 A1 B1ED C A B20.(本小题满分12 分)设数列 a 的前n 项和为S .已知n n a a ,1na 1 S 3 ,n n*n N.n(Ⅰ)设 b S 3 ,求数列n n b 的通项公式;n(Ⅱ)若a≥ a ,n 1 n*n N,求a 的取值范围.21.(本小题满分12 分)设椭圆中心在坐标原点, A (2 ,0),B (0,1) 是它的两个顶点,直线y kx ( k 0) 与AB 相交于点D,与椭圆相交于E、F 两点.(Ⅰ)若ED 6DF ,求k 的值;(Ⅱ)求四边形A EBF 面积的最大值.22.(本小题满分12 分)sin x设函数 f ( x).2 cos x(Ⅰ)求 f ( x) 的单调区间;(Ⅱ)如果对任何x≥0 ,都有 f ( x ) ≤ax ,求a 的取值范围.第3 页(共11 页)2008 年参考答案和评分参考一、选择题1.B 2.A 3.C 4.C 5.D 6.D7.B 8.B 9.B 10.C 11.A 12.C部分题解析:2. 设a,b R且b 0 ,若复数 3( a bi ) 是实数,则()A. 2 2b a B.32 2a b C.32 2b a D.92 2a b ,9解: 3 3 2 2 3( a bi ) a 3a bi 3a(bi ) (bi ) (←考查和的立方公式,或二项式定理)3 2 2 3(a 3a b ) ( 3a b b ) i(←考查虚数单位i 的运算性质)R (←题设条件)∵a,b R且b 0∴ 2 33a b b 0 (←考查复数与实数的概念)∴ 2 2b a .3故选 A.6. 从20 名男同学,10 名女同学中任选 3 名参加体能测试,则选到的 3 名同学中既有男同学又有女同学的概率为()A.929B.1029C.1929D.2029思路1:设事件A:“选到的 3 名同学中既有男同学又有女同学”,其概率为:P ( A )2 1 1 2C C C C20 10 20 103C30(←考查组合应用及概率计算公式)2 0 1 9 1 0 91 02 02 1 2 13 0 2 9 2 8(←考查组合数公式)3 2 11 0 1 9 1 0 1 0 1 0 9(←考查运算技能) 1 0 2 9 1 42029故选 D.思路2:设事件A:“选到的 3 名同学中既有男同学又有女同学”,事件 A 的对立事件为 A :“选到的 3 名同学中要么全男同学要么全女同学”其概率为:P ( A) 1 P ( A) (←考查对立事件概率计算公式)13 3C C20 103C30(←考查组合应用及概率计算公式)第4 页(共11 页)20 19 8 10 9 81 32 13 2 130 29 28(←考查组合数公式)3 2 12 0 1 9 1 8 1 0 9 8(←考查运算技能) 3 0 2 9 2 82029故选 D.7. 已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于()A.1 B. 2 C. 3 D.2分析:如果把公共弦长为 2 的相互垂直的两个截球面圆,想成一般情况,问题解决起来就比较麻烦,许多考生就是因为这样思考的,所以浪费了很多时间才得道答案;但是,如果把公共弦长为2 的相互垂直的两个截球面圆,想成其中一个恰好是大圆,那么两圆的圆心距就是球心到另一个小圆的距离 3 ,问题解决起来就很容易了.二、填空题13.2 14.2 5.3 2 216.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分.三、解答题17.解:(Ⅰ)由cos5B ,得13sin12B ,13由cos4C ,得5sin3C .5所以33sin A sin( B C ) sin B cos C cos B sin C .···········································5 分65(Ⅱ)由33S△得ABC21 33A B A C sin A ,2 2由(Ⅰ)知sin33A ,65故AB AC 65 ,·······································································································8 分又A B sin B 20A C A Bsin C 13,故20132A B 65 ,13A B .2所以 B CA B sin A 11sin C 2 . (10)分18.解:各投保人是否出险互相独立,且出险的概率都是p ,记投保的10 000 人中出险的人数为,第5 页(共11 页)4则~ B (10 , p ) .(Ⅰ)记A 表示事件:保险公司为该险种至少支付10 000 元赔偿金,则A 发生当且仅当 0 ,···· ······ ······ ······ ······ ···· ·· ···· ······ ······ ······ ······ ······ ······ ······ ······ ···· ·· ···· ··· ······ ······ ······ ······ ······ ····2 分P ( A ) 1P ( A ) 1P (0)4101 (1 p ) ,又410 P (A ) 1 0.999 ,故 p 0.001 . ····· ···· ·· ···· ······ ······ ······ ······ ······ ······ ······ ······ ··· ······ ···· ······ ······ ······ ······ ······ ····5 分(Ⅱ)该险种总收入为 10 000 a 元,支出是赔偿金总额与成本的和. 支出 1 0 0 0 05 0 0,0盈利 1 0 0 0a0( 1 0 0 0 05 0,0盈利的期望为 E1 0 0 0 a 0 1 0 0E0 05 ,0 ····· ······ ···· ······ ······ ······ ······ ······ ····9 分由43~ B (10 ,10 ) 知,3E10 000 10 ,444E10 a10 E5 104443410 a 10 10105 10 .E ≥44410 a 1010 5 10≥ 0a≥10 5a ≥(元).15故每位投保人应交纳的最低保费为 15 元. ·· ······ ······ ······ ···· ·· ···· ··· ······ ······ ······ ······ ······ ··12 分19.解法一:D1依题设知 A B 2 , C E 1 .C 1(Ⅰ)连结A C 交 BD 于点 F ,则B D A C .A 1B1由三垂线定理知, B DA C . 1······ ······ ······ ······ ······ ··· ······ ······ ···· ······ ······ ······ ······ ······ ····3 分H E在平面 A C A 内,连结E F 交 A 1C 于点 G ,1G DA A A C C1 2 2由于, A BF F C C E第6 页(共11 页)故R t △A AC ∽Rt △FCE ,1 AA C CFE ,1C F E 与F C A 互余.1于是A C EF .1A C 与平面B E D 内两条相交直线 B D,E F 都垂直,1所以A C 平面 B ED .·······························································································6 分1(Ⅱ)作G H D E ,垂足为H ,连结A H .由三垂线定理知A H D E ,1 1故A HG 是二面角1 A D E B 的平面角.1·······························································8 分2 2EF CF CE 3 ,C GC E C FE F 23, 2 23 EG C E C G.3EG 1 1 EF F D 2,G H . EF 3 3 D E 15又 2 2A1 C AA1 AC 2 6 ,5 6A G A C C G .1 13A G1tan A H G 5 51H G .所以二面角A D E B 的大小为arctan 5 5 .1························································12 分z解法二:以D 为坐标原点,射线 D A 为x 轴的正半轴,D1 C1建立如图所示直角坐标系D xyz .A1 B1 依题设,B (2 ,2,0) ,C (0,2,0),E (0,2,1), A (2 ,0,4) .1 ED E (0 ,2,1),D B (2 ,2,0) ,xDA BCyA1 C ( 2,2,4),DA1 (2,0,4) .················································································3 分(Ⅰ)因为A1C DB 0 ,A1C DE 0 ,故A C BD ,A1C D E .1又DB DE D ,第7 页(共11 页)所以A C 平面 D BE .····························································································6 分1(Ⅱ)设向量n( x,y,z)是平面D A E 的法向量,则1n DE ,n D A .1故2 y z 0 ,2 x 4 z 0 .令y 1,则z 2 ,x 4 ,n(4 ,1,2) .······························································9 分n等于二面角,A C1 A D E B 的平面角,1cos n A C,1 nnA C1A C11442.所以二面角 A D E B 的大小为a rccos11442.·························································12 分20.解:(Ⅰ)依题意,nS 1 S a 1 S 3 ,即n n n nnS 1 2S 3 ,n n由此得n 1 nS S .···················································································4 分1 3 2( 3 )n n因此,所求通项公式为n n 1b S 3 ( a 3)2 ,n n*n N.①········································································6 分(Ⅱ)由①知n n 1S 3 ( a 3)2 ,n*n N,于是,当n ≥ 2 时,a S Sn n n1n n 1 n 1 n 2 3 ( a 3) 2 3 ( a 3) 2n 1 n 22 3 ( a 3)2 ,n 1 n 2a 1 a 4 3 (a 3)2n nn 2n2 32 12 a3 ,2当n ≥ 2 时,n 2 3a ≥ a 12 a 3≥0n 1 n2第8 页(共11 页)a ≥.9又a2 a13 a1 .综上,所求的 a 的取值范围是9,.·································································12 分21.(Ⅰ)解:依题设得椭圆的方程为2x42 1y ,直线A B,EF 的方程分别为x 2 y 2 ,y kx ( k 0) .··········································2 分如图,设D ( x ,kx ),E ( x ,kx ),F ( x ,kx ) ,其中0 0 1 1 2 2 x x ,1 2且x ,x 满足方程1 22 2(1 4k ) x 4 ,yBF故x x2 121 4k 2.①EODAx由ED 6DF 知x0 x1 6( x2 x0 ) ,得1 5 10x (6 x x ) x0 2 1 27 7 7 1 4k 2;由D 在A B 上知x0 2kx0 2 ,得x 021 2 k.2 10所以,1 2 k 7 1 4k 2化简得 224 k 25 k 6 0 ,解得2k 或33k .8··································································································6 分(Ⅱ)解法一:根据点到直线的距离公式和①式知,点E,F 到 A B 的距离分别为h 12x 2kx 2 2(1 2k 1 4k ) 1 125 5(1 4 )k,h 22x 2kx 2 2(1 2k 1 4k )2 225 5(1 4 )k.······························································9 分又 2AB 2 1 5 ,所以四边形A EBF 的面积为1S A B (h h )1 221 4(12 k)52 5(1 4 2 )k第9 页(共11 页)2(1 2 k )2 1 4 k221 4k4k21 4k≤ 2 2 ,当2k 1 ,即当1k 时,上式取等号.所以S的最大值为2 2 .2···························12 分解法二:由题设,BO 1 ,AO 2 .设y kx ,1 1 y kx ,由①得2 2x2 0 ,y 2 y1 0 ,故四边形A EBF 的面积为S S△S△BEF AEFx2 2 y2 ····················································································································9 分( x 2 y )2 222 2x2 4 y2 4 x2 y2≤ 2 22( x 4 y )2 22 2 ,当x2 2 y2 时,上式取等号.所以S的最大值为2 2 .············································12 分22.解:(Ⅰ) f ( x) (2 cos x) cos x sin x( sin x) 2 cos x 12 2(2 cos x) (2 cos x).··································2 分当2 π2π2kπx 2kπ(k Z)时,3 3cos1x ,即 f ( x) 0 ;2当2 π4π2kπx 2kπ(k Z)时,3 3cos1x ,即 f ( x) 0 .2因此 f ( x)在每一个区间2π2π2 π 2 πk ,k (k Z)是增函数,3 3f ( x)在每一个区间2π4π2 π 2 πk ,k (k Z)是减函数.3 3································6 分(Ⅱ)令g ( x ) ax f ( x),则11 页)第10 页(共g (x) a2 cos x 12 (2 cos x)a2 32 cos x (2 cos x)2321 1 1a2 cos x3 3.故当1a ≥时,g ( x)≥0 .3又g (0) 0 ,所以当x ≥0 时,g ( x)≥g (0) 0 ,即 f ( x ) ≤ax .··························9 分当01a 时,令h(x ) sin x 3ax ,则h( x)cos x 3a.3故当x 0,arccos 3a 时,h ( x) 0 .因此h( x ) 在0,arccos 3a 上单调增加.故当x (0 ,arccos 3a ) 时,h(x ) h (0) 0 ,即sin x 3ax .于是,当x (0,arccos 3a)时,sin x sin xf ( x ) ax2 cos x 3.π 1 π当a ≤0 时,有f≥ a .2 2 21因此, a 的取值范围是,.··············································································12 分311 页)第11 页(共。
绝密★启用前 【考试时间:6月7日 15:00—17:00】2008年普通高等学校招生全国统一考试理科数学本试卷分第Ⅰ(选择题)卷和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
满分150分,考试用时120分钟。
第Ⅰ卷(选择题,共60分)注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚,并认真核准条形码的准考证号码、姓名、考场号、座位号及科目,在规定的位置贴好条形码。
2.每小题选出答案后,用2B 铅笔吧答题卡上对应题目的答案涂黑。
如需改动用橡皮擦擦干净后,再选涂其它答案标号。
答在试卷上的答案无效。
参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k nP k (1-P)n -k本卷12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一.选择题(1)设集合}23{<<-∈=m Z m M ,}31{≤≤-∈=n Z n N ,则=⋂N MA .}1,0{ B. }1,0,1{- C. }2,1,0{ D }2,1,0,1{- (2)设a ,b ∈R 且b ≠0,若复数3bi)(a +是实数,则A . 223a b = B. 223b a = C. 229a b = D.229b a =球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径(3)函数x xx f -=1)(的图像关于 A . y 轴对称 B.直线y=-x C.坐标原点对称 D.直线y=x (4)若)1,(1-∈e x ,x ln =a ,x ln 2=b ,x 3ln =c ,则A .c b a << B. b a c << C. c a b << D. a c b <<(5)设变量x,y 满足约束条件:2,22,-≥≤+≥x y x x y 则y x z 3-=的最小值为:A .-2 B.-4 C. -6 D.-8(6)从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为 A .299 B. 2910 C. 2919 D. 2920 (7)()()4611x x+-的展开式中x 的系数是A .-4 B.-3 C.3 D.4(8)若动直线a x =与函数x x f sin )(=和x x g cos )(=的图像分别交于M 、N 两点,则MN 的最大值为A .1 B. 2 C.3 D.2(9)设1>a ,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是 A .)2,2( B. )5,2( C. )5,2( D. )5,2((10)已知正四棱锥S-ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE 、SD 所成的角的余弦值为 A .31 B. 32 C. 33 D. 32 (11)等腰三角形两腰所在直线的方程分别为02=-+y x 和047=--y x ,原点在等腰三角形的底边上,则底边所在直线的斜率为 A .3 B. 2 C. 31-D. 21-(12)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于A .1 B. 2 C. 3 D. 2第Ⅱ卷(非选择题,共90分)二.填空题:(本大题共4个小题,每小题5分,共20分。
2008年全国统一高考数学试卷(理科) (全国卷n )、选择题(共12小题,每小题5分,满分60 分)1.( 5 分)设集合 M={m € Z| - 3< m < 2} ,N={n € Z| - K n < 3},则 M n N=( )(5分)从20名男同学,10名女同学中任选3名参加体能测试,则选到的3 名同学中既有男同学又有女同学的概率为( ) A gB 10C 19292929(5分)(1 -五)6 (1皿)4的展开式中x 的系数是(10. (5分)已知正四棱锥S- ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,9. 2卩7=1的离心率e 的取值范围是(C. (2, 5)D .⑵亦)2. 3. 4. 5. A . {0, 1} C. {0, 1, 2}(5分)设a , A . b 2=3a 2(5分)函数f A . y 轴对称(5分)若x € A . a v b < c(5分)设变量A .- 2B . { - 1, 0, 1} D . { - 1, 0, 1, 2}b € R 且b M 0,若复数(a+bi ) 3是实数,则( B . a 2=3b 2C. b 2=9a 2(x )丄 -x 的图象关于( )B . (e -1. B . D . a 2=9b 2直线y=- x 对称C.坐标原点对称 1), a=lnx , b=2Inx , c=ln 3x ,贝^( c < a < bx , y 满足约束条件: B .- 4D . D . 直线y=x 对称b <c < aC. b < a < c好勿<2,则z=x- 3y 的最小值( )D .- 8 6. 7. 8. A .- 4B .- 3C. 3D . 4(5分)若动直线x=a 与函数f (X )=sinx 和 g (x ) =cosx 的图象分别交于M , N 两点,则I MN|的最大值为( B .近A . 1D . 2则AE、SD所成的角的余弦值为(A.吉B.乎)C亜.3第1页(共22页)两圆的公共弦长为2,则两圆的圆心距等于( )B.血 C.血二、填空题(共4小题,每小题5分,满分20分)13. (5 分)设向量2), b=(2, 3),若向量 X a+b 与向量&(_4, -T)共 线,贝y 入 ____ .14. (5分)设曲线y=e ax 在点(0,1)处的切线与直线x+2y+1=0垂直,则a ___ . 15. (5分)已知F 是抛物线C : y 2=4x 的焦点,过F 且斜率为1的直线交C 于A , B 两点.设I FA >I FB ,则I FA 与I FB 的比值等于 __________ .16. (5分)平面内的一个四边形为平行四边形的充要条件有多个,如两组对边 分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件: 充要条件① 充要条件②(写出你认为正确的两个充要条件)三、解答题(共6小题,满分70分)17. (10分)在^ ABC 中,cosB=-备,cosC=- (1)求si nA 的值(2)设^ ABC 的面积S A ABC ^,求BC 的长.18. (12分)购买某种保险,每个投保人每年度向保险公司交纳保费 a 元,若投 保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年11. (5分)等腰三角形两腰所在直线的方程分别为 x+y - 2=0与X - 7y - 4=0,原 点在等腰三角形的底边上,则底边所在直线的斜率为( ) 一— D .丄3212. (5分)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆,若A . 3B . 2C.A . 1D . 2度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为1 - 0.999 Md.(I )求一投保人在一年度内出险的概率P;(n )设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元)19. (12分)如图,正四棱柱ABCD- A i B i C i D i中,AA i=2AB=4,点E在CG上且C i E=3EC(I )证明:AQ丄平面BED(n )求二面角A1 - DE- B的大小.Cl■41ft20. (12 分)设数列{a n}的前n 项和为S n.已知a1=a,a n+1=Si+3n,n € N*.(I )设b n=S- 3n,求数列{b n}的通项公式;(n )若a n+1 >a n,n € N*,求a的取值范围.21. (12分)设椭圆中心在坐标原点,A (2, 0),B (0,1)是它的两个顶点, 直线y=kx (k>0) 与AB相交于点D,与椭圆相交于E、F两点.(I )若m=6Df,求k的值;(n)求四边形AEBF面积的最大值.22. (12分)设函数f⑷二自血2+cosx(I)求f (X)的单调区间;(n)如果对任何x>0,都有f (x)< ax,求a的取值范围.参考答案与试题解析C. {0, 1, 2} D . { - 1, 0, 1, 2}【考点】1E:交集及其运算.【分析】由题意知集合M={m € z| -3v m v 2} , N={n € z| - K n W 3},然后根 据交集的定义和运算法则进行计算.【解答】解:••• M={ - 2,- 1, 0, 1} , N={ - 1, 0, 1 , 2, 3}, ••• M n N={ - 1, 0, 1}, 故选:B.【点评】此题主要考查集合和交集的定义及其运算法则,是一道比较基础的题.A. b 2=3a 2B. a 2=3b 2C. b 2=9a 2D. a 2=9b 2【考点】A5:复数的运算.【分析】复数展开,化为a+bi (a 、b € R )的形式,虚部为 【解答】解:(a+bi ) 3=a 3+3a 2bi - 3ab 2 - b 3i= (a 3 - 3ab 2) + 实数且 b 工0,所以 3a 2b - b 3=0? b 2=3a 2 故选:A .【点评】本题考查复数的基本运算,是基础题.-x 的图象关于()B .直线y=- x 对称C.坐标原点对称第5页(共22页)2 (5分)设a , b € R 且b M 0,若复数(a+bi ) 3是实数,则( )(()2008年全国统一高考数学试卷(理科)(全国卷n )、选择题(共 12小题,每小题5分,满分60分)1.( 5分)设集合 M={m € Z| - 3v m v 2} ,N={n € Z| - K n W 3},则 M n N=( )A . {0, 1}B . { - 1, 0, 1}0即可.(3a 2b — b 3) i ,因是 A . y 轴对称 D .直线y=x 对称••• T 捕二丄是奇函数,所以f (X )的图象关于原点对称 故选:C.【点评】本题主要考查函数奇偶性的性质,是高考必考题型.4. (5分)若 x €(e 1, 1), a=lnx , b=2lnx , c=ln 3x ,贝9(于是 b - a=2Inx -lnx=lnx <0,从而 b <a .又 a - c=lnx- ln 3x=a (1+a ) (1 - a )< 0,从而 a <c . 综上所述,b < a < c. 故选:C.【点评】对数值的大小,一般要用对数的性质,比较法,以及 本题是基础题.【考点】7C:简单线性规划.【考点】 3M :奇偶函数图象的对称性.【分析】 【解答】 根据函数f (X )的奇偶性即可得到答案.-1+x= - f (x ) 解:••• f (- X )=A . a v b < cB . c < a < b C. b < a < c D. b <c <a【考点】 4M :对数值大小的比较.【分析】 根据函数的单调性,求a 的范围,用比较法,比较 a 、b 和a 、c 的大小.【解答】 解:因为a=lnx 在(0, +x )上单调递增, 故当x € (e -1, 1)时,a € (- 1, 0),0或1的应用,5. (5分)设变量x , y 满足约束条件: A .- 2 B .- 4 彳好勿<2,则z=x- 3y 的最小值()D .- 8【专题】11:计算题.廿务<2的平面区域,求出平面区域的各.K >-2角点,然后将角点坐标代入目标函数,比较后,即可得到目标函数 Z=x-3y的最小值.【解答】解:根据题意,画出可行域与目标函数线如图所示, 由图可知目标函数在点(-2, 2)取最小值-8【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件 和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列 出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将 可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.6. (5分)从20名男同学,10名女同学中任选3名参加体能测试,则选到的3 名同学中既有男同学又有女同学的概率为( )强B 境C 境【考点】C6:等可能事件和等可能事件的概率.【分析】由题意知本题是一个古典概型,试验发生的所有事件从 30名同学中任 选3名参加体能测试共有C 303种结果,而满足条件的事件是选到的3名同学中既有男同学又有女同学共有 C 2O 1C IO 2+C 2O 2C IO 1种结果.代入公式得到结果. 【解答】解:由题意知本题是一个古典概型,【分析】我们先画出满足约束条件:D.fi•••试验发生的所有事件从30名同学中任选3名参加体能测试共有C303种结果, 满足条件的事件是选到的3名同学中既有男同学又有女同学共有C201C I02+C202C I01种结果, •由古典概型公式得到□_°20。
2008年普通高等学校招生全国统一考试(2全国Ⅱ卷)数学(理)试题一、选择题 ( 本大题 共 12 题, 共计 60 分)1.设集合{|32}M m m =∈-<<Z ,{|13}N n n MN =∈-=Z 则,≤≤( )A.{}01, ﻩB .{}101-,, ﻩ C.{}012,, ﻩD.{}1012-,,, 2.设a b ∈R ,且0b ≠,若复数3()a bi +是实数,则( )A .223b a =ﻩB.223a b = C .229b a =ﻩﻩD.229a b = 3.函数1()f x x x=-的图像关于( ) A .y 轴对称 B. 直线x y -=对称C . 坐标原点对称 ﻩD. 直线x y =对称4.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A.a <b <c ﻩﻩ B .c <a <b ﻩ C . b <a <c ﻩD . b <c <a5.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值( )A.2-ﻩ B.4- C.6- D.8-6.从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( ) A.929 B .1029ﻩ C .1929 D.20297.64(1(1+的展开式中x 的系数是( )A.4- ﻩB.3-ﻩﻩ C.3 ﻩD.48.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( )A.1ﻩD.29.设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( )A.ﻩﻩB.ﻩﻩC .(25),ﻩﻩD.(210.已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( )A.13 B .3ﻩﻩC ﻩD.2311.等腰三角形两腰所在直线的方程分别为20x y +-=与740x y --=,原点在等腰三角形的底边上,则底边所在直线的斜率为( )A .3ﻩB .2ﻩ C.13- D.12- 12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( )A.1 B.2 ﻩﻩC.3 ﻩﻩD .2二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ .14.设曲线ax y e =在点(01),处的切线与直线210x y ++=垂直,则a = . 15.已知F 是抛物线24C y x =:的焦点,过F 且斜率为1的直线交C 于A B ,两点.设FA FB >,则FA 与FB 的比值等于 .16.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.。
2008年普通高等学校招生全国统一考试(全国卷2)数学(供理科考生使用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共60分)参考公式:如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(012)k k n kn n P k C P p k n -=-=,,,,其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}3|0|31x M x x N x x x +⎧⎫==<=-⎨⎬-⎩⎭,≤,则集合{}|1x x ≥=( ) A .M N B .M NC .()M MN ðD .()M MN ð2.135(21)lim(21)x n n n →∞++++-=+( )A .14B .12C .1D .23.圆221x y +=与直线2y kx =+没有..公共点的充要条件是( )A .(k ∈B .((2)k ∈-+,∞C .(k ∈D .((3)k ∈-+,∞4.复数11212i i +-+-的虚部是( ) A .15i B .15 C .15i -D .15-5.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足20AC CB +=,则OC =( ) A .2OA OB -B .2OA OB -+C .2133OA OB - D .1233OA OB -+6.设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P横坐标的取值范围为( )A .112⎡⎤--⎢⎥⎣⎦,B .[]10-,C .[]01,D .112⎡⎤⎢⎥⎣⎦,7.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( )A .13B .12C .23D .348.将函数21x y =+的图象按向量a 平移得到函数12x y +=的图象,则( )A .(11)=--,aB .(11)=-,aC .(11)=,aD .(11)=-,a 9.一生产过程有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有( )A .24种B .36种C .48种D .72种 10.已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( )AB .3CD .9211.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为棱AA 1,CC 1的中点,则在空间中与三条直线A 1D 1、EF 、CD 都相交的直线( )A .不存在B .有且只有两条C .有且只有三条D .有无数条 12.设()f x 是连续的偶函数,且当x >0时()f x 是单调函数,则满足3()4x f x f x +⎛⎫=⎪+⎝⎭的所有x 之和为( ) A .3-B .3C .8-D .8第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.函数100xx x y e x +<⎧=⎨⎩,,,≥的反函数是__________. 14.在体积为的球的表面上有A ,B ,C 三点,AB =1,BCA ,C,则球心到平面ABC 的距离为_________.15.已知231(1)nx x x x ⎛⎫+++ ⎪⎝⎭的展开式中没有..常数项,n ∈*N ,且2≤n ≤8,则n =______. 16.已知()sin (0)363f x x f f ωωπππ⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,且()f x 在区间63ππ⎛⎫⎪⎝⎭,有最小值,无最大值,则ω=__________.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分) 在ABC △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3C π=. (Ⅰ)若ABC △a b ,;(Ⅱ)若sin sin()2sin 2C B A A +-=,求ABC △的面积.18.(本小题满分12分)(Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;(Ⅱ)已知每吨该商品的销售利润为2千元,ξ表示该种商品两周销售利润的和(单位:千元).若以上述频率作为概率,且各周的销售量相互独立,求ξ的分布列和数学期望.19.(本小题满分12分)如图,在棱长为1的正方体ABCD A B C D ''''-中,AP=BQ=b (0<b <1),截面PQEF ∥A D ',截面PQGH ∥AD '.(Ⅰ)证明:平面PQEF 和平面PQGH 互相垂直; (Ⅱ)证明:截面PQEF 和截面PQGH 面积之和是定值,并求出这个值;(Ⅲ)若D E '与平面PQEF 所成的角为45,求D E '与平 面PQGH 所成角的正弦值. 20.(本小题满分12分)在直角坐标系xOy 中,点P 到两点(0,(0的距离之和等于4,设点P 的轨迹为C ,直线1y kx =+与C 交于A ,B 两点.(Ⅰ)写出C 的方程;(Ⅱ)若OA ⊥OB ,求k 的值;A BCDE FP Q H A ' B 'C 'D 'G(Ⅲ)若点A 在第一象限,证明:当k >0时,恒有|OA |>|OB |. 21.(本小题满分12分)在数列||n a ,||n b 中,a 1=2,b 1=4,且1n n n a b a +,,成等差数列,11n n n b a b ++,,成等比数列(n ∈*N ) (Ⅰ)求a 2,a 3,a 4及b 2,b 3,b 4,由此猜测||n a ,||n b 的通项公式,并证明你的结论; (Ⅱ)证明:1122111512n n a b a b a b +++<+++….22.(本小题满分14分) 设函数ln ()ln ln(1)1xf x x x x=-+++. (Ⅰ)求f (x )的单调区间和极值;(Ⅱ)是否存在实数a ,使得关于x 的不等式()f x a ≥的解集为(0,+∞)?若存在,求a 的取值范围;若不存在,试说明理由.2008年普通高等学校招生全国统一考试(辽宁卷) 数学(供理科考生使用)试题参考答案和评分参考说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分.一、选择题:本题考查基本知识和基本运算.每小题5分,共60分. 1.D 2.B 3.C 4.B 5.A 6.A 7.C 8.A 9.B 10.A 11.D 12.C 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.11ln 1.x x y x x -<⎧=⎨⎩,,, ≥14.3215.516.143三、解答题17.本小题主要考查三角形的边角关系,三角函数公式等基础知识,考查综合应用三角函数有关知识的能力.满分12分.解:(Ⅰ)由余弦定理及已知条件得,224a b ab +-=, 又因为ABC △1sin 2ab C =4ab =. ······················· 4分 联立方程组2244a b ab ab ⎧+-=⎨=⎩,,解得2a =,2b =. ·············································· 6分(Ⅱ)由题意得sin()sin()4sin cos B A B A A A ++-=,即sin cos 2sin cos B A A A =, ········································································ 8分 当cos 0A =时,2A π=,6B π=,a =b =, 当cos 0A ≠时,得sin 2sin B A =,由正弦定理得2b a =,联立方程组2242a b ab b a ⎧+-=⎨=⎩,,解得a =b =所以ABC △的面积1sin 2S ab C ==······················································ 12分18.本小题主要考查频率、概率、数学期望等基础知识,考查运用概率知识解决实际问题的能力.满分12分. 解:(Ⅰ)周销售量为2吨,3吨和4吨的频率分别为0.2,0.5和0.3. ····················· 3分 (Ⅱ)ξ的可能值为8,10,12,14,16,且 P (ξ=8)=0.22=0.04, P (ξ=10)=2×0.2×0.5=0.2, P (ξ=12)=0.52+2×0.2×0.3=0.37, P (ξ=14)=2×0.5×0.3=0.3, P (ξ=16)=0.32=0.09.ξ的分布列为·················································································· 9分E ξ=8×0.04+10×0.2+12×0.37+14×0.3+16×0.09=12.4(千元) ···························· 12分 19.本小题主要考查空间中的线面关系,面面关系,解三角形等基础知识,考查空间想象能力与逻辑思维能力。