2019年运城市盐湖区八年级上册期末数学试题(有答案)
- 格式:doc
- 大小:294.00 KB
- 文档页数:15
山西省运城市盐湖区八年级(上)期末数学试卷一、选择题(每小题3分,30分)1.根据下列表述,能确定位置的是()A.运城空港北区B.给正达广场3楼送东西C.康杰初中偏东35°D.东经120°,北纬30°2.下列不是无理数的一项是()A.π的相反数B.π的倒数C.π的平方根D.3.某市一周空气质量报告中,某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数,众数分别是()A.31,31B.32,31C.31,32D.32,354.等腰三角形的一个外角是140°,则其底角是()A.40°B.70°或40°C.70°D.140°5.下列命题中,真命题是()A.若两个角相等,则这两个角是对顶角B.同位角一定相等C.若a2=b2,则a=bD.平行于同一条直线的两直线平行6.已知正比例函数y=(≠0)的函数值随的增大而增大,则一次函数y=+2的图象大致是()A.B.C.D.7.若平面直角坐标系中,△ABO关于轴对称,点A的坐标为(1,﹣2),则点B的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,2)D.(﹣2,1)8.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7B.11C.7或11D.7或109.如图一只蚂蚁从长宽都是3cm,高是8cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()A.13cm B.10cm C.14cm D.无法确定10.设0<<1,关于的一次函数y=+(1﹣),当1≤≤2时,y的最大值是()A.B.C.D.二、填空题(每小题3分,15分)11.4(选填“>、<、=”)12.若|2m﹣3|+(m﹣2)y=6是关于、y的二元一次方程,则m的立方根是13.已知直线y=+b经过点(﹣2,0),且与坐标轴所围成的三角形的面积为6,该直线的表达式是14.如图,在等腰△ABC中,∠ABC=90°,D为底边AC中点,过D点作DE⊥DF,交AB于E,交BC于F.若AE=12,FC=5,EF长为.15.如图,已知:∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A 1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为.三、解答题(75分)16.(8分)计算:(1)+(﹣1)2018﹣2|﹣|;(2)(+﹣3)×17.(4分)作图题△ABC在平面直角坐标系Oy中的位置如图所示,作△ABC关于y轴对称的△A1B1C1.18.(4分)已知:如图,等腰三角形的一个内角为锐角α,腰为a,求作这个等腰三角形.19.(8分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.20.(12分)如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE的平分线与AD交于点D,连接CD.(1)求证:①AB=AD;②CD平分∠ACE.(2)猜想∠BDC与∠BAC之间有何数量关系?并对你的猜想加以证明.21.(6分)阅读材料:善思考的小军在解方程组时,采用了一种“整体代入”的解法:解:将方程②变形:4+10y+y=5,即2(2+5y)+y=5 ③把方程①代入③,得:2×3+y=5,所以y=﹣1把y=﹣1代入①得,=4,所以方程组的解为.请你模仿小军的“整体代入”法解方程组.22.(8分)为了保护生态平衡,绿化环境,国家大力鼓励“退耕还林、还草”,其补偿政策如表(一);丹江口库区某农户积极响应我市为配合国家“南水北调”工程提出的“一江春水送北京”的号召,承包了一片山坡地种树种草,所得到国家的补偿如表(二).问该农户种树、种草各多少亩?23.(11分)如图,在平面直角坐标系中,已知一次函数y=﹣2+6的图象与轴交于点A,与y 轴交于点B.(1)求点A的坐标;(2)求出△OAB的面积;(3)直线AB上是否存在一点C,使△AOC的面积等于△OAB的面积?若存在,求出点C的坐标;若不存在,请说明理由.24.(14分)已知Rt△ABC中,AB=AC,∠ABC=∠ACB=45°,点D为直线BC上的一动点(点D不与点B、C重合),以AD为边作Rt△ADE,AD=AE,∠ADE=∠AED=45°,连结CE.(1)发现问题如图①,当点D在边BC上时.①请写出BD与CE之间的数量关系,位置关系.②求证:CE+CD=BC;(2)尝试探究如图②,当点D在边BC的延长线上且其他条件不变时,(1)中BC、CE、CD之间存在的数量关系是否成立?若成立,请证明;若不成立,请写出新的数量关系,说明理由(3)拓展延伸如图③,当点D在边BC的反向延长线上且其他条件不变时,若BC=5,CE=2,则线段ED的长为.参考答案与试题解析一、选择题(30分)1.【解答】解:A、运城空港北区,不能确定位置,故本选项错误;B、给正达广场3楼送东西,没有明确具体位置,故本选项错误;C、康杰初中偏东35°,不能确定位置,故本选项错误;D、东经120°,北纬30°,二者相交于一点,位置明确,能确定位置,故本选项正确;故选:D.2.【解答】解:A、B、C都是无理数;D、=9,是有理数.故选:D.3.【解答】解:将数据按照从小到大依次排列为30,31,31,31,32,34,35,众数为31,中位数为31.故选:A.4.【解答】解:当140°为顶角的外角时,则其顶角为:40°,则其底角为:=70°,当140°为底角的外角时,则其底角为:180°﹣140°=40°.故选:B.5.【解答】解:A、若两个角相等,则这两个角不一定是对顶角,是假命题;B、两直线平行,同位角一定相等,是假命题;C、若a2=b2,则a=b或a=﹣b,是假命题;D、平行于同一条直线的两直线平行,是真命题;故选:D.6.【解答】解:∵正比例函数y=(是常数,≠0)的函数值y随的增大而增大,∴>0,∵一次函数y=+2,∴′=1>0,b=2>0,∴此函数的图象经过一、二、三象限.故选:A.7.【解答】解:△ABO关于轴对称,点A的坐标为(1,﹣2),则点B的坐标为(1,2),故选:C.8.【解答】解:设等腰三角形的底边长为,腰长为y,则根据题意,得①或②解方程组①得:,根据三角形三边关系定理,此时能组成三角形;解方程组②得:,根据三角形三边关系定理此时能组成三角形,即等腰三角形的底边长是11或7;故选:C.9.【解答】解:如图1所示:AB==10(cm),如图2所示:AB==(cm).∵10<,∴蚂蚁爬行的最短路程是10cm.故选:B.10.【解答】解:当=1时,y=;当=2时,y=2﹣,∵0<<1,∴>2﹣,∴y的最大值是.故选:A.二、填空题(15分)11.【解答】解:∵4=>,即<4,故答案为:<.12.【解答】解:根据题意得,|2m﹣3|=1且m﹣2≠0,所以,2m﹣3=1或2m﹣3=﹣1且m≠2,解得m=2或m=1且m≠2,所以m=1.所以m的立方根是1,故答案为:113.【解答】解:设直线与轴、y轴分别交于A、B两点,∵直线y=+b经过点(﹣2,0),∴A(﹣2,0),∴﹣2+b=0,即b=2,在y=+b中,令=0可得y=b,∴B(0,b),∴OA=2,OB=|b|,∵S=6,△AOB∴OA•OB=6,即×2|b|=6,解得b=6或b=﹣6,∴=3或﹣3,∴直线表达式为y=3+6或y=﹣3﹣6.故答案为:y=3+6或y=﹣3﹣6.14.【解答】证明:连结BD,∵AB=AC,∠ABC=90°,∴∠B=∠C=45°.∵D是AC的中点,∴BD=AD=CD=AC,∠ABD=∠CBD=45°,BD⊥AC,∴∠ABD=∠C,∠BDC=90°,即∠CDF+∠BDF=90°.∵DE⊥DF,∴∠EDF=90°.即∠EDB+∠BDF=90°,∴∠EDB=∠CDF.在△BED和△CFD中,∴△BED≌△CFD(ASA),∴DE=DF.BE=CF.∵AB=AE+BE,∴AB=AE+CF.∵AE=12,FC=5,∴AB=17,∴BF=12.在Rt△EBF中,由勾股定理,得EF==13.故答案为13.15.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故答案是:32.三、解答题(75分)16.【解答】解:(1)原式=2+1﹣2 =1;(2)原式=(2+﹣3)×=﹣×=﹣.17.【解答】解:△ABC关于y轴对称的△A1B1C1如图所示.18.【解答】解:①当α为顶角时,△ABC如图1所示,∠A=α,AB=AC=a.②当α为底角时,△ABC如图2所示,∠B=α,AB=AC=a.19.【解答】解:(1)=(83+79+90)÷3=84,=(85+80+75)÷3=80,=(80+90+73)÷3=81.从高到低确定三名应聘者的排名顺序为:甲,丙,乙;(2)∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,∴甲淘汰;乙成绩=85×60%+80×30%+75×10%=82.5,丙成绩=80×60%+90×30%+73×10%=82.3,乙将被录取.20.【解答】解:(1)①∵AD∥BE,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD;②∵AD∥BE,∴∠ADC=∠DCE,由①知AB=AD,又∵AB=AC,∴AC=AD,∴∠ACD=∠ADC,∴∠ACD=∠DCE,∴CD平分∠ACE;(2)∠BDC=∠BAC,∵BD、CD分别平分∠ABE,∠ACE,∴∠DBC=∠ABC,∠DCE=∠ACE,∵∠BDC+∠DBC=∠DCE,∴∠BDC+∠ABC=∠ACE,∵∠BAC+∠ABC=∠ACE,∴∠BDC+∠ABC=∠ABC+∠BAC,∴∠BDC=∠BAC.21.【解答】解:将方程②变形:3(3﹣2y)+2y=19.将方程①代入③,得3×5+2y=19.y=2把y=2代入①得 =3∴方程组的解为.22.【解答】解:设该农户种树亩,种草y亩,则有,解得. 答:该农户种树20亩,种草10亩.23.【解答】解:(1)当y=0时,有﹣2+6=0,解得:=3,∴点A 的坐标为(3,0);(2)当=0时,y=﹣2+6=6,∴点B 的坐标为(0,6),∴S △OAB =OA•OB=×3×6=9;(3)设点C 的坐标为(m ,﹣2m+6),∵△AOC 的面积等于△OAB 的面积,∴OA•|﹣2m+6|=9,即|﹣2m+6|=6,解得:m 1=﹣6,m 2=0(舍去),∴点C 的坐标为(﹣6,﹣6).24.【解答】(1)①解:结论:BD=CE ,BD ⊥CE ,理由:连接CE .∵∠ABC=∠ACB=45°,∠ADE=∠AED=45°,∴∠BAC=∠DAE=90°,∴∠BAD=∠CAE ,在△BAD 和△CAE 中,,∴△BAD ≌△CAE ,∴BD=CE ,∠ACE=∠B=45°,∴∠BCE=90°,即BD ⊥CE ,故答案为:BD=CE ;BD ⊥CE ;②证明:∵BD=CE ,∴BC=BD+CD=CE+CD ;(2)解:(1)中BC、CE、CD之间存在的数量关系不成立,新的数量关系是CE=BC+CD,理由:∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴CE=BC+CD;(3)解:∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE=2,∠ABD=∠ACE=135°,∵∠ACB=45°,∴∠DCE=90°,在Rt△DCE中,CD=BD+BC=7,CE=2,∴DE==。
山西省运城盐湖区七校联考2018-2019学年八上数学期末调研试卷一、选择题1.已知:112a b -=,则2227a ab b a b ab ---+的值等于( ) A .-43 B .43 C .215D .- 272.要使分式12x -有意义,则x 的取值应满足( ) A.x≠2B.x≠1C.x =2D.x =﹣1 3.化简22a b b a +-的结果是( ) A.1a b - B.1b a - C.a ﹣b D.b ﹣a4.甲、乙两农户各有两块地,如图所示,今年,这两个农户决定共同投资搞饲养业.为此,他们准备将这4块土地换成一块地,那块地的宽为(a+b )米,为了使所换土地的面积与原来4块地的总面积相等,交换之后的土地的长应该是( )米.A .a+bB .b+cC .a+cD .a+b+c5.已知 ()2x 2m 1x 9+-+ 是一个完全平方式,则m 的值为( ) A.4 B.4或−2 C.4 D.−26.下列各式中不能用平方差公式计算的是( )A.()2x y)x 2y -+( B.() 2x y)2x y -+--( C.() x 2y)x 2y ---( D.()2x y)2x y +-+( 7.如图,已知每个小方格的边长为1,A ,B 两点都在小方格的顶点上,请在图中找一个顶点C ,使△ABC 为等腰三角形,则这样的顶点C 有( )A.8个B.7个C.6个D.5个8.如图,等腰三角形ABC的底角为72°,腰AB的垂直平分线交另一腰AC于点E,垂足为D,连接BE,则下列结论错误的是()A.∠EBC为36°B.BC = AEC.图中有2个等腰三角形D.DE平分∠AEB9.只给定三角形的两个元素,画出的三角形的形状和大小是不确定的,在下列给定的两个条件上增加一个“AB=5cm”的条件后,所画出的三角形的形状和大小仍不能完全确定的是()A.∠A=30°,BC=3cm B.∠A=30°,AC=3cmC.∠A=30°,∠C=50°D.BC=3cm, AC=6cm10.如图所示,在△ABC中,内角∠BAC与外角∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,连接CP.下列结论:①∠ACB=2∠APB;②S△PAC:S△PAB=AC:AB;③BP垂直平分CE;④∠PCF=∠CPF.其中,正确的有( )A.1个B.2个C.3个D.4个11.如图,在四边形ABCD中,∠A=60°,∠B=∠D=90°,AD=8,AB=7,则BC+CD等于()A.B.C.D.12.如图,已知,再添加一个条件使,则添加的条件不能是()A. B. C. D.13.如图,某人从点出发,前进后向右转,再前进后又向右转,按照这样的方式一直走下去,当他第一次回到出发点时,共走了()A. B. C. D.14.如右图,在ABC ∆中,90ACB ∠=︒,CD AD ⊥,垂足为点D ,有下列说法:①点A 与点B 的距离是线段AB 的长;②点A 到直线CD 的距离是线段AD 的长;③线段CD 是ABC ∆边AB 上的高;④线段CD 是BCD ∆边BD 上的高.上述说法中,正确的个数为( )A .1个B .2个C .3个D .4个15.如图,一条公路修到湖边时需绕道,第一次拐角∠B =120°,第二次拐角∠C =140°.为了保持公路AB 与DE 平行,则第三次拐角∠D 的度数应为( )A .130°B .140°C .150°D .160° 二、填空题16.分式1x ,223x y -,6()x x y -的最简公分母__________. 17.若a+b =3,ab =2,则a 2+b 2=_____.【答案】518.如图:AB ∥CD ,GN 平分∠BGH ,HN 平分∠DHG ,点N 到直线AB 的距离是2,则点N 到直线CD 的距离是__________.19.如图:已知AD=DB=BC ,∠C=25º,那么∠ADE=_______度;20.生活中,将一个宽度相等的纸条按图所示折叠一下, 如果∠1=140º,那么∠2=_____.三、解答题21.化简或解方程:(1)化简:231839m m +--(2)先化简再求值:2222ab b a b a a a ⎛⎫---÷ ⎪⎝⎭,其中11a b ==(3)解分式方程:3122x x x =-+-. 22.计算:(1)(﹣1)2+(﹣2019)0+(13)﹣2; (2)(m+2)(2m ﹣3).23.如图,在ABC ∆中,点D 为线段BC 上一点(不含端点).AP 平分BAD ∠交BC 于,E PC 与AD 的延长线交于点F ,连接BF ,且 PEF AED ∠=∠.(1)求证:AB AF =;(2)若ABC ∆是等边三角形.①求APC ∠的大小;②猜想线段AP PF PC 、、之间满足怎样的数量关系,并证明.24.(1)思考探究:如图①,ABC ∆的内角ABC ∠的平分线与外角ACD ∠的平分线相交于P 点,请探究P ∠与A ∠的关系是______.(2)类比探究:如图②,四边形ABCD 中,设A α∠=,D β∠=,180αβ+>︒,四边形ABCD 的内角ABC ∠与外角DCE ∠的平分线相交于点P .求P ∠的度数.(用α,β的代数式表示)(3)拓展迁移:如图③,将(2)中180αβ+>︒改为180αβ+<︒,其它条件不变,请在图③中画出P ∠,并直接写出P ∠=_____.(用α,β的代数式表示)25.如图,已知点E ,F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,∠C=∠EFG ,∠CED=∠GHD .(1)求证:CE ∥GF ;(2)试判断∠AED 与∠D 之间的数量关系,并说明理由;(3)若∠EHF=70°,∠D=30°,求∠AEM 的度数.【参考答案】***一、选择题16.26()x y x y -17.无 18.219.7520.110°三、解答题21.(1)33m +(23)10x = 22.(1)11;(2)2m 2+m ﹣623.(1)见解析;(2)①60APC ∠=;②猜想:AP PF PC =+,证明见解析.【解析】【分析】(1)由已知证明出AEB AEF ∆≅∆即可推出AB AF =(2) ①根据等边三角形的性质进行推断计算即可②延长CP 至点M ,使PM PF =,连接,BM BP 即可证明得出AP PF PC =+【详解】(1)证明:PEF AED ∠=∠180180AED PEF ∴-∠=-∠又AP 平分BAD ∠,BAP FAP ∴∠=∠,在AEB ∆和AEF ∆中,BAP FAP AE AEAEB AEF ∠=∠⎧⎪=⎨⎪∠=∠⎩AEB AEF ∴∆≅∆AB AF ∴=;(2)ABC ∆是等边三角形,,60AB AC BC BAC ∴==∠=又AB AF =AF AC ∴= 设BAP FAP x ∠=∠=,则602FAC x ∠=-在ACF ∆中,()180602602x AFC x --∠==+ 又AFC FAP APC x APC ∠=∠+∠=+∠,60APC ∴∠=(3)猜想:AP PF PC =+,理由如下:延长CP 至点M ,使PM PF =,连接,BM BP,,AB AF BAP FAP AP AP =∠=∠=APB APF ∴∆≅∆60,APC APB PF PB ∴∠=∠==60,BPM PM PB ∴∠==BPM ∴∆为等边三角形,BP BM =,60ABP CBM PBC ∠=∠=+∠在ABP ∆和CBM ∆中,AB CB ABP CBM BP BM =⎧⎪∴∠=∠⎨⎪=⎩ABP CBM ∴∆≅∆AP CM PM PC PF PC ∴==+=+AP PF PC ∴=+【点睛】本题考查等边三角形及三角形的性质,熟练掌握三角形的选择及判定是解题关键.24.(1)12P A ∠=∠;(2)9022P αβ∠=+-︒;(3)9022P αβ∠=︒--. 【解析】【分析】(1)利用角平分线求出∠PCD=12∠ACD,∠PBD=12∠ABC,再利用三角形的一个外角定理即可求出.(2)延长BA 、CD 交于点F ,然后根据(1)的结题可得到∠P 的表达式.(3)延长AB 、DC 交于F,然后根据(1)的结题可得到∠P 的表达式.【详解】解:(1)12P A ∠=∠ ∵CP 平分ACD ∠,BP 平分ABC ∠, ∴12PCD ACD ∠=∠,12PBD ABD ∠=∠ ∵ACD ∠是ABC ∆的外角 ∴A ACD ABD ∠=∠-∠∵PCD ∠是PBC ∆的外角∴P PCD PBD ∠=∠-∠1()2ACD ABD =∠-∠ 12A =∠(2)延长BA 、CD ,交于点F .180FAD α∠=︒-,180FDA β∠=︒-()180180180180F αβαβ︒︒︒∠=--+-=+-︒由(1)知:12P F ∠=∠ ∴9022P αβ∠=+-︒.(3)延长AB ,DC 交于点F . 作ABC ∠与外角DCE ∠的平分线相交于点P . 如图:9022P αβ∠=︒--180F αβ∠=︒--,190222P F αβ∠=∠=︒--【点睛】本题主要考察了三角形的外角定理和角平分线的性质,学生们需要认真的分析题目,方可求解. 25.(1)证明见解析;(2)∠AED+∠D=180°;(3)∠AEM=100°.。
山西省运城市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列命题正确的个数是()①若代数式有意义,则x的取值范围为x≤1且x≠0.②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学记数法表示为3.03×108元.③若反比例函数(m为常数),当x>0时,y随x增大而增大,则一次函数y=-2 x + m的图象一定不经过第一象限.④若函数的图象关于y轴对称,则函数称为偶函数,下列三个函数:y=3,y=2x+1,y = x2中偶函数的个数为2个.A . 1B . 2C . 3D . 42. (2分)岳阳楼是江南三大名楼之一,享有“洞庭天下水,岳阳天下楼”的盛名,从图中看,你认为它是()A . 轴对称图形B . 中心对称图形C . 既是轴对称图形,又是中心对称图形D . 既不是轴对称图形,又不是中心对称图形3. (2分) (2017八下·定安期末) 点(﹣2,5)关于x轴对称的点的坐标是()A . (2,﹣5)B . (﹣2,﹣5)C . (2,5)D . (5,﹣2)4. (2分)△ABC的三边分别为a , b , c且(a+b-c)(a-c)=0,那么△ABC为()A . 不等边三角形B . 等边三角形C . 等腰三角形D . 锐角三角形5. (2分)如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE 的中点,且S △ABC=4cm2,则S阴影等于()A . 2cm2B . 1cm2C . cm2D . cm26. (2分) (2017七下·江都期中) 下列运算不正确的是()A . (a5)2=a10B . 2a2•(﹣3a3)=﹣6a5C . b•b5=b6D . b5•b5=b257. (2分)下列语句中,正确的个数有()①、有两个不同顶点的外角是钝角的三角形是锐角三角形;②、有两条边和一个角相等的两个三角形是全等三角形;③、方程用关于的代数式表示y是y=6-3x;④、三角形的三条角平分线的交点到三个顶点的距离相等。
山西省运城市2019年八年级上学期数学期末检测试题(模拟卷三)一、选择题1.如果a b =+222a b ab a a b ⎛⎫+-⋅ ⎪-⎝⎭的值为( )A B .C .D .2.用换元法解方程2231512x x x x -+=-时,如果设21x x -=y ,则原方程可化为( ) A .y+1y =52B .2y 2﹣5y+2=0C .6y 2+5y+2=0D .3y+1y =523.如果把分式22a ba b+- 中的a 、b 都扩大3倍,那么分式的值一定( ) A .是原来的3倍B .是原来的5倍C .是原来的1 3D .不变4.若(1)(5)M x x =--,(2)(4)N x x =--,则M 与N 的关系为( ) A .M N = B .M N >C .M N <D .M 与N 的大小由x 的取值而定 5.下列多项式能用完全平方公式分解因式的是( ). A .a 2-ab +b 2B .x 2+4x – 4C .x 2-4x +4D .x 2-4x +26.若m 2n 1x x x +÷=,则m 与n 的关系是( ) A .m 2n 1=+ B .m 2n 1=--C .m 2n 2-=D .m 2n 2-=-7.运用图腾解释神话、民俗民风等是人类历史上最早的一种文化现象. 下列图腾中,不是轴对称图形的是( )A .B .C .D .8.如图,中,,,平分交于,若,则的面积为( )A. B. C. D.9.如图,在△ABC 中,BA =BC ,∠ABC =120°,AB 的垂直平分线交AC 于点M ,交AB 于点E ,BC 的垂直平分线交AC 于点N ,交BC 于点F ,连接BM ,BN ,若AC =24,则△BMN 的周长是( )A .36B .24C .18D .1610.如图,将△ABC 绕点A 顺时针旋转60°得到△ADE ,点C 的对应点E 恰好落在BA 的延长线上,DE 与BC 交于点F ,连接BD .下列结论不一定正确的是( )A.AD=BDB.AC ∥BDC.DF=EFD.∠CBD=∠E 11.如果一个三角形是轴对称图形,那么这个三角形一定不是( )A .直角三角形B .等腰直角三角形C .等边三角形D .等腰三角形12.如图,Rt △ABC 沿直角边BC 所在直线向右平移到Rt △DEF ,则下列结论中,错误的是( )A .BE=ECB .BC=EFC .AC=DFD .△ABC ≌△DEF13.如图,在中,点,,分别是边,,上的点,且,,相交于点,若点是的重心.则以下结论:①线段,,是的三条角平分线;②的面积是面积的一半;③图中与面积相等的三角形有5个;④的面积是面积的.其中一定正确的结论有( )A.①②③B.②④C.③④D.②③④ 14.下列哪一种正多边形不能..铺满地面( ) A .正三边形B .正四边形C .正六边形D .正八边形15.如图,将一副三角板如图放置,BAC ADE 90∠∠==,E 45∠=,B 60∠=,若AE //BC ,则AFD (∠= )A .75B .85C .90D .65二、填空题16.如图,点O ,A 在数轴上表示的数分别是0,1,将线段OA 分成1000等份,其分点由左向右依次为1M ,2M ,3M ……999M ;将线段1OM 分成100等份,其分点由左向右依次为1N ,2N ,3N ……999N ;将线段1ON 分成1000等份,其分点由左向右依次为1P ,2P ,3P ……999P ;则点314P 所表示的数用科学记数法表示为______.17.已知x+y=﹣1,xy=3,则x 2y+xy 2=_____.18.如图,在Rt ABC △中90︒∠=C ,AD 是ABC △的角平分线,3cm DC =,则点D 到AB 的距离是________.19.若一个正多边形的周长是63,且内角和1260,则它的边长为______.20.如图,在平面直角坐标系中,点B 在x 轴上,AOB 是等边三角形,AB 2=,则点A 的坐标为______.三、解答题21.(1)先化简:244411x x x x x x --+⎛⎫-÷⎪--⎝⎭,并将x 从0,1,2中选一个合理的数代入求值; (2)解不等式组:()432326x x x x -⎧+≥⎪⎨⎪+>--⎩①②,并把它的解集在如图的数轴上表示出来;22.计算: (1)()3232a a ÷(2)(21)(2)2(2)m m m m +---23.如图,已知直线l 和l 外一点P ,用尺规作l 的垂线,使它经过点P .(保留作图痕迹,不写作法)24.如图,AB ∥CD ,BE 平分∠ABD ,DE 平分∠BDC 。
一、选择题(每题4分,共40分)1. 若一个等腰三角形的底边长为6cm,腰长为8cm,则该三角形的周长为()A. 16cmB. 20cmC. 22cmD. 24cm2. 下列函数中,有最小值的是()A. y = x^2B. y = x^3C. y = x^4D. y = x^53. 下列方程中,有唯一解的是()A. 2x + 3 = 5B. 2x - 3 = 5C. 2x + 3 = 3D. 2x - 3 = 34. 若一个等差数列的第三项为7,第五项为11,则该数列的公差为()A. 2B. 3C. 4D. 55. 下列命题中,正确的是()A. 等腰三角形的底角相等B. 等边三角形的底角相等C. 等腰三角形的腰角相等D. 等边三角形的腰角相等6. 若一个平行四边形的对边长分别为a和b,对角线分别为c和d,则该平行四边形的面积为()A. 1/2 acB. 1/2 bcC. 1/2 adD. 1/2 bd7. 若一个正方形的边长为a,则其对角线长为()A. √2 aB. √3 aC. √4 aD. √5 a8. 下列函数中,是奇函数的是()A. y = x^2B. y = x^3C. y = x^4D. y = x^59. 若一个一次函数的图象经过点(1, 2)和(3, 4),则该函数的解析式为()A. y = x + 1B. y = 2x + 1C. y = 3x + 1D. y = 4x + 110. 若一个等比数列的第三项为8,第五项为32,则该数列的公比为()A. 2B. 4C. 8D. 16二、填空题(每题4分,共40分)1. 若一个直角三角形的两个锐角分别为30°和60°,则该三角形的斜边长为__________。
2. 下列函数中,y = -x^2 + 4x + 3的顶点坐标为__________。
3. 下列方程中,x^2 - 3x + 2 = 0的解为__________。
盐湖区2019-2020学年度第一学期期末检测数 学说明:1.本试卷考试时间为90分钟,满分120分;2.本试卷三个大题,共4页;3.答卷前考生务必将自己的姓名、准考证号按要求填写在答题卡上.将试题答案填写在答题卡相应的位置上.4.考试结束时只交回答题卡,试题不交.第Ⅰ卷 选择题(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.4的平方是( )A .4B .4±C .2±D .22. 在实数15-,2π0中,无理数的个数为( ) A .1个 B .2个 C .3个 D .4个3. 下列条件中,不能判断ABC ∆是直角三角形的是( )A .::3:4:5a b c =B .3:4:5A BC ∠∠∠=::C .A B C ∠+∠=∠D .::1:2a b c =4. 有下列五个命题:①如果20x >,那么0x >;②内错角相等;③垂线段最短;④带根号的数都是无理数;⑤三角形的一个外角大于任何一个内角.其中真命题的个数为( )A .1B .2C .3D .45. 图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步x yA .体育场离张强家2.5千米B .张强在体育场锻炼了15分钟C .体育场离早餐店4千米D .张强从早餐店回家的平均速度是3千米/小时6. 方差:一组数据:2,x ,1,3,5,4,若这组数据的中位数是3,是这组数据的方差是( )A .10B .53C .2D .837. 如图,将一块含有30︒角的直角三角尺的两个顶点放在长方形直尺的一组对边上,如果268∠=︒,那么1∠的度数为( )A .38︒B .35︒C .34︒D .30︒ 8. 若实数a b c 、、满足0a b c ++=,且a b c >>,则函数y ax c =+的图象可能是( )A .B .9. 一个两位数的个位数字与十位数字的和为14,若调换个位数字与十位数字,所得的新数比原数小36,则这个两位数是( )A .86B .95C .59D .6810. 已知一次函数22y x =--,得出下列说法:①图象与x 轴、y 轴交点A B 、的坐标分别为(10)-,,(02)B -,; ②A B 、两点的距离为5;③AOB ∆的面积是2;④当0y ≥时,1x ≤-;其中正确的有( )A .1个B .2个C .3个D .4个第Ⅱ卷 非选择题(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)11.计算:4|2|0x y x y -+++-=,则yx = .12. 如图:在ABC ∆中,46A ∠=︒,BD 平分ABC ∠,CD 平分外角ACE ∠,则D ∠= .13. 若21m +和5m +是一个正数的两个平方根,则这个正数是 .14. 已知线段3AB =,//AB x 轴,若点A 的坐标为(12)-,,则点B 的坐标为 . 15. 如图在Rt ABC ∆中,90ACB ∠=︒,10AB cm =,6AC cm =,分别以AB AC BC 、、为直径作半圆,如图阴影部分面积记为1S 、2S ,则12S S += .三、解答题:本题8个小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(1)818252+-(2)2(321)(23)(23)-++-17. 解方程组:4311213x y x y -=⎧⎨+=⎩18.在边长为1的小正方形网格中,AOB ∆的顶点均在格点上,(1)B 点关于y 轴的对称点坐标为;(2)将AOB ∆向左平移3个单位长度得到111AO B ∆,请画出111AO B ∆,求出1A 的坐标;(3)求出AOB ∆的面积.19.如图,把一张长方形纸片ABCD折叠起来,使其对角顶点A与C重合,D与G重合,若长方形的长BC 为8,宽AB为4,求:(1)DE的长;的面积.(2)求阴影部分GED20. 某校为选拔一名选手参加“美丽运城,我为家乡做代言”主题演讲比赛,经研究,按如图所示的项目和权数对选拔赛的参赛选手进行考评(因排版原因统计图不完整).下表是李明、张华在选拔赛中的得分情况:结合以上信息,回答下列问题:(1)求服装项目的权数及普通话项目对应扇形的圆心角大小;(2)求李明在选拔赛中四个项目所得分数的众数和中位数;(3)根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽运城,我为家乡做代言”主题演讲比赛,并说明理由.21.小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达m的速度直接回家,两人离家的路程y(m)与各自离开图书馆恰好用30min.小东骑自行车以300/min出发地的时间x(min)之间的函数图象如图所示.m;(1)家与图书馆之间的路程为m,小玲步行的速度为/min(2)求小东离家的路程y关于x的函数表达式,并写出自变量的取值范围;(3)求两人相遇的时间.22.某超市计划购进一批甲、乙两种玩具,已知4件甲种玩具的进价与2件乙种玩具的进价的和为230元,2件甲种玩具的进价与3件乙种玩具的进价的和为185元.(1)求每件甲种、乙种玩具的进价分别是多少元;(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若a )件甲种玩具需要花费w元,请你直接写出w与a的函数表达式.购进a(023. 探究与发现:如图①所示的图形,像我们常见的学习用品——圆规.我们不妨把这样图形叫做“规形图”,(1)观察“规形图”,试探究BDC ∠与A ∠、B ∠、C ∠之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图②,把一块三角尺XYZ 放置在ABC ∆上,使三角尺的两条直角边XY 、XZ 恰好经过点B C 、,40A ∠=︒,则ABX ACX ∠+∠= ︒;②如图③,DC 平分ADB ∠,EC 平分AEB ∠,若40DAE ∠=︒,130DBE ∠=︒,求DCE ∠的度数; ③如图④,ABD ∠,ACD ∠的10等分线相交于点1G 、2G …、9G ,若133BDC ∠=︒,170BG C ∠=︒,求A ∠的度数.盐湖区2019-2020学年度第一学期期末检测一、选择题1. C2. B3. B4. A5. C6. B7. A8. C9. B 10. B二、填空题11. -112. 23°13. 914.(4,2)-或(2,2)15. 24 cm 2 三、解答题16.(1)0(2)1862-17. 53x y =⎧⎨=⎩18. 解:(1)B 点关于y 轴的对称点坐标为(3,2)-;(2)111AO B ∆如图所示,1A 的坐标为(2,3)-(3)AOB ∆的面积为7219. 解:(1)设DE EG x ==,则8AE x =-,在Rt AEG ∆中,222AG EG AE +=,∴2216(8)x x +=- ,解得3x =,∴3DE =(2)过G 点作GM AD ⊥于M ,则1122AG GE AE GM •⨯=•⨯,4AG AB ==,5AE CF ==,3GE DE ==, ∴125GM = ∴11825GED S GM DE ∆=•⨯=20. 解:(1)服装项目的权数是120%30%40%10%---=,普通话项目对应扇形的圆心角是36020%72︒⨯=︒(2)李明在选拔赛中四个项目所得分数的众数是85分,中位数是(8085)282.5+÷=(分)(3)李明的得分为8510%7020%8030%8540%80.5⨯+⨯+⨯+⨯=(分)张华的得分为9010%7520%7530%8040%78.5⨯+⨯+⨯+⨯=(分)∵80.578.5>∴李明的平均成绩好,故选择李明参加“美丽运城,我为家乡做代言”主题演讲比赛.21. 解:(1)4000;100;(2)∵小东从离家4000m 处以300/min m 的速度返回家,则min x 时,他离家的路程4000300y x =- 自变量x 的取值范围为4003x ≤≤. (3)由图象可知,两人相遇是在小玲改变速度之前∴4000300200x x -=,解得8x =,∴出发后8 min 两人相遇.22. 解:(1)设每件甲种玩具的进价是x 元,每件乙种玩具的进价是y 元.由题意得422302 3185x y x y +=+=⎧⎨⎩解得4035x y ==⎧⎨⎩答:每件甲种玩具的进价是40元,每件乙种玩具的进价是35元.(2)当020a <≤时,40w a =当20a >时,4020(20)400.728240w a a =⨯+-⨯⨯=+23. 解:(1)如图(1),连接AD 并延长至点F ,根据外角的性质,可得BDF BAD B ∠=∠+∠,CDF C CAD ∠=∠+∠,又∵BDC BDF CDF ∠=∠+∠,BAC BAD CAD ∠=∠+∠, ∴BDC A B C ∠=∠+∠+∠(2)①50②由(1),可得DBE DAE ADB AEB ∠=∠+∠+∠,∴1304090ADB AEB DBE DAE ∠+∠=∠-∠=︒-︒=︒, ∴1()902452ADB AEB ∠+∠=︒÷=︒, ∴1()4540852DCE ADB AEB DAE ∠=∠+∠+∠=︒+︒=︒ ③1110BG C ABD ACD A ∠=∠+∠+∠(), ∵170BG C ∠=︒,∴设A ∠为x ︒,∵133ABD ACD x ∠+∠=︒-︒(133)70x x -+=∴1(13.3)70 10x x-+=,∴113.37010x x-+=解得63x=,即A∠的度数为63.。
山西省运城市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)下列几何图形中,既是轴对称图形,又是中心对称图形的是()A . 等腰三角形B . 正三角形C . 平行四边形D . 正方形2. (2分)下列运算正确的是()A . a3﹣a3=a0B . a2÷a﹣1=a3C . a2+a2=2a4D . a3×a3=a33. (2分)要使分式有意义,x必须满足的条件是()A . x≠0B . x≠2C . x=2D . x>24. (2分)若(ax+3y)2=4x2+12xy+by2 ,则a,b的值分别为()A . a=4,b=3B . a=2,b=3C . a=4,b=9D . a=2,b=95. (2分)(2017·长春模拟) 如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′是()A . 46°B . 45°C . 44°D . 43°6. (2分)下列多项式能用完全平方公式进行分解因式的是()A . x2+1B . x2+2x+4C . x2﹣2x+1D . x2+x+17. (2分) (2017八上·德惠期末) 如图下列条件中,不能证明△ABD≌△ACD的是()A . BD=DC,AB=ACB . ∠ADB=∠ADC,BD=DCC . ∠B=∠C,∠BAD=∠CADD . ∠B=∠C,BD=DC8. (2分)(2016·荆门) 化简的结果是()A .B .C . x+1D . x﹣19. (2分)(2019·张掖模拟) 如图,在Rt△ABC中,∠BAC=90°,且AB=3,BC=5,⊙A与BC相切于点D,交AB于点E,交AC于点F,则图中阴影部分的面积为()A . 12﹣πB . 12﹣πC . 6﹣πD . 6﹣π10. (2分) (2015八上·大石桥期末) 某机床厂原计划在一定期限内生产240套机床,在实际生产中通过改进技术,结果每天比原计划多生产4套,并且提前5天完成任务.设原计划每天生产x套机床,根据题意,下列方程正确的是()A .B .C .D .11. (2分)下列计算中,正确的是()A . x2+x4=x6B . 2x+3y=5xyC . (x3)2=x6D . x6÷x3=x212. (2分) (2019八下·东台期中) 若关于的分式方程的根是正数,则实数的取值范围是().A . ,且B . ,且C . ,且D . ,且二、填空题: (共8题;共12分)13. (1分) (2016八上·孝南期中) 如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是________.14. (1分) (2019八上·福建开学考) 若一个三角形的两边长为3和5,且周长为偶数,则这个三角形的第三边长为________.15. (5分)多项式x3y2﹣2xy2﹣﹣9是________次________项式,其中最高次项的系数是________,二次项是________,常数项是________.16. (1分)(2019·南京) 分解因式的结果是________.17. (1分)(2019·温州模拟) 如图,在R△ABC中,∠CAB=90°,D是BC边上一点,连结AD,作△ABD的外接圆,将△ADC沿直线AD翻折,若点C的对应点E落在弧BD的中点,CD=,则BD的长为________.18. (1分) (2020八上·莱西期末) 如果x+ =3,则的值等于________19. (1分)已知a+=3,则(a+1)(1﹣a)+3a=________20. (1分)(2019·瑞安模拟) 某校组织1080名学生去外地参观,现有A、B两种不同型号的客车可供选择.每辆B型客车的载客量比每辆A型客车多坐15人,若只选择B型客车比只选择A型客车少租12辆(每辆客车均坐满).设B型客车每辆坐x人,则列方程为________.三、解答题: (共6题;共57分)21. (10分) (2020八下·佛山期中) 因式分解:(1);(2)22. (5分)先化简,再求值:(﹣)÷ ,其中a是方程x2+3x+2=0的根.23. (7分)如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)求△ABC的面积为________;(3)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为________.24. (10分)(2019·抚顺模拟) 如图,在中,平分,交于点,以点为圆心,为半径的⨀与相交于点 .(1)判断直线与⨀的位置关系,并证明你的结论;(2)若,求的长.25. (10分)(2017·哈尔滨) 威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?26. (15分) (2018九下·潮阳月考) 已知,如图,反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(m,﹣1),(1)求一次函数和反比例函数的解析式;(2)求△OAB的面积;(3)直接写出不等式x+b>的解.参考答案一、选择题: (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题: (共8题;共12分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:三、解答题: (共6题;共57分)答案:21-1、答案:21-2、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、考点:解析:答案:26-1、答案:26-2、答案:26-3、考点:解析:。
八年级上册数学期末考试卷(含答案)一、精心选一选(本大题共8小题。
每小题3分,共24分)下面每小题均给出四个选项,请将正确选项的代号填在题后的括号内.1.下列运算中,计算结果正确的是( ).A. B. C. D.2.23表示( ).A. 222B. 23C. 33D. 2+2+23.在平面直角坐标系中。
点P(-2,3)关于x轴的对称点在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.等腰但不等边的三角形的角平分线、高线、中线的总条数是( ).A. 3B. 5C. 7D. 95.在如图中,AB = AC。
BEAC于E,CFAB于F,BE、CF交于点D,则下列结论中不正确的是( ).A. △ABE≌△ACFB. 点D在BAC的平分线上C. △BDF≌△CDED. 点D是BE的中点6.在以下四个图形中。
对称轴条数最多的一个图形是( ).7.下列是用同一副七巧板拼成的四幅图案,则与其中三幅图案不同的一幅是( ).8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( ).A. B. C. D.二、细心填一填(本大题共6小题,每小题3分,共18分)9.若单项式与是同类项,则 = .l0.中国文字中有许多是轴对称图形,请你写出三个具有轴对称图形的汉字 .11.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.12.如图,已知方格纸中的每个小方格都是相同的正方形.AOB画在方格纸上,请在小方格的顶点上标出一个点P。
使点P落在AOB的平分线上.13.数的运算中有一些有趣的对称,请你仿照等式12231=13221的形式完成:(1)18891 = (2)24231 = .14.下列图案是由边长相等的灰白两色正方形瓷砖铺设的地面,则按此规律可以得到:(1)第4个图案中白色瓷砖块数是 ;(2)第n个图案中白色瓷砖块数是 .第1个图案第2个图案第3个图案三、耐心求一求(本大题共4小题.每小题6分。
山西省运城市2019年八年级上学期数学期末检测试题(模拟卷二)一、选择题1.若分式3x x -有意义,则实数x 的取值范围是( ) A .3x = B .0x = C .3x ≠ D .0x ≠ 2.在人体血液中,红细胞的直径约为47.710-⨯cm,47.710-⨯用小数表示为( ) A .0.000077 B .0.00077 C .-0.00077 D .0.00773.分式242x x -+的值为零,则x 的值为( ) A .2B .0C .2-D .2± 4.下列计算正确的是( ) A.235(a )a =B.()222ab a b -=C.a(a −b)=22a b -D.()222a b ab 2ab a b -÷=-5.若()2214x m x +-+是一个完全平方式,则m 的值等于( ) A .2B .3C .1-或3D .2或2- 6.已知,,则的值为( ) A.37 B.33 C.29 D.217.如图,A 、B 两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C 也在格点上,且△ABC 是等腰三角形,则符合条件是点C 共有( )个.A .8B .9C .10D .118.如图,过边长为1的等边ABC △的边AB 上一点,作PE AC ⊥于,E Q 为BC 延长线上一点,当PA CQ =时,连接PQ 交AC 于D ,则DE 的长为( )A .13B .12C .23D .349.有些汉字的字形结构具有和谐稳定、均衡对称的美感.下列不属于轴对称图形的是( )A .磊B .品C .晶D .畾10.如图,MN 是线段AB 的垂直平分线,C 在MN 外,且与A 点在MN 的同一侧,BC 交MN 于P 点,则( )A.BC>PC+APB.BC<PC+APC.BC=PC+APD.BC≥PC+AP11.如图,AB=DB ,∠1=∠2,请问添加下面哪个条件不能判断△ABC ≌△DBE 的是( )A.BC=BEB.∠A=∠DC.∠ACB=∠DEBD.AC=DE 12.如图,在ABC 和CDE 中,已知AC CD =,AC CD ⊥,B E 90∠∠==,则下列结论不正确的是( )A .A ∠与D ∠互为余角B .A 2∠∠=C .ABC ≌CED D .12∠∠=13.如图、己知DE ∥BC ,∠1=108°, ∠AED=75°,则∠A 等于()A .37°B .33°C .30°D .23° 14.如图,在△ABC 中,∠B =50°,∠A =30°,CD 平分∠ACB ,CE ⊥AB 于点E ,则∠DCE 的度数是( )A .5°B .8°C .10°D .15°15.如图,两个直角和有公共顶点.下列结论:①;②;③若平分,则平分;④的平分线与的平分线是同一条射线.其中结论正确的个数是( )A .4个B .3个C .2个D .1个二、填空题 16.当x =_____时,分式31x x -+的值为零. 17.已知2m =4,2n =16,则m+n =_____.【答案】618.如图,△ABC ≌△A′B′C′,其中∠A =46°,∠B′=27°,则∠C =_____°.19.一个正方形和两个等边三角形的位置如图所示,∠3=55°,则∠1+∠2=_____.20.点(2,9)P -与点Q 关于x 轴对称,则点Q 的坐标是__________.三、解答题21.先化简,再求值:222816(1)24a a a a -+-÷--,其中12a =. 22.化简:32223124ab b a b a -÷23.阅读、填空并将说理过程补充完整:如图,已知点D 、E 分别在△ABC 的边AB 、AC 上,且∠AED =∠B ,延长DE 与BC 的延长线交于点F ,∠BAC 和∠BFD 的角平分线交于点G .那么AG 与FG 的位置关系如何?为什么?解:AG ⊥FG .将AG 、DF 的交点记为点P ,延长AG 交BC 于点Q .因为AG 、FG 分别平分∠BAC 和∠BFD (已知)所以∠BAG = , (角平分线定义)又因为∠FPQ = +∠AED , = +∠B(三角形的一个外角等于与它不相邻的两个内角的和)∠AED =∠B (已知)所以∠FPQ = (等式性质)(请完成以下说理过程)24.已知:△AOB 和△COD 均为等腰直角三角形,∠AOB=∠COD=90°.连接AD ,BC ,点H 为BC 中点,连接OH .(1)如图1所示,求证:1OH AD2=且OH AD⊥(2)将△COD绕点O旋转到图2、图3所示位置时,线段OH与AD又有怎样的关系,并选择一个图形证明你的结论25.探究与发现:如图1所示的图形,像我们常见的学习用品--圆规.我们不妨把这种图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?请解决以下问题:(1)观察“规形图”,试探究∠BPC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下问题:①如图2:已知△ABC,BP平分∠ABC,CP平分∠ACB,直接写出∠BPC与∠A之间存在的等量关系为:.迁移运用:如图3:在△ABC中,∠A=80°,点O是∠ABC,∠ACB角平分线的交点,点P是∠BOC,∠OCB角平分线的交点,若∠OPC=100°,则∠ACB的度数.②如图4:若D点是△ABC内任意一点,BP平分∠ABD,CP平分∠ACD.直接写出∠BDC、∠BPC、∠A之间存在的等量关系为.【参考答案】***一、选择题16.317.无18.10719.95°20.(2,9)--三、解答题21.24aa+-,57-.22.23ab23.∠CAG;∠PFG=∠QFG;∠CAG;∠FQG;∠BAG;∠FQG【解析】【分析】根据角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和,等角对等边和等腰三角形三线合一来解题即可.【详解】解:AG⊥FG.将AG、DF的交点记为点P,延长AG交BC于点Q.因为AG、FG分别平分∠BAC和∠BFD(已知)所以∠BAG=∠CAG,∠PFG=∠QFG(角平分线定义)又因为∠FPQ=∠CAG+∠AED,∠FQG=∠BAG+∠B(三角形的一个外角等于与它不相邻的两个内角的和)∠AED=∠B(已知)所以∠FPQ=∠FQG(等式性质)所以FP=FQ(等角对等边)又因为∠PFG=∠QFG所以AG⊥FG(等腰三角形三线合一).故答案为:∠CAG;∠PFG=∠QFG;∠CAG;∠FQG;∠BAG;∠FQG.【点睛】本题考查的是三角形的综合运用,熟练掌握三角形的性质是解题的关键.24.(1)详见解析;(2)详见解析.【解析】【分析】(1)首先证明△AOD≌△BOC(SAS),利用全等三角形的性质得到BC=AD,再利用直角三角形斜边中线的性质即可得到OH=12BC=12AD,然后通过全等三角形对应角相等以及直角三角形两锐角互余证明OH⊥AD;(2)如图2中,延长OH到E,使得HE=OH,连接BE,通过证明△BEO≌△ODA,可得OH=12OE=12AD以及∠DAO+∠AOH=∠EOB+∠AOH=90°,问题得证;如图3中,延长OH到E,使得HE=OH,连接BE,延长EO交AD于G,同理可证OH=12OE=12AD,∠DAO+∠AOG=∠EOB+∠AOG=90°.【详解】(1)证明:如图1中,∵△OAB与△OCD为等腰直角三角形,∠AOB=∠COD=90°,∴OC=OD,OA=OB,在△AOD与△BOC中,∵OA=OB,∠AOD=∠BOC,OD=OC,∴△AOD≌△BOC(SAS),∴BC=AD∵H是BC中点,∴OH=12BC=12AD.∵△AOD≌△BOC∴∠ADO=∠BCO,∠OAD=∠OBC,∵点H为线段BC的中点,∴∠OBH=∠HOB=∠OAD ,又∵∠OAD+∠ADO=90°,∴∠ADO+∠BOH=90°,∴OH ⊥AD ;(2)解:结论:OH ⊥AD ,OH=12AD证明:如图2中,延长OH 到E ,使得HE=OH ,连接BE ,易证△BEO ≌△ODA ,∴OE=AD ,∴OH=12OE=12AD . 由△BEO ≌△ODA ,知∠EOB=∠DAO ,∴∠DAO+∠AOH=∠EOB+∠AOH=90°,∴OH ⊥AD .如图3中,结论不变.延长OH 到E ,使得HE=OH ,连接BE ,延长EO 交AD 于G .易证△BEO ≌△ODA ,∴OE=AD ,∴OH=12OE=12AD . 由△BEO ≌△ODA ,知∠EOB=∠DAO ,∴∠DAO+∠AOG=∠EOB+∠AOG=90°,∴∠AGO=90°,∴OH ⊥AD .【点睛】本题考查了旋转变换,等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.25.(1)∠BPC=∠A+∠B+∠C ,理由见解析;(2)①∠BPC=90°+12∠A ,60°;②2∠BPC=∠BDC+∠A .。
山西省运城市盐湖区八年级(上)期末数学试卷一、选择题(每小题3分,30分)1.根据下列表述,能确定位置的是()A.运城空港北区B.给正达广场3楼送东西C.康杰初中偏东35°D.东经120°,北纬30°2.下列不是无理数的一项是()A.π的相反数B.π的倒数C.π的平方根D.3.某市一周空气质量报告中,某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数,众数分别是()A.31,31B.32,31C.31,32D.32,354.等腰三角形的一个外角是140°,则其底角是()A.40°B.70°或40°C.70°D.140°5.下列命题中,真命题是()A.若两个角相等,则这两个角是对顶角B.同位角一定相等C.若a2=b2,则a=bD.平行于同一条直线的两直线平行6.已知正比例函数y=(≠0)的函数值随的增大而增大,则一次函数y=+2的图象大致是()A.B.C.D.7.若平面直角坐标系中,△ABO关于轴对称,点A的坐标为(1,﹣2),则点B的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,2)D.(﹣2,1)8.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7B.11C.7或11D.7或109.如图一只蚂蚁从长宽都是3cm,高是8cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()A.13cm B.10cm C.14cm D.无法确定10.设0<<1,关于的一次函数y=+(1﹣),当1≤≤2时,y的最大值是()A.B.C.D.二、填空题(每小题3分,15分)11.4(选填“>、<、=”)12.若|2m﹣3|+(m﹣2)y=6是关于、y的二元一次方程,则m的立方根是13.已知直线y=+b经过点(﹣2,0),且与坐标轴所围成的三角形的面积为6,该直线的表达式是14.如图,在等腰△ABC中,∠ABC=90°,D为底边AC中点,过D点作DE⊥DF,交AB于E,交BC于F.若AE=12,FC=5,EF长为.15.如图,已知:∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A 1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为.三、解答题(75分)16.(8分)计算:(1)+(﹣1)2018﹣2|﹣|;(2)(+﹣3)×17.(4分)作图题△ABC在平面直角坐标系Oy中的位置如图所示,作△ABC关于y轴对称的△A1B1C1.18.(4分)已知:如图,等腰三角形的一个内角为锐角α,腰为a,求作这个等腰三角形.19.(8分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.20.(12分)如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE的平分线与AD交于点D,连接CD.(1)求证:①AB=AD;②CD平分∠ACE.(2)猜想∠BDC与∠BAC之间有何数量关系?并对你的猜想加以证明.21.(6分)阅读材料:善思考的小军在解方程组时,采用了一种“整体代入”的解法:解:将方程②变形:4+10y+y=5,即2(2+5y)+y=5 ③把方程①代入③,得:2×3+y=5,所以y=﹣1把y=﹣1代入①得,=4,所以方程组的解为.请你模仿小军的“整体代入”法解方程组.22.(8分)为了保护生态平衡,绿化环境,国家大力鼓励“退耕还林、还草”,其补偿政策如表(一);丹江口库区某农户积极响应我市为配合国家“南水北调”工程提出的“一江春水送北京”的号召,承包了一片山坡地种树种草,所得到国家的补偿如表(二).问该农户种树、种草各多少亩?23.(11分)如图,在平面直角坐标系中,已知一次函数y=﹣2+6的图象与轴交于点A,与y 轴交于点B.(1)求点A的坐标;(2)求出△OAB的面积;(3)直线AB上是否存在一点C,使△AOC的面积等于△OAB的面积?若存在,求出点C的坐标;若不存在,请说明理由.24.(14分)已知Rt△ABC中,AB=AC,∠ABC=∠ACB=45°,点D为直线BC上的一动点(点D 不与点B、C重合),以AD为边作Rt△ADE,AD=AE,∠ADE=∠AED=45°,连结CE.(1)发现问题如图①,当点D在边BC上时.①请写出BD与CE之间的数量关系,位置关系.②求证:CE+CD=BC;(2)尝试探究如图②,当点D在边BC的延长线上且其他条件不变时,(1)中BC、CE、CD之间存在的数量关系是否成立?若成立,请证明;若不成立,请写出新的数量关系,说明理由(3)拓展延伸如图③,当点D在边BC的反向延长线上且其他条件不变时,若BC=5,CE=2,则线段ED的长为.参考答案与试题解析一、选择题(30分)1.【解答】解:A、运城空港北区,不能确定位置,故本选项错误;B、给正达广场3楼送东西,没有明确具体位置,故本选项错误;C、康杰初中偏东35°,不能确定位置,故本选项错误;D、东经120°,北纬30°,二者相交于一点,位置明确,能确定位置,故本选项正确;故选:D.2.【解答】解:A、B、C都是无理数;D、=9,是有理数.故选:D.3.【解答】解:将数据按照从小到大依次排列为30,31,31,31,32,34,35,众数为31,中位数为31.故选:A.4.【解答】解:当140°为顶角的外角时,则其顶角为:40°,则其底角为:=70°,当140°为底角的外角时,则其底角为:180°﹣140°=40°.故选:B.5.【解答】解:A、若两个角相等,则这两个角不一定是对顶角,是假命题;B、两直线平行,同位角一定相等,是假命题;C、若a2=b2,则a=b或a=﹣b,是假命题;D、平行于同一条直线的两直线平行,是真命题;故选:D.6.【解答】解:∵正比例函数y=(是常数,≠0)的函数值y随的增大而增大,∴>0,∵一次函数y=+2,∴′=1>0,b=2>0,∴此函数的图象经过一、二、三象限.故选:A.7.【解答】解:△ABO关于轴对称,点A的坐标为(1,﹣2),则点B的坐标为(1,2),故选:C.8.【解答】解:设等腰三角形的底边长为,腰长为y,则根据题意,得①或②解方程组①得:,根据三角形三边关系定理,此时能组成三角形;解方程组②得:,根据三角形三边关系定理此时能组成三角形,即等腰三角形的底边长是11或7;故选:C.9.【解答】解:如图1所示:AB==10(cm),如图2所示:AB==(cm).∵10<,∴蚂蚁爬行的最短路程是10cm.故选:B.10.【解答】解:当=1时,y=;当=2时,y=2﹣,∵0<<1,∴>2﹣,∴y的最大值是.故选:A.二、填空题(15分)11.【解答】解:∵4=>,即<4,故答案为:<.12.【解答】解:根据题意得,|2m﹣3|=1且m﹣2≠0,所以,2m﹣3=1或2m﹣3=﹣1且m≠2,解得m=2或m=1且m≠2,所以m=1.所以m的立方根是1,故答案为:113.【解答】解:设直线与轴、y轴分别交于A、B两点,∵直线y=+b经过点(﹣2,0),∴A(﹣2,0),∴﹣2+b=0,即b=2,在y=+b中,令=0可得y=b,∴B(0,b),∴OA=2,OB=|b|,∵S=6,△AOB∴OA•OB=6,即×2|b|=6,解得b=6或b=﹣6,∴=3或﹣3,∴直线表达式为y=3+6或y=﹣3﹣6.故答案为:y=3+6或y=﹣3﹣6.14.【解答】证明:连结BD,∵AB=AC,∠ABC=90°,∴∠B=∠C=45°.∵D是AC的中点,∴BD=AD=CD=AC,∠ABD=∠CBD=45°,BD⊥AC,∴∠ABD=∠C,∠BDC=90°,即∠CDF+∠BDF=90°.∵DE⊥DF,∴∠EDF=90°.即∠EDB+∠BDF=90°,∴∠EDB=∠CDF.在△BED和△CFD中,∴△BED≌△CFD(ASA),∴DE=DF.BE=CF.∵AB=AE+BE,∴AB=AE+CF.∵AE=12,FC=5,∴AB=17,∴BF=12.在Rt△EBF中,由勾股定理,得EF==13.故答案为13.15.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故答案是:32.三、解答题(75分)16.【解答】解:(1)原式=2+1﹣2 =1;(2)原式=(2+﹣3)×=﹣×=﹣.17.【解答】解:△ABC关于y轴对称的△A1B1C1如图所示.18.【解答】解:①当α为顶角时,△ABC如图1所示,∠A=α,AB=AC=a.②当α为底角时,△ABC如图2所示,∠B=α,AB=AC=a.19.【解答】解:(1)=(83+79+90)÷3=84,=(85+80+75)÷3=80,=(80+90+73)÷3=81.从高到低确定三名应聘者的排名顺序为:甲,丙,乙;(2)∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,∴甲淘汰;乙成绩=85×60%+80×30%+75×10%=82.5,丙成绩=80×60%+90×30%+73×10%=82.3,乙将被录取.20.【解答】解:(1)①∵AD∥BE,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD;②∵AD∥BE,∴∠ADC=∠DCE,由①知AB=AD,又∵AB=AC,∴AC=AD,∴∠ACD=∠ADC,∴∠ACD=∠DCE,∴CD平分∠ACE;(2)∠BDC=∠BAC,∵BD、CD分别平分∠ABE,∠ACE,∴∠DBC=∠ABC,∠DCE=∠ACE,∵∠BDC+∠DBC=∠DCE,∴∠BDC+∠ABC=∠ACE,∵∠BAC+∠ABC=∠ACE,∴∠BDC+∠ABC=∠ABC+∠BAC,∴∠BDC=∠BAC.21.【解答】解:将方程②变形:3(3﹣2y)+2y=19.将方程①代入③,得3×5+2y=19.y=2把y=2代入①得 =3∴方程组的解为.22.【解答】解:设该农户种树亩,种草y亩,则有,解得.答:该农户种树20亩,种草10亩.23.【解答】解:(1)当y=0时,有﹣2+6=0,解得:=3,∴点A的坐标为(3,0);(2)当=0时,y=﹣2+6=6,∴点B的坐标为(0,6),∴S△OAB=OA•OB=×3×6=9;(3)设点C的坐标为(m,﹣2m+6),∵△AOC的面积等于△OAB的面积,∴OA•|﹣2m+6|=9,即|﹣2m+6|=6,解得:m1=﹣6,m2=0(舍去),∴点C的坐标为(﹣6,﹣6).24.【解答】(1)①解:结论:BD=CE,BD⊥CE,理由:连接CE.∵∠ABC=∠ACB=45°,∠ADE=∠AED=45°,∴∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∠ACE=∠B=45°,∴∠BCE=90°,即BD⊥CE,故答案为:BD=CE;BD⊥CE;②证明:∵BD=CE,∴BC=BD+CD=CE+CD;(2)解:(1)中BC、CE、CD之间存在的数量关系不成立,新的数量关系是CE=BC+CD,理由:∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴CE=BC+CD;(3)解:∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE=2,∠ABD=∠ACE=135°,∵∠ACB=45°,∴∠DCE=90°,在Rt△DCE中,CD=BD+BC=7,CE=2,∴DE==。