分子标记聚合育种在毕节地区马铃薯抗病品种选育中的应用初探
- 格式:pdf
- 大小:363.06 KB
- 文档页数:4
分子标记辅助选择技术及其在作物育种上的应用研究目录1. 引言1.1 背景和意义1.2 结构概述1.3 目的2. 分子标记辅助选择技术2.1 分子标记的定义和分类2.2 常用的分子标记技术2.3 分子标记辅助选择技术的原理和方法3. 作物育种中的应用研究3.1 传统育种与分子标记辅助选择育种的对比3.2 分子标记辅助选择在作物抗病性改良中的应用研究3.3 分子标记辅助选择在作物品质改良中的应用研究4. 分子标记技术在现代作物育种中面临的挑战和前景展望4.1 技术挑战及其解决方案4.2 应用潜力与发展前景5. 结论5.1 总结已有研究成果5.2 展望未来发展方向和价值所在1. 引言1.1 背景和意义随着人口的不断增长和资源的有限性,如何提高作物的产量、品质和抗病能力成为全球农业面临的重要问题。
传统育种方法虽然可以改良作物,但其进展缓慢且存在许多局限性。
近年来,分子标记辅助选择技术的出现为解决这一问题提供了新的途径。
这项技术利用分子标记对作物基因组进行精确分析和筛选,从而加速育种过程,并在遗传改良上取得了显著成果。
1.2 结构概述本文将首先介绍分子标记辅助选择技术的定义和分类,然后探讨常用的分子标记技术以及相应的原理和方法。
接下来,将重点关注该技术在作物育种中的应用研究,并与传统育种方法进行比较。
特别是,我们将探讨分子标记辅助选择在作物抗病性改良和品质改良方面的应用案例。
此外,我们还将对分子标记技术在现代作物育种中面临的挑战及其解决方案进行深入讨论。
最后,本文将总结已有的研究成果,并展望未来分子标记辅助选择技术在作物育种领域的发展方向和价值。
1.3 目的本文的主要目的是全面介绍分子标记辅助选择技术及其在作物育种上的应用研究。
通过对该技术原理、方法以及实际应用案例的深入探讨,旨在加深读者对该领域的理解,并为相关研究提供参考和启示。
此外,本文还将探讨分子标记技术在现代作物育种中面临的挑战,并提出一些解决方案,为该技术未来的发展提供思路和指导。
2002年12月韶关学院学报(自然科学版)Dec.2002第23卷 第12期Journal of Shaoguan University(Natural Science)Vol.23 No.12分子标记及其在作物育种上的应用李海渤(韶关学院英东生物工程学院,广东韶关512005)摘要:分子标记是随着遗传学的发展而诞生的一种基于DNA多态性的遗传标记.主要综述了几种分子标记的基本原理及其在作物育种上的应用,实践证明,分子标记技术为作物育种提供了一种新的研究手段,必将在作物育种领域开拓广阔的应用前景.关键词:分子标记;作物育种;DNA多态性中图分类号:Q341 文献标识码:A 文章编号:1007-5348(2002)12-0100-07作物育种的目标之一是改良现有品种、创造新品种,使之更符合人类生产和生活需要.早期的良种选育工作主要是凭感官对当时所需要的性状进行选择,如植株的高矮、籽粒的饱满度、植株的抗性等.经过这种途径,虽然创造了一些具有优良性状的品种,但这种育种方式尚处于感性和经验性阶段,具有一定的盲目性和机遇性.随着遗传学的发展,遗传标记经历了形态学标记、细胞学标记、生化标记和分子标记等几个阶段.在此过程中,育种家们试图利用遗传标记指导作物育种过程中的亲本选配和后代目标性状的选择,然而由于技术水平的限制,最初的遗传标记对指导育种工作带有局限性,实用性有限.分子标记的出现与发展,为作物育种注入了前所未有的活力,分子标记在作物育种上得到广泛的应用.1 分子标记的类型分子标记是指以DNA多态性为基础的遗传标记.其特点是直接以DNA的形式存在;标记数量无限,遍布于整个染色体组;标记位点非常丰富;性状稳定,不受环境条件影响;许多标记是共显性标记,因而从它诞生的一开始就展示了极大的生命力.分子标记可根据不同的研究手段分为如下类型:111 RFL P(Restriction Fragment Length Polymorphism)标记1980年,Bostein提出了RFL P标记方法.其基本原理是由于DNA序列不同,或DNA序列发生插入、缺失、易位等结构变化,从而造成限制性内切酶的酶切位点发生改变,当基因组DNA与限制性内切酶相互作用后,便会产生不同长度的限制性片段,再通过电泳、转膜,然后用放射性标记的同源DNA片段作为探针与其杂交,经放射自显影来检测样品之间的差异.RFL P标记的优点是不受环境条件和发育阶段的影响;无表型效应;在等位基因之间收稿日期:2002-09-11作者简介:李海渤(1973-),男,河北唐山人,韶关学院英东生物工程学院助教,硕士,主要从事作物遗传育种研究.一般表现为共显性;结果稳定、重复性好.缺陷是该技术对DNA 要求量较大;要求纯度较高;运用同位素标记对人体有害;所花费的人力、物力较大.该技术广泛应用于生物的遗传作图、基因定位、种质资源评估、分子标记辅助选择等方面.112 RAPD (Random Amplified Polymorphism DNA )标记该标记是由Williams 等和Welsh 等在PCR 技术基础上发展起来的一种分子标记[1,2].其原理是采用人工合成的10个碱基的寡聚核苷酸作为随机引物,以基因组DNA 为模板,在94℃左右变性后,在较低温度下分别与DNA 的两条单链发生退火反应,在DNA 聚合酶的作用下对基因组特定的DNA 区域进行反复扩增,最后通过琼脂糖凝胶电泳检测扩增片段的差异.造成RAPD 谱带差异的原因可能是:核苷酸置换造成引物无法与结合位点匹配;结合位点的缺失;结合位点间大片段的插入造成扩增中断;由于插入或缺失突变使扩增产物大小发生改变.RAPD 技术的优点是自动化程度高;费用低;无放射性污染;信息量较大及简便快速等.其缺陷是不十分稳定;重复性较差;对反应条件比较敏感.该技术现已广泛应用于遗传多样性分析、物种进化、品种鉴定、分类等研究领域.113 SSRs (Simple Sequence Repeats )技术生物体基因组中,普遍存在1~4个碱基组成的简单重复序列,其重复次数可达百次以上,且重复次数变化很大,但在该重复序列两端的序列却是高度保守的.SSRs 技术就是利用其两侧保守序列设计一对引物,再利用PCR 技术对每个位点的微卫星序列进行特异扩增,再经聚丙烯酰胺凝胶电泳检测扩增产物,便可确定该物种扩增片段的多态性[3].该技术的特点是需DNA 量较少;为共显性标记;显示的带型简单、客观明确.现在该技术被广泛应用于遗传图谱的构建、种质资源的鉴定、遗传多样性评估等方面.114 AFL P (Amplified Frangement Length Polymorphism )标记该技术是Vos 等于1992年发明的一种选择性扩增DNA 片段的方法[4],其基本原理是某生物基因组DNA 在两种具有不同酶切位点的限制性内切酶作用下,产生大小不同的酶切片段;再在这些片段的两端接上已知序列的接头,最后再利用根据接头序列设计的特异引物对双酶切片段进行选择性地扩增,最后通过电泳、染色,分析条带差异.AFL P 技术结合了RFL P 和PCR 的优点,具有多态性丰富、稳定性好和重复性高的特点,被广泛地应用于基因定位、基因作图、鉴定亲缘关系等领域.115 STS (Sequence -tagged Sites )标记STS 标记是由一段长为200-500bp 的序列所界定的位点,它在基因组中只出现一次.前述任何单拷贝的多态性标记都可以作为基因组的界标转变为STS 标记,转变的前提是测定长度适合的单拷贝片段两端的序列,并据其设计一对专一扩增的引物(长度为20个核苷酸左右),经PCR 途径显示STS 的特异片断[5].STS 标记的优点在于其共显性的遗传方式,因而很容易在不同组合的遗传图谱间进行转移.2 分子标记在作物育种中的应用・101・第12期李海渤:分子标记及其在作物育种上的应用由于分子标记所表现出的极大的优越性,所以在作物育种中得到广泛的应用,主要表现在以下几个方面:211 亲缘关系与种质资源多样性的研究研究物种的亲缘关系以及种质资源的多样性对作物育种有着重要的指导意义.然而,由于作物易受生长环境及发育阶段的影响,因而仅凭作物的形态学特征来研究其亲缘关系及多样性易受主观因素的影响,结果可靠性较低.分子标记所代表的是基因组DNA 水平上的差异,不受外界环境及作物生长发育阶段的影响,因而利用分子标记研究作物的亲缘关系及多样性,其结果具有客观、稳定的特点.Dires 等采用RFL P 技术对83个甘蓝型油菜品种进行了聚类分析,并将之分为三大类群,即春油菜类群、冬油菜类群及中国—日本油菜类群,该聚类结果与已知系谱大致相符[6];安贤惠通过RAPD 技术,采用31个随机引物分析了72份芥菜型油菜品种的遗传多样性,并将之划分为六大类[7].212 DNA 指纹和种子纯度的鉴定在同一物种的各个品种间存在大量的多态性标记,DNA 指纹就是一些特异DNA 标记的组合.通过DNA 指纹可以进行物种鉴定,不仅克服了根据形态特征鉴定物种的可靠性差的缺点,而且对于品种专利权的申请及保护提供了可靠途径.另外,通过DNA 指纹也可以进行种子纯度的鉴定,这种方法同样克服了根据田间表型性状以及同工酶进行种子纯度鉴定的缺陷,具有快速、准确、简便、成本低的特点,而且在幼苗或种子阶段就可对种子纯度进行鉴定.213 构建分子标记连锁图构建高密度的分子标记连锁图为基因的精细定位、物理图谱的构建和以图谱为基础的基因克隆奠定了条件.利用克隆的基因来转化其他的作物无疑是一种新的育种途径,例如转基因植物.实践证实采用分子标记构建基因连锁图具有很高的实用价值.Cheung 等用RFL P 技术构建了包括343个RFL P 标记的芥菜型油菜的遗传图谱,为辅助选择育种提供了重要的理论参考[8].美国的Cornell 实验室发表了一张水稻的分子标记连锁图,该图谱中有700多个标记,其中绝大部分是RFL P 标记[9].在玉米中已建立了数百个RFL P 标记图谱,而在西红柿中则建立了带有1000个RFL P 标记遗传图谱[9].214 基因定位和数量性状的选择利用不同的分离群体如F2群体、回交群体、DH 群体、重组自交系等可对目的基因进行定位.Jean 等找到了与Pol cms 恢复基因Rfp1紧密连锁的1个RAPD 标记和10个RFL P 标记[10].1998年,他们又用RFL P 标记和RAPD 标记将Pol cms 恢复基因Rf p1定位[11].王俊霞等在860个随机引物中找到了与Pol cms 恢复基因Rf p 连锁的两个RAPD 标记[12].另外,作物的许多经济形状是由数量性状位点(Q TL )所控制的,如产量、品质、水平抗性等.由于这些数量性状的遗传差异是由多个基因座位决定的,每个座位只对表型起较小的作用,由于遗传和环境的互作无法区别单个基因座位的贡献和各个基因座位之间的互作,因而无法对单个Q TL 进行操作.分子标记的产生和发展可把控制数量性状・201・韶关学院学报(自然科学版)2002年的单个Q TL 区分开来,为Q TL 的定位、克隆和选择提供了有力的工具.例如Toroser 等采用RFL P 标记,对甘蓝型油菜硫苷含量控制基因进行了定位,结果将两个主要控制位点GSL -1和GSL -2分别定位于L G20和L G1,三个次要控制位点GSL -3、GSL -4和GSL -5分别定于L G18、L G4和L G13[13].Tanhuanpaa 等采用RAPD 技术对油菜的亚麻酸含量控制基因进行了定位[14].215 利用分子标记进行辅助选择利用分子标记辅助育种可以方便、快速的实现品种之间的目的基因的转移,或将近缘野生种的新基因导入,给传统的育种带来了巨大的活力.利用分子标记辅助选择有以下优点:1)不受时间和环境条件的限制,在作物不同的发育阶段均可进行检测,而性状的传统鉴定方法则需要在某一特定发育阶段进行;2)利用分子标记可以实现优良基因的快速聚合,弥补了传统育种方法的费时、费力以及盲目性高的缺点.作物育种程序中对分子标记辅助选择的要求:1)分子标记与目的性状位点共分离或紧密连锁(1cM 或更小),否则会因标记与目的基因之间的交换而使检测过程中的假阳性频率变得很高;2)分子标记能对大群体进行有效检测,目前基于PCR 的分子标记技术较为容易;3)检测技术在实验室之间应该有很高的重复性,并且较为经济.在实践中,育种工作者采用分子标记辅助选择的途径培育出了一批优良品种.薛庆中等应用与Xa21紧密连锁(遗传距离仅为011cM )的分子标记,通过辅助选择培育出了一批具有Xa21基因的抗白叶枯病恢复系[15].Sheng 等利用分子标记辅助选择的方法将Xa21导入明恢63中,建立了基于分子标记辅助选择的PCR 反应体系,其中两个标记距离Xa21分别为018cM 和310cM.用均匀分布于水稻12条染色体的128个RFL P 标记进行背景选择,证明改良性明恢63除了含Xa21的318cM 片段外与原始材料完全一样[16].Huang 等利用DNA 标记辅助选择将Xa4、Xa5、Xa13、Xa21等4个水稻抗白叶枯病基因进行了聚合,聚合系表现出比单基因系更广的抗谱和更强的抗性[17].216 杂种优势的预测杂种优势利用是品种改良的一条重要途径.育种家们为了更好地利用杂种优势,对于预测杂种优势的方法和途径进行了多年的研究,其中,以玉米和水稻为对象的研究较为广泛和深入.关于杂种优势的预测,人们曾通过生理生化、形态解剖、地理距离等途径进行探索,结果都不理想.80年代末,分子标记开始运用于杂种优势预测的研究.Lee 用33个RFL P 探针检测了8个玉米自交系及其28个杂交组合,结果认为RFL P 的遗传距离与F1产量呈显著正相关[18].Smith 用分布于整个玉米基因组的257个RFL P 探针检测了37个玉米自交系及其123个杂交组合,结果表明,亲本的RFL P 遗传距离与F 1产量和杂种优势相关达极显著水平[19].Stuber ,Melchinger 等均采用RFL P 标记方法发现RFL P 遗传距离与F1杂种优势表现存在高度的相关性[20].但也有与上述研究不一致的结果,如Melchinger 等研究发现亲本间RFL P 遗传距离与杂种F 1产量相关性很低,不能用于杂种优势的预测[21].Dudley 等用52个RFL P 标记和14个同工酶标记研究了14个玉米自交系・301・第12期李海渤:分子标记及其在作物育种上的应用与其F 1产量的关系,同样发现遗传距离与产量并无相关性[22].Melchinger 等认为,造成这两种不同结论的原因是亲本来源的不同,当亲本来自于相同的杂种优势群时,亲本间RFL P 遗传距离和F 1表现的关系呈显著相关,当亲本来自于不同的杂种优势群时,这种相关性较低[20].吴敏生等采用RAPD 标记对玉米杂种产量进行了预测研究,发现RAPD 遗传距离与杂种产量相关显著,但决定系数很小,表明遗传距离在决定杂种产量方面只占很小的比例,遗传距离大的F 1产量不一定高,遗传距离小的F 1产量不一定低[23].彭泽斌等用RAPD 方法研究了15个6类玉米自交系间的RAPD 遗传距离与其杂交组合F 1产量、特殊配合力、中亲杂种优势值的关系,认为RAPD 遗传距离与组合产量、中亲优势值、双亲特殊配合力存在极显著的正相关,说明用RAPD 遗传距离在杂交组合选配中有一定的参考价值[24].实践证实,关于利用不同分子标记预测杂种优势准确性及其机理有待于进一步研究.3 结语和展望分子标记是随着遗传学的发展而诞生的,在作物育种方面应用虽然仅有十几年时间,却显示了巨大的生命力,成为作物育种的重要途径之一.分子标记的发展和应用不仅促进了作物育种的发展而且对一些经典概念的再认识,提出了一些新的观点.如Huang 等提出质量性状基因和Q TL 可能仅是同一座位的不同等位基因[17].目前分子标记在育种上的应用还有一定的局限性,主要包括以下几个方面:1)开发的分子标记数量较少,很难找到与目标基因紧密连锁的分子标记,需要构建更为精密饱和的遗传图谱;2)分子标记技术本身的局限性造成检测结果的偏差;3)众多的农艺性状是受多基因控制的,而分子标记对数量基因的精确定位还有较大差距;4)有待于建立自动化的实验程序,实现对大群体快速、准确的鉴别;5)分子标记与表型之间的关系有待于进一步研究.分子标记是一种新的技术,它的技术体系并不全面,不能脱离传统的育种技术而单独使用,必须要与传统的育种技术有机结合,分子标记的检测结果和效应最终要到大田中验证.另外,分子标记技术的成本较高,限制了它的广泛应用.随着分子生物学理论与技术的发展,我们相信科学家们必将不断开发出分析速度快、成本低、信息量更大的分子标记.分子标记技术必将在作物育种方面得到更加广泛的应用.参考文献:[1]williams J G ,Kubelik A R ,et al.DNA polymorphisms amplified by arbitrary primers are useful as genetic makers[J ].Nucl Acid Res ,1990,18:6531-6535.[2]Welsh J.Fingerprinting genomes using PCR with arbitrary primers[J ].Nucl Acid Res ,1990,18:7213-7218.[3]Weber J L.Human DNA polymorphisms based on length variations in simple -sequence tandem repeats [A ].K E Davis ,S M Tilghman (eds ).G enome analysis[C ].New york :Cold S pring Harbor Laboratory Press ,1990.159-181.・401・韶关学院学报(自然科学版)2002年[4]Vos P ,Hogers R ,Beleaker M.AFL P :a new technique for DNA fingerprinting[J ].Nucl Acid Res ,1995,23:4407-4414.[5]Monna L ,Miyao A ,et al .Determination of RAPD markers in rice and their conversion into se quence tagged sites (STS )and STS -specific primers[J ].DNA Research ,1994,1:139-148.[6]Diers B W ,Osborn T C.G enetic diversity of oilseed Brassic napus germplasm based on restriction fragment length polymorphisms[J ].Theor Appl G enet ,1994,88:662-668.[7]陈宝员,付廷栋,等.利用RAPD 标记研究中国荠菜型油菜遗传多样性[J ].华中农业大学学报,1999,18(6):524-527.[8]Cheung W Y ,Gugel R K ,Landry B S.A RFL P -based linkage map of mustard B rassic juncea L Czern and Cross[J ].Theor Appl G enet ,1997,94:841-851.[9]Madan M ,Nair S ,Bhagwat A ,et al .G enome mapping ,molecular markers and marker 2assisted selection in crop plants[J ].Molecular Breeding ,1997,3:87-103.[10]Jean M ,Brown G G ,Landry B S.G enetic mapping of nuclear fertility restorer genes for the ‘polim a ’cy 2toplasmic male sterility in canola (B rassic napus L )using markers[J ].Theor Appl G enet ,1997,95:321-328.[11]Jean M ,Brown G G ,Landary B S.Targeted mapping approaches to identify DNA markers linked to theRfp1restorer gene for the ‘Polim a ’CMS of canola (B rassic napus L )[J ].Theor Appl G enet ,1998,97:431-438.[12]王俊霞,杨光圣,傅廷栋,孟金陵.甘蓝型油菜Polcms 育性恢复基因的RAPD 标记[J ].作物学报,2000,26(5):575-578.[13]Toroser D ,Thormann C E ,Osborn T C ,et al .RFL P -based linkage mapping of quantitative trait locicontrolling seed aliphatic -glucosinolate content in oilseed rape (B rassic napus L )[J ].Theor Appl G enet ,1995,91:802-808.[14]Tanhuanpaa P K.Association of a RAPD markers with Linoleic acid concentration in the seed oil of ra peseed[J ].G enome ,1995,38(2):414-416.[15]薛庆中,朱立煌,等.应用分子标记辅助选择培育抗白叶枯病水稻恢复系[J ].浙江大学学报,1998,24(6):581-582.[16]Sheng C ,Lin X H ,Xu C C ,et al.Improvement of Bacterial Blight Resistance of ‘Minghui 63’,an Elite Re 2storer Line of Hybrid Rice ,by Molecular Marker 2Assisted Selection[J ].Crop sci ,2000,4(1):239-244.[17]Huang N ,Angeles E R ,Domingo J ,et al .Pyramiding of bacterial blight resistance genes in rice :Marker 2As 2sisted Selection using RFL P and PCR[J ].Theor A ppl G enet ,1996,95:313-320.[18]Lee M ,G odshalk E B ,Lamkey K R.Association of restriction fragment length polymorphisms amongmaize inbreds with agronomic performance of their crosses[J ].Crop Science ,1989,29:1067-1071.[19]Smith O S ,Smith J S C ,et al .Similarities among a group of elite maize inbreds as measured by pedigree ,F1grain yield heterosis and RFL Ps[J ].Theor A ppl G enet ,1990,80:833-840.[20]Melchinger A E ,Boppenmaier J ,Dhillon B S ,et al .G enetic diversity for RFL Ps in European maize inbred2.Relation to performance of hybrids within versus between heterosis groups for forge trait [J ].Theor Appl G enet ,1992,84:672-681.[21]Melchinger A E ,Lee M ,Lamkey K R ,et al .G enetic diversity for restriction fragment length polymor 2・501・第12期李海渤:分子标记及其在作物育种上的应用phisms :Relation to estimated genetic effects in maize inbreds[J ].Crop Science ,1990,30:1033-1040.[22]Dudley J W ,Saghai M A ,Rufener G K.Molecular marker information and selection of parents in cornbreeding programs[J ].Crop Science ,1992,32(2):301-304.[23]吴敏生,王守才,戴景瑞.RAPD 分子标记与玉米杂种产量优势预测的研究[J ].遗传学报,1999,26(5):578-584.[24]彭泽斌,刘新芝,等.玉米F1产量、杂种优势及双亲特殊配合力与RAPD 遗传距离关系的研究[A ].王连铮,戴景瑞.全国作物育种学术讨论会论文集[C].北京:中国农业科技出版社,1998.221-226.Molecular Markers and Their Application to the Crop BreedingL I Hai 2bo(Y ingdong College of Bioengineering ,Shaoguan University ,Shaoguan 512005,China )Abstract :Molecular markers emerged as a genetic marker based on DNA polymorphism with the development of genetics.The thesis summarizes the primary principle of several molecular markers and application to the crop breeding.From the practice ,it was found that the technol 2ogy of molecular markers provided a new research method for the crop breeding ,which will create a more wide perspective in the field of crop breeding.K ey w ords :molecular markers ;crop breeding ;DNA polymorphism(责任编辑:王桂珍)・601・韶关学院学报(自然科学版)2002年。
分子标记在作物育种中的应用作物育种是改良作物种质的重要手段,通过对作物的遗传基础的深入研究,运用现代生物技术手段,筛选出具有优良性状基因的优良种质材料,从而加速有关作物的育种进程。
在现代生物技术手段中,分子标记技术在作物育种中扮演了非常重要的角色。
本文将介绍分子标记在作物育种中的应用。
一、分子标记简介分子标记是指与基因组中某个特定区域或特定性状相关的DNA序列片段。
这种技术可以用于确定个体间的遗传差异,进行基因型鉴定,进而确定等位基因种类及其比例。
通过分子标记技术,可以确定物种间的基因组组成和遗传的联系,并且还可以对单个个体的基因组进行分析和定位,制定具体的育种策略。
分子标记技术在育种材料鉴定和筛选中有着广泛的应用。
习惯上,育种过程需要大量的物种杂交,然后去通过后代材料中的遗传差异进行筛选、后代选择和提高纯度。
这种育种方法需要大量的时间和耗费大量的资源。
而采用分子标记技术,可以大大提高材料筛选的速度和效率。
远缘杂交后代中的有些个体通常会表现出可喜的性状,但是由于其他不良的遗传特征,基本上是无法继续进行育种的。
这个时候,分子标记技术就可以对杂交后代的DNA样本进行分析,从而确定哪些个体的基因组组成更加适合于后续育种筛选工作。
2. 分子标记在基因型分析和遗传图谱绘制中的应用在作物遗传基础的研究中,分子标记技术在基因型分析和遗传图谱绘制中的应用日益广泛。
通过分子标记技术,可以分析大量的遗传标记,确定不同基因型间的遗传差异,对遗传多样性和相关性进行统计分析,最终清晰地绘制出遗传图谱,揭示了不同群体间的遗传关系。
遗传图谱的绘制对于作物育种的后续研究至关重要,能够帮助育种人员了解群体内的基因性状分布情况,确定功能多样的分子标记,确保育种目标的达成。
3. 分子标记在杂交组合选择中的应用分子标记在杂交组合选择中的应用同样十分重要。
通过分析杂交后代的DNA序列,可以细致地分析出每个基因型对数量性状、质量性状、抗病性等性状的影响,并且还可以计算各基因型的复杂性状遗传度。
分子标记技术在农业上的应用
从分子标记技术的简单定义开始,它是有关分子的分析,分类和鉴定的技术,它可以被用来分析基因组,蛋白质,微生物和植物。
它可以找出一种物种的潜在性,它的整体形态,以及它的构成。
它也可以帮助人们发现新的基因或突变。
分子标记技术在农业上的应用非常多。
它可以用来检测和识别与植物病虫害相关的物种,并跟踪病原体传播。
细菌性病害,真菌性病害和病毒性病害都可以通过这种方法来确定。
此外,它也可以用来检测和标记不同物种的植物耐性品种,这有助于合理选择特定环境下的适当品种,克服人为控制物种的弊端,从而提高生产率。
同时,分子标记技术也可以用于研究和开发植物基因工程,不仅能有效地增加植物种质资源和改变植物外观,还可以帮助种植者提高植物的抗病性和抗虫性,改变叶绿蛋白水平,减少植物细胞细胞膜的甘露醇含量,以及增加植物的产量和品质等方面的特性。
此外,分子标记技术还可以用于植物遗传育种。
利用这种技术,科学家可以识别和提取植物的潜在有益特性,并将它们传播到另外一种物种或品种中。
这种方法不仅比传统的育种方法快,而且可以更加精确和有效地进行品种优化和遗传工程。
最后,分子标记技术也被用来监测植物生产和产品质量,以便确保植物生长和收获。
它可以用来测定植物体内的病虫营养指示物,以检测并限制农民应农药作物安全方面的污染,并为农业带来更大的可持续发展。
总之,分子标记技术对农业的影响是巨大的,它可以长期有效地改善农作物的生存环境,提高产量,改善品质,以及提高农作物的综合经济效益。
生物技术在农业育种中的应用作者:杨卓儒来源:《农家科技下旬刊》2017年第10期摘要:生物育种在农业中的推广速度较快,并且产生了较大的经济效益与社会效益。
但是我国主要农作物育种仍停留在传统的育种方法上,不但周期长且品种改良速度慢,满意实现增产增收的目标。
生物育种技术的应用突破了传统育种技术的限制,有助于加速高产、优质、抗旱、抗虫害的新品种培育。
因此,文章主要针对生物技术在农业育种中的应用展开分析。
关键词:生物技术;农业育种;应用效果粮食作为重要的战略资源,关系着人们的正常生活与社会的秩序。
我国是一个农业大国,但人均耕地少、水资源地区差异大、粮食刚性需求大等问题使得农产品生产存在较大的问题。
因此,加速育种改进速度是农业研究的重要课题。
过去人们常用传统育种技术进行农作物性状的改良,但是由于育种材料狭窄、效率低下以及生殖屏障无法突破等因素的限制,许多重要品种的选育工作进入瓶颈阶段,而生物技术的应用则能够有效突破这些因素的限制。
因此,文章重点介绍了生物技术中几种常见的育种技术。
一、转基因育种技术转基因育种技术与传统育种技术相依,具有形状改良精确度高的特点,省时省力并且能够突破物种界限,充分改变遗传特点。
转基因育种技术发展时间久,已经进入商业发展的重要时期,并且根据国际农业生物技术服务组织发表的数字统计,全球转基因种植面积持续增长,目前已达2.857亿hm2。
转基因技术作为现代农业中推广范围最广的技术,在减少农药使用量、降低病虫害发生率、改善生态环境以及降低生产成本方面具有较好的应用效果。
目前全世界85%的大豆和棉花、35%的玉米和油菜多为转基因品种。
从2012年-2017年的5年内,转基因抗虫害、抗化学制剂的农作物产值超过1000亿美元,改善了进1800万农户和6000万贫困农户的经济效益,同时减少了超过5.5亿kg农药的使用,也正是由于这一点,转基因技术被授予了世界粮食奖。
截止到2016年,全球已有超过100个国家和地区运行种植转基因技术,从种植品种而言,主要集中在大豆、棉花、玉米以及油菜这几个农作物品种上。
知识介绍分子遗传标记及其在作物诱变遗传育种中的应用项友斌 高明尉(浙江农业大学原子核农业科学研究所 杭州 310029) 介绍了分子遗传标记中限制性片段长度多态性(RFLP)、随机扩增多态DN A(RAPD)和多拷贝重复串联序列DN A微卫星与小卫星的基本概念和原理,以及它们在作物诱变遗传育种和品种改良中的应用。
关键词:R FLP R AP D 重复DN A序列 诱变育种 分子标记 植物育种中,一般都是通过亲本杂交与回交,从供体品种或野生种中将期望性状转到受体品种,达到改良的目的。
这种常规育种方法,往往要创造分离群体,经表型性状筛选,实现育种目标,需要经历较长时间。
并且,在一些多基因控制的数量性状、隐性基因控制的性状以及为获得对某一病原菌抗性需要在同一基因型中积累多个抗性基因的遗传改良中,采用常规方法往往难以奏效,而利用分子标记则易于取得成功。
因为分子标记把表型与基因位点连在一起,使一些难以在表型中区分的基因在较短时间里即可鉴别出来,从而提高了选择效率。
1.形态标记、生化标记和分子标记利用可分辨的表型性状作为遗传标记,在不同植物中已构建了遗传图谱。
但直到最近,用于作图的遗传标记还是那些影响形态性状的标记,包括花色、矮秆、白化苗及形态改变。
由于表型标记并非完善的指标,它不仅取决于遗传物质,还受生长环境的影响,许多环境因素有遮蔽基因的作用;有些表型标记作用太大,可能致死;而且形态标记的数量有限;故至今形态标记遗传图谱绘制的进展极其缓慢。
同功酶是一种中性的生化遗传标记,在一些植物的制图上已获得较大成功。
但同功酶在数量上也是有限的,它的表达经常被限制在一定发育时期和特定的组织中,极大地限制了它的广泛利用。
现在人们所说的分子标记,往往都是指DN A标记。
1975年,遗传学家Crodz icker等人首次描述了DN A限制性片段长度多态性(RFLP),1980年,建立了第一套人类根据DN A标记的遗传图谱,由此引发了建立其它真核生物DN A分子的标记遗传图谱。
遗传学分子标记技术在作物育种中的应用随着人类对生物体基因组的深入研究,遗传学分子标记技术成为了重要的工具之一。
通过对基因组中特定序列的标记,可以帮助我们更好地了解物种的遗传变异和遗传相关性质。
作为其中重要的应用领域之一,遗传学分子标记技术在作物育种中的应用,被认为具有巨大的潜力,能够为作物育种提供更快速、更高效、更智能的解决方案。
本文将对遗传学分子标记技术在作物育种中的应用进行探讨。
一、理解遗传学分子标记技术遗传学分子标记技术首要应用一些特定的分子标记,例如:核酸序列、蛋白质、抗原和代谢产物等,以区分不同个体或群体间的差异。
这些分子标记可以用斑点杂交、聚合酶链反应(PCR)、Southern blotting、DNA测序和ELISA等方法进行分析、检测和识别。
特别是PCR技术,PCR即聚合酶链反应,是一种体外扩增DNA的技术,可以通过添加DNA核酸序列的引物来定向扩增目标序列,准确性和特异性极高。
PCR技术不仅在遗传学分子标记技术中被广泛应用,还被应用于各种生物医药领域和病原体检测领域。
二、1.基因标记辅助选择基因标记辅助选择是指利用标记与目标基因的遗传紧密关系,进行相应基因的筛选或预测。
这种选择方式基于物种基因组的遗传变异,检测个体或种群间的DNA变异,建立分子标记等级,并将它们与含有目标基因的个体之间建立关联。
在育种过程中,通过对个体进行基因型分析,从而识别出目标基因种群中的个体,提高遗传纯度,降低繁殖代价,同时也可以通过以此为基础设计更好的育种方案。
2.污染育种材料的鉴定良种的保护和开发对于农业的长远发展至关重要。
然而,因为外来基因和基因掺杂,我们的农业生产中存在重大的资源污染问题。
分子标记技术可以通过对杂草、野生亲本以及野生近缘物种等生物的基因表达谱、基因组序列和遗传多样性等信息的系统研究,实现对污染物种和污染基因的鉴定。
这些信息可以帮助生物学家们找到适合的保护策略,实现农业资源的保护和传承。
如何利用遗传标记技术进行植物品种鉴定和选育遗传标记技术在植物品种鉴定和选育中的应用人工选择和培育植物品种是提高农作物产量和质量的重要手段之一,而遗传标记技术则为植物品种鉴定和选育提供了一种更为准确和高效的方法。
本文将介绍遗传标记技术的原理、常见的鉴定和选育方法,并探讨其在农业生产中的应用前景。
一、遗传标记技术的原理遗传标记技术是一种基于遗传物质中特定DNA序列的变异来进行鉴定和选择的方法。
其原理基于不同个体间的遗传差异,通过检测DNA中的特定位点,从而确定个体之间的遗传关系,并进一步对个体进行鉴定和选育。
遗传标记可分为分子标记和形态标记两种类型,分子标记以DNA序列上的遗传变异为依据,形态标记则以植物个体的形态特征为依据。
本文主要介绍基于分子标记的遗传标记技术。
二、植物品种鉴定中的遗传标记技术1. RAPD分子标记技术RAPD(Random Amplified Polymorphic DNA)是一种常用的分子标记技术,它通过PCR扩增特定位点上的DNA片段,从而区分不同个体之间的遗传差异。
该技术简便易行,无需事先了解待分析物种的基因组信息,因此在植物品种鉴定中得到广泛应用。
2. SSR分子标记技术SSR(Simple Sequence Repeat)是一种以重复单元为基础的分子标记技术,它通过PCR扩增具有特定重复序列的DNA片段,从而实现对植物品种进行鉴定。
相比于RAPD技术,SSR技术具有更高的位点稳定性和遗传信息丰富性,因此在植物品种鉴定和亲本筛选中被广泛应用。
三、植物品种选育中的遗传标记技术1. QTL定位QTL(Quantitative Trait Locus)即数量性状基因座,是影响植物数量性状的基因所在的特定位点。
通过遗传标记技术,可以对数量性状与遗传标记之间的关系进行研究,进而定位QTL,从而为植物品种的选育提供依据。
QTL定位技术在提高农作物产量、抗病虫害性等方面具有重要应用价值。
分子标记技术在玉米育种中的应用摘要分子标记技术是一种基因组学研究中常用的技术手段,近年来在玉米育种领域得到了广泛应用。
本文将介绍分子标记技术的基本概念和分类,并重点讨论其在玉米育种中的应用。
通过利用分子标记技术,可以加快玉米育种进程和提高育种效率,为玉米产业的发展提供了重要的支持和指导。
1. 引言玉米是世界上最重要的粮食作物之一,也是全球农业生产中最常见的作物之一。
为了满足不断增长的人口需求和提高粮食产量,玉米育种成为了一个重要的研究方向。
然而,传统的育种方法通常耗时且费力,因此需要一种高效、可靠的技术来加速玉米育种进程。
分子标记技术的出现为玉米育种带来了新的希望。
2. 分子标记技术的基本概念和分类2.1 基本概念分子标记技术是一种通过检测某一特定序列在基因组中的存在和变异来进行遗传多态性分析的方法。
它是基于DNA序列的变异性,利用特定的PCR(聚合酶链式反应)引物来扩增目标序列,并通过不同的检测方法来分析扩增片段的差异,从而实现对个体或群体的鉴定和分析。
2.2 分类分子标记技术可以根据检测方法和标记类型的不同进行分类。
主要的分类包括:•RFLP(限制性片段长度多态性)技术:通过限制性内切酶对DNA分子进行切割,生成不同长度的片段,并通过凝胶电泳等方法分析和鉴定这些片段。
•PCR(聚合酶链式反应)技术:通过特定的引物扩增目标序列,并通过扩增片段的长度差异来进行分析。
•SSR(简单序列重复)技术:通过检测基因组中特定的短重复序列来进行分析。
•SNP(单核苷酸多态性)技术:通过检测基因组中单个核苷酸的变异来进行分析。
3. 分子标记技术在玉米育种中的应用3.1 品种鉴定和纯度检测通过分子标记技术可以对玉米品种进行鉴定和纯度检测。
通过对玉米基因组中特定的DNA序列进行扩增和分析,在不同品种之间可以检测到明显的差异,从而实现品种鉴定和纯度检测。
这种方法比传统的鉴定和纯度检测方法更为快速和准确。
3.2 遗传图谱构建分子标记技术还可以用于构建玉米的遗传图谱。