从而|F1F2|=2c=6.
在△PF1F2 中,由勾股定理可得|PF2|2=|PF1|2+|F1F2|2,即|PF2|2=|PF1|2+36,
又由椭圆定义知|PF1|+|PF2|=2×2√3=4√3,
所以|PF2|=4√3-|PF1|.
从而有(4√3-|PF1|)2=|PF1|2+36,
√3
解得|PF1|= 2 .所以△F1PF2 的面积
之和恰好等于定圆半径,即|PA|+|PB|=|PM|+|PB|=|BM|=8>|AB|,所以动圆
圆心P的轨迹是以A,B为左、右焦点的椭圆,其中c=3,a=4,b2=a2-c2=
2
42-32=7,其轨迹方程为16
+
2
=1.
7
规律方法
1.利用椭圆定义求动点轨迹方程的三个步骤
2.椭圆定义的应用要注意其适用条件,涉及与几何图形有关的轨迹问题要
= 4.
2
2
4
5
标准方程为 1 + 1 =1.
规律方法 求椭圆标准方程的方法
(1)定义法:根据椭圆定义,确定a2,b2的值,结合焦点位置写出椭圆的标准
方程.
(2)待定系数法:先判断焦点位置,设出标准方程形式,最后由条件确定待定
系数即可.即“先定位,后定量”.
当所求椭圆的焦点位置不能确定时,应按焦点在x轴上和焦点在y轴上进行
椭圆的中心在坐标原点,椭圆的对称轴为坐标轴.
2
2.两种椭圆 2
+
2
2
=1, 2
2
+
2
=1 (a>b>0)的相同点是:它们的形状、大小都