液压伺服系统第8章电液伺服系统
- 格式:ppt
- 大小:1.64 MB
- 文档页数:59
电液系统及其控制1概述1.1电液控制系统工作原理及组成一.工作原理电液控制系统又称电液伺服系统,是以电气信号为输入,以液压信号为输出,电气检测传感器元件为反馈构成闭环控制系统.由于是电气和液压相结合,因而系统可发挥两者的优点.电气信号便于测量转换放大处理校正,电气检测传感器元件便于检测各种物理量,且快速和多样性;液压信号输出功率大速度快,执行元件具有惯性小等优点.所以结合起来的电液控制系统具有控制精度高,响应速度快,信号处理灵活,输出功率大,结构紧凑,重量轻等优点.输入电气信号通常有电位器,电子放大器,PLC控制器和计算机等. 电气检测传感器元件通常有位置传感器,压力传感器, 速度传感器,编码器等元件. 输出是以液压动力执行元件(油缸和马达)和伺服元件组成的反馈控制系统.如图所示:在此系统中,输出量(位移,力,速度等)通过反馈传感器(位移传感器,力传感器,速度传感器等)能自动地快速地准确地反映其变化.并与原先的给定的给定量进行比较,再放大输入给伺服阀,改变其阀芯位移,从而控制输出的压力和流量,驱动执行元件运动,直至输人量与输出量一致为止.举例:1.阀控式电液位置控制伺服系统(如上图)图中所示为双电位器电液位置控制伺服系统的工作原理图.该系统控制工作台的位置,使其按指令电位器给定的规律变化.系统由指令电位器, 反馈电位器,电子放大器,电液伺服阀,液压缸和工作台组成.其工作原理如下:指令电位器将位置指令xi转换成指令电压ur,被控制的工作台位置xp由反馈电位器检测转换成反馈电压ui.两个线性电位器接成桥式电路,从而得到偏差电压ue=ur-uf.当工作台位置xp与指令位置xi一致时,电桥输出偏差电压ue=0,此时伺服放大器输出电流为零, 电液伺服阀处于零位,没有流量输出,工作台不动.当指令电位器位置发生变化,如向右移动一个位移Oxi,在工作台位置发生变化之前, 电桥输出偏差电压ue=KOx,偏差电压经伺服放大器放大后变为电流信号去控制电液伺服阀, 电液伺服阀输出压力油到液压缸,推动工作台右移.随着工作台的移动, 电桥输出偏差电压逐渐减小,当工作台移动Oxp等于指令电位器位移Oxi时, 电桥输出偏差电压为零, 工作台停止移动.反之亦然.系统的工作原理方块图如下:2.泵控式电液速度控制伺服系统该系统的液压动力执行元件由变量泵和液压马达组成,变量泵既是液压能源又是液压控制元件.由于操纵变量机构所需要的力较大,通常采用一个小功率的液压放大装置作为变量控制机构.如图所示为一泵控式电液速度控制伺服系统的原理图.图中所示系统采用阀控式电液位置控制机构作为泵的变量控制机构. 液压马达的输出速度由测速发电机检测,转换为反馈电压信号uf,与输入指令电压信号ur相比较,得出偏差电压信号ue=ur-uf,作为变量控制机构的输入信号.当速度指令为ur0时, 负载以某个给定的转速w0工作,测速机输出反馈电压uf0,则偏差电压ue0=ur0-uf0,这个偏差电压对应于一定的液压缸位置,从而对应于一定的泵流量输出,此流量为保持负载转速w0所需的流量.如果负载变化或其它原因引起转速变化时,则uf 不等于uf0,假如w大于w0,即uf大于uf0,则ue=ur0-uf小于ue0,使液压缸输出位移减小,使泵输出流量减小,液压马达转速自动下调至给定值.反之,如果转速下降,则uf小于uf0,则ue=ur0-uf大于ue0,使液压缸输出位移增大,使泵输出流量增大,液压马达转速自动回升至给定值.结论: 速度指令一定时, 液压马达转速保持恒定;速度指令变化时, 液压马达转速也相应变化.系统的工作原理方块图如下:二.电液伺服控制系统组成1.输入元件---其功用是给出输入信号加于系统的输入端.可以是机械的,电气的等如靠模,电位器,计算机等.2.反馈测量元件---测量系统输出并转换为反馈信号.如各类传感器(位置传感器,压力传感器,速度传感器等).3.比较元件---将输入信号与反馈信号进行比较,给出偏差信号.4.放大转换元件---将偏差信号放大,转换成液压信号.妲伺服放大器,电液伺服阀等.5.执行元件---产生调节动作加于控制对象上,如液压缸和液压马达等.6.控制对象---被控制的设备等,即负载.7.液压能源装置及各种校正装置等.1.2电液伺服控制的分类电液伺服控制系统可按不同的原则分类,基本上有五大类.一.按被控对象的物理量名称分类1.位置伺服控制系统主要是控制被控对象的位置精度的伺服控制系统,妲机床工作台的位置,板带轧机的板厚,振动试验台等系统.2.速度伺服控制系统主要是控制被控对象的速度精度的伺服控制系统,如原动机的调速,雷达天线的速度控制等.3.力伺服控制系统以力为被调量的伺服控制系统,如材料试验机,轧机张力控制系统等.二.按执行元件的控制方式分类1.阀控式伺服控制系统利用伺服阀控制的伺服控制系统称为阀控式伺服控制系统.它又可分为阀控缸系统和阀控马达系统两种.其优点是响应速度快,控制精度高,结构简单.缺点是效率低.2.容积式伺服控制系统利用变量泵或变量马达控制的伺服控制系统称为容积式伺服控制系统.它又可分伺服变量泵系统和伺服变量马达系统.三.按系统输入信号的变化规律分类1. 定值控制系统当系统输入信号为定值时称为定值控制系统.它的任务是将系统的实际输出量保持在希望值上.2. 程序控制系统当系统输入信号为按预先给定的规律变化时称为程序控制系统..3. 伺服控制系统伺服控制系统又称随动系统,其输入信号是时间的未知函数,而输出量能够准确快速地复现输入量的变化规律.四.按信号的方式分类1.模拟信号控制系统系统中全部信号都是连续的模拟量的系统称之.2.数字信号控制系统系统中全部信号都是数字量的系统称之.3. 数字-模拟混合控制系统系统中部分信号是数字量部分信号是模拟量的系统称之.五.按信号传递介质的形式分类1.机液伺服控制系统输入信号给定,反馈测量和比较均用机械构件实现的系统称之.2.电液伺服控制系统用液压动力元件,偏差信号的检测校正和初始放大等均用电气电子元件实现的系统称之.1.3电液伺服控制的优缺点一. 电液伺服控制的优点1.液压元件功率-重量比和力矩-惯量比(力-质量比)大,因而结构紧凑,体积小,重量轻,用于中大型功率系统优点更明显.比较举例:电气元件:最小尺寸取决于有效磁通密度,而有效磁通密度又受磁性材料的磁饱和限制;功率损耗产生的发热量散发又比较困难.因此功率-重量比和力矩-惯量比小,结构尺寸大.液压元件:功率损耗产生的发热量由油带到散热器去散热,其最小尺寸取决于最大工作压力,而工作压力可以很高(通常可达32MPa),因而元件尺寸小,重量轻, 功率-重量比和力矩-惯量比大.同功率:液压泵重量/电动机重量=10%-20%液压泵尺寸/电动机尺寸=12%-13%液压马达功率重量比=10倍相当容量的电动机液压马达力矩-惯量比=10-20倍电动机2.液压动力元件快速性好,系统响应快.加速能力强,能高速起动和制动.3.液压伺服系统抗负载的刚度大.二. 电液伺服控制的缺点1.液压元件抗污染能力差,对工作介质清洁度要求高.工作介质随温度变化而变化,对系统性能有影响.2. 液压元件制造精度高,成本高,且若元件的密封制造使用不当,易外漏,造成环境污染.3.液压能源传输不如电气系统方便2 电液伺服阀电液伺服阀是电液伺服系统中的主要元件,它既是电液转换元件,又是功率放大元件.它能够把微小的电信号转换成大功率的液压能(流量和压力),是电液伺服控制系统的核心和关键.电液伺服阀的输入信号是由电气元件来完成的,由它再转换成液压流量和压力,输出给执行机构,实现对执行机构各物理量的控制.2.1电液伺服阀的组成与分类一.组成电液伺服阀通常由力矩马达,液压放大器,反馈机构三部分组成.以下图的两级中力反馈式电液伺服阀为例,简单介绍如下:图中上半部为力矩马达,下半部为液压放大器(由四通滑阀组成的液压放大器), 反馈机构则由反馈杆11组成.它们的作用分别是:1.力矩马达(力马达)将输入的电信号转换成力矩或力控制液压放大器运动.2.液压放大器控制液压能源流向执行机构的流量和压力.3.反馈机构使伺服阀输出的流量和压力获得与输入信号相应的特性.二.分类电液伺服阀的种类很多,按不同的结构和机能常有以下几种分类:1.按输出量的控制功能分有:电液流量伺服阀---主要控制输出的液流流量特性,即在额定输入信号范围内,具有线性流量控制特性.电液压力伺服阀---在额定输入信号范围内,具有线性压力控制特性.电液压力-流量伺服阀---在额定输入信号范围内,具有线性压力-流量控制特性.2.按液压放大器的级数分有:单级伺服阀---只有一级放大元件.结构简单,价格低廉,但输出力和力矩小,输出流量小,对负载变化敏感.用于低压小流量和负载变化不大的场合.两级伺服阀---有两级放大元件.它克服了单级伺服阀的缺点,是最常用的型式.三级伺服阀---由一个两级伺服阀作前置级,控制第三级功率滑阀.通常只用于大流量(200L/min)以上的场合.3.按第一级阀的结构分有:滑阀---第一级阀的结构是滑阀.此类阀流量和压力增益高,输出流量大,对油清洁度要求较低.但加工复杂,分辨率低,响应慢,滞环较大,阀芯受力大.喷咀挡板--- 第一级阀的结构是喷咀挡板. 此类阀灵敏,动态响应快,线性度好.但对油清洁度要求高,挡板受力小,驱动功率小.射流管--- 第一级阀的结构是射流管阀. 此类阀抗污染强,但动态响应慢,受油温响应大.4.按反馈形式分有:滑阀位置反馈---利用滑阀的位置反馈的阀,常用的有直接位置反馈,机械位置反馈,位置电反馈,位置力反馈等.直接位置反馈---阀芯位移通过反馈杆与挡板相连,构成滑阀位移力反馈.常用于两级伺服阀.机械位置反馈---将功率级滑阀的位移通过机械机构反馈到前置级.位置电反馈---将功率级滑阀的位移通过位移传感器反馈到伺服阀的放大器输入端,实现功率级滑阀阀芯定位.2.2 力矩马达力矩马达是将电信号转换成机械运动的一种电气-机械转换.一.力矩马达工作原理利用电磁原理,由永久磁铁(或激磁线圈)产生极化磁场,而电信号通过控制线圈产生控制磁场,两个磁场相互作用,产生与控制信号成比例并能反映控制信号的极性的力或力矩,使其运动部分产生直线位移或角位移的机械运动.二.力矩马达分类1. 根据运动形式分1) 角位移马达--力马达,可移动件是直角位移.2) 直线位移马达—力马达,可移动件是直线位移.2.按可动件结构分1)动铁式---可动件是衔铁.2)动圈式---可动件是控制线圈.3.按极化磁场产生的方式分1)永磁式---利用永久磁铁建立极化磁通.2)非极磁式---无专门的极磁线圈,两个控制线圈差动连接,利用常值电流产生极化磁通.3)固定电流极磁式---利用固定电流通过极磁线圈建立极化磁场.三.力矩马达要求1.能产生足够的输出力和行程,且要求体积小,重量轻.2.动态性能好,响应速度快.3.直线性好,死区小,灵敏度高,磁滞小.4.抗震,抗冲击,不受环境温度和压力影响.四.典型力矩马达1. 永磁动铁式力矩马达1)组成下图所示为一种常用的永磁动铁式力矩马达工作原理图,它由永久磁铁(2),上下导磁体(3,5),衔铁(4),弹簧管(1),控制线圈(两个控制线圈套在衔铁上).2)工作原理永久磁铁将上下导磁体磁化,一个为N极, 一个为S极.无信号电流时,即两个控制线圈的电流i1=i2,衔铁在上下导磁体的中间位置,由于力矩马达结构是对称的, 永久磁铁在四个工作气隙中所产生的极化磁通是一样的,使衔铁两端所受的电磁吸力相同,力矩马达无力矩输出.当有信号电流通过控制线圈时,线圈产生控制磁通(其大小和方向取决于信号电流的大小和方向).假设i1>i2,如上图所示,在气隙1,3中控制磁通与极化磁通方向相同,而在气隙2,4中控制磁通与极化磁通方向相反,因此气隙1,3中其控制磁通与永久磁铁磁通合成大于气隙2,4中控制磁通与极化磁通的合成,于是衔铁上产生顺时针方向的电磁力矩,使衔铁绕弹簧管转动中心顺时针方向转动.当弹簧管变形产生的反力矩与电磁力矩相平衡时,衔铁停止转动.如果信号电流反向,则电磁力矩也反向,衔铁向反方向转动.电磁力矩的大小与信号电流的大小成比例,衔铁的转角也与信号电流成比例.因此调节信号电流便可调节电磁力矩的大小,也就调节衔铁的转角大小.2.永磁动圈式马达1)组成永久磁铁,可动线圈,对中弹簧等.2)工作原理图所示为一种常见的结构原理图图中,永久磁铁在工作气隙中形成极化磁通,当控制信号电流加到线圈上时,线圈就会受到电磁力的作用克服弹簧力和负载力而运动.线圈的位移与控制电流成比例.因此输入信号电流就会得到电磁力,且呈正比关系,具有线性特性.3.动铁式力矩马达与动圈式力马达比较动铁式力矩马达动圈式力马达磁滞大磁滞小工作行程小工作行程大输出力矩大,弹簧刚度大,. 输出力矩小,固有频率低.固有频率高同功率体积小, 价格高同功率体积大,价格低五.力矩马达的数学模型(电磁力矩计算)1) 永磁动铁式力矩马达的数学模型(电磁力矩计算)电磁力矩是由于控制线圈输入电流,在衔铁产生了控制磁通而形成的.因此需先求出力矩马达的控制电流.通过力矩马达的磁路分析可求出电磁力矩的计算公式.a.力矩马达的控制电流参看永磁动铁式力矩马达的工作原理图,在其工作时, 两个控制线圈由一个放大器供电,其常值电压Eb在每个控制线圈中产生的常值电流I0大小相等方向相反.当放大器有输入电压时,两个控制线圈的电流分别为:I1= I0+iI2= I0-i式中i1 i2--- 每个控制线圈中的电流;I0---每个控制线圈中的常值电流i---每个控制线圈中的信号电流;两个控制线圈的差动电流为Δi=i1-i2=2I=i c(1)I c ---输入马达的控制电流b. 衔铁中产生的控制磁通根据力矩马达的磁路原理图,应用磁路的基尔霍夫第二定律可得气隙的合成磁通, 继而应用磁路的基尔霍夫第一定律求出衔铁磁通:φa=φ1-φ2=2φgθ(a/Lg)+Δi(Nc/ Rg)式中φa ---衔铁磁通;φg ---衔铁在中位时气隙的极化磁通;θ---衔铁转角; a ---衔铁转动中心到磁极面中心的距离;Lg ---衔铁在中位时每个气隙的长度;Rg ---工作气隙的磁阻;NcΔi---永久磁铁产生的控制磁动势;c. 作用在衔铁上的电磁力矩根据马克斯威尔公式计算衔铁在磁场中所受的电磁吸力,可得由控制磁通和极化磁通相互作用在衔铁上产生的电磁力矩简化式为Td=KtΔi+Kmθ式中Td ---作用在衔铁上的电磁力矩;Kt---力矩马达的中位电磁力矩系数;Km---力矩马达的中位磁弹簧刚度;从式中可看出,在衔铁中产生的控制磁通以及由此产生的电磁力矩比例于差动电流.2) 永磁动圈式力马达的数学模型(电磁力矩计算)参见永磁动圈式力马达的工作原理图,力矩马达的可动线圈悬置于工作气隙中,永久磁铁在工作气隙中形成极化磁通,当控制电流加到线圈上时,线圈就会受到电磁力的作用而运动.其运运动方向和电流方向按左手定则判断.线圈上的电磁力克服弹簧力和负载力,产生一个与控制电流成比例的位移.由于电流方向与磁通方向垂直,根据载流导体在均匀磁场中所受的电磁力公式,可得力马达线圈所受的电磁力:F=BgлDNcic=Ktic式中F---线圈所受的电磁力;K t---电磁力系数F=BgлDNcN c---控制线圈的匝数.B g---工作气隙中的磁感应强度;D---线圈的平均直径;I c---通过线圈的控制电流.结论: 永磁动圈式力马达的电磁力与控制电流成正比,具有线性特性.2.3 液压放大元件电液伺服阀另一个组成部分是液压放大器,它是一种以机械运动来控制流体动力的元件.它将力矩马达(或力马达)输出的机械运动(转角或位移)转换为液压信号(液体的流量和压力)输出,并进行了功率放大.液压放大元件是伺服系统中的一种主要控制元件,其静动态特性对系统的性能影响很大.且结构简单,单位体积输出功率大,工作可靠和动态性能好.一.液压放大元件的种类液压放大元件有滑阀,喷咀挡板阀和射流管阀等.二.滑阀滑阀是靠节流原理工作的.它借助于阀芯与阀套间的相对运动改变节流口面积的大小,对流体流量或压力进行控制.滑阀结构形式多,控制性能好,在电液系统中应用最广泛.1.滑阀的结构及分类(1)按进出阀的通道数划分它与液压方向阀的通道数一样,有四通阀,三通阀和二通阀.四通阀有一个进油口,一个回油口,两个控制口.可用来控制双作用液压缸或马达.如图a所示.三通阀有一个进油口,一个回油口,一个控制口.只可用来控制差动液压缸.如图b所示.图b 三通阀图c 二通阀二通阀一个进油口,只有一个可变节流口,须和一个固定节流孔配合使用,才能用来控制差动液压缸. 如图c所示.(2)按滑阀的工作边数划分a.四边滑阀--与上对应四通阀有四个可控的节流口,又称四边滑阀,控制性能最好.如上图a所示.b. 双边滑阀--三通阀有两个可控的节流口,又称双边滑阀, 控制性能居中. 如上图b所示.c. 单边滑阀--单边滑阀只有一个可控的节流口, 控制性能最差.(3)按滑阀的预开口型式划分按滑阀阀芯在中位时,阀芯凸肩与阀套槽宽的几何尺寸关系划分有:a.正开口--阀芯凸肩与阀套槽宽的几何尺寸是负重叠的(即阀芯凸肩宽度大于阀套槽宽),参见图a.b.零开口--阀芯凸肩与阀套槽宽的几何尺寸是零重叠的(即阀芯凸肩宽度等于阀套槽宽),参见图b.c.负开口--阀芯凸肩与阀套槽宽的几何尺寸是正重叠的(即阀芯凸肩宽度小于阀套槽宽),参见图c.图a 正开口图b 零开口图c 负开口.阀的预开口形式对其性能,特别是零位附近特性影响很大.如下图所示:零开口阀具有线性流量增益特性,性能比较好.负开口阀由于流量增益特性有死区,将引起稳态误差,有时还可能引起游隙,从而产生稳定性问题.正开口在正开口区内外的流量增益变化大,压力灵敏度低,零位泄漏量大.图不同开口形式的流量特性1-零开口2-正开口3-负开口2.滑阀静态特性滑阀静态特性是指稳态情况下,阀的负载流量qL, 负载压力pL和滑阀的位移xv三者之间的关系,即qL=f(pL, xv).它表示滑阀的工作能力和性能,对系统的静动态特性计算有重大意义.阀的静态特性可用方程(压力-流量方程),曲线或特性参数(阀的系数)表示.(1) 滑阀静态特性a.压力-流量方程滑阀的控制流量可由滑阀节流口流量公式表示,其流量是阀芯位移和节流口的压降的函数.为了使问题简化,在推导压力-流量方程时,作了以下假设:a)液压能源是理想的恒压源,供油压力Ps为常数,回油压力P0为零.b)忽略管道和阀腔内的压力损失.c)假定液体是不可压缩的.d)假定阀各节流口流量系数相等.e)阀的窗口都是匹配和对称的.根据节流口流量公式,以四边滑阀为例,可推导出压力-流量方程:负载流量为QL=CdA2√1/ρ(ps - pL)- CdA1√1/ρ(ps + pL)式中Cd-为流量系数,ρ-为油密度, (ρ=870Kg/m3)A1- 为节流口1的面积;A2-为节流口2的面积;ps –为恒压油源压力pL-为负载压力,pL=p1-p2.供油流量为Qs=CdA2√1/ρ(ps - pL)+ CdA1√1/ρ(ps + pL)b.滑阀的静态特性曲线a)流量特性曲线阀的流量特性是指负载压降等于常数时, 负载流量与阀芯位移之间的关系,其图形表示即为流量特性曲线. 负载压降为0时的流量特性称空载流量特性.相应的曲线为空载流量特性曲线,如图a所示.图a 空载流量特性曲线图图b 压力特性曲线b)压力特性曲线阀的压力特性是指负载压降等于常数时, 负载压降与阀芯位移之间的关系,其图形表示即为压力特性曲线.通常所指的压力特性是指负载流量为0时的压力特性,相应的曲线为压力特性曲线,如图b所示.c)压力-流量特性曲线阀的压力-流量特性曲线是指阀芯位移一定时, 负载流量与负载压降之间关系的图形. 如下图所示为理想零开口四边滑阀的压力-流量特性曲线族.它全面描述了阀的稳态特性,并可获得阀的全部性能参数.阀在最大位移下的压力-流量特性曲线可以表示阀的工作能力和规格.当负载所需的压力和流量能被阀在最大位移下的压力-流量特性曲线所包围时,阀就能满足负载的要求阀的压力-流量特性曲线(2)零开口四边滑阀的静态特性a. 理想零开口四边滑阀的静态特性理想零开口滑阀是指径向间隙为零,工作边锐利的滑阀,如图所示.由于径向间隙为零,工作边锐利,因而在讨论静态特性时可不考虑它们的影响.且认为节流阀口为矩形,其面积A=W xv, (W-面积梯度xv-阀芯位移).a)理想零开口四边滑阀的压力-流量方程 理想零开口四边滑阀的压力-流量方程:QL=Cd W xv -(1)b)压力-流量曲线根据无因次压力-流量方程绘制压力-流量曲线如下图所示.因阀窗口是匹配且对称的,所以压力-流量曲线对称于原点.当阀在正常工作状态是按图中Ⅰ,Ⅲ象限曲线.只有在瞬态情况下,才会处于Ⅱ,Ⅳ象限曲线.⎪⎪⎭⎫ ⎝⎛-Lv v s p p χχρ1。
风力发电机组电液伺服系统简介一、概述:风力发电机组的液压伺服系统,主要用于变浆距风力发电机组的变浆控制装置、安全浆距控制装置、偏航驱动和制动装置、停机制动装置提供液压驱动力及控制,实现风力发电机组的转速控制、功率控制,同时也制控机械刹车机构。
根据自然风速、风向,液压伺服系统自动调节发电机组在稳定的电压和频率下运行发电,并对恶劣气候实施自动安全保护。
二、风力发电机组电液伺服液压系统特点:1、可实现大范围的无级调速(调速范围达2000:1),即能在很宽的范围内很容易地调节力与转矩;2、控制性能好,对力、速度、位置等指标能以很高的响应速度精确地进行控制。
很容易实现机器的自动化,不仅可实现更高程度的自动控制过程,而且可以实现遥控。
3、体积小、重量轻、运动惯性小、反应速度快,动作可靠,操作性能好。
4、可自动实现过载保护。
一般采用矿物油作为工作介质,相对运动面可自行润滑,使用寿命长。
5、可以方便地根据需要使用液压标准元件、灵活地构成实现任意复杂功能的系统。
6、采用高性能比例伺服阀,提高抗污染能力。
三、电液伺服系统的基本组成1、动力元件动力元件的作用是将原动机的机械能转换成液体(主要是油)的压力能,是指液压系统中的油泵,向整个液压系统提供压力油。
液压泵的常见结构形式有齿轮泵、叶片泵和柱塞泵。
2、控制元件控制元件(即各种液压阀)其作用是在液压系统中控制和调节液体的压力、流量和方向,以满足执行元件对力、速度和运动方向的要求。
该电液伺服系统的主要元件为带位置反馈的高性能比例伺服阀。
3、执行元件执行元件是把系统的液体压力能转换为机械能的装置,驱动外负载做功。
旋转运动用液压马达,直线运动用液压缸,摆动用液压摆动马达。
油缸、马达有位置传感器与控制阀构成反馈控制。
4、辅助元件辅助元件是传递压力能和液体本身调整所必需的液压辅件,其作用是储油、保压、滤油、检测等,并把液压系统的各元件按要求连接起来,构成一个完整的液压系统。
辅助元件包括油箱、蓄能器、滤油器、传感器、油管及管接头、密封圈、压力表、油位计、油温计等。
液压伺服体系工作道理1.1 液压伺服体系工作道理液压伺服体系以其响应速度快.负载刚度大.控制功率大等奇特的长处在工业控制中得到了广泛的应用.电液伺服体系经由过程应用电液伺服阀,将小功率的电旌旗灯号转换为大功率的液压动力,从而实现了一些重型机械装备的伺服控制.液压伺服体系是使体系的输出量,如位移.速度或力等,能主动地.快速而精确地追随输入量的变更而变更,与此同时,输出功率被大幅度地放大.液压伺服体系的工作道理可由图1来解释.图1所示为一个对管道流量进行中断控制的电液伺服体系.在大口径流体管道1中,阀板2的转角θ变更会产生撙节感化而起到调撙节量qT的感化.阀板迁移转变由液压缸带动齿轮.齿条来实现.这个体系的输入量是电位器5的给定值x i.对应给定值x i,有必定的电压输给放大器7,放大器将电压旌旗灯号转换为电流旌旗灯号加到伺服阀的电磁线圈上,使阀芯响应地产生必定的启齿量x v.阀启齿x v使液压油进入液压缸上腔,推进液压缸向下移动.液压缸下腔的油液则经伺服阀流回油箱.液压缸的向下移动,使齿轮.齿条带动阀板产生偏转.同时,液压缸活塞杆也带动电位器6的触点下移x p.当x p所对应的电压与x i所对应的电压相等时,两电压之差为零.这时,放大器的输出电流亦为零,伺服阀封闭,液压缸带动的阀板停在响应的qT地位.图1 管道流量(或静压力)的电液伺服体系1—流体管道;2—阀板;3—齿轮.齿条;4—液压缸;5—给定电位器;6—流量传感电位器;7—放大器;8—电液伺服阀在控制体系中,将被控制对象的输出旌旗灯号回输到体系的输入端,并与给定值进行比较而形成误差旌旗灯号以产生对被控对象的控制造用,这种控制情势称之为反馈控制.反馈旌旗灯号与给定旌旗灯号符号相反,即老是形成差值,这种反馈称之为负反馈.用负反馈产生的误差旌旗灯号进行调节,是反馈控制的根本特点.而对图1所示的实例中,电位器6就是反馈装配,误差旌旗灯号就是给定旌旗灯号电压与反馈旌旗灯号电压在放大器输入端产生的△u.图2 给出对应图1实例的方框图.控制体系经常应用方框图暗示体系各元件之间的接洽.上图方框顶用文字暗示了各元件,后面将介绍方框图采取数学公式的表达情势.图2 伺服体系实例的方框图液压伺服体系的构成液压伺服体系的构成由上面举例可见,液压伺服体系是由以下一些根本元件构成;输入元件——将给定值加于体系的输入端的元件.该元件可所以机械的.电气的.液压的或者是其它的组合情势.反馈测量元件——测量体系的输出量并转换成反馈旌旗灯号的元件.各类类形的传感器经常应用作反馈测量元件.比较元件——将输入旌旗灯号与反馈旌旗灯号比拟较,得出误差旌旗灯号的元件.放大.能量转换元件——将误差旌旗灯号放大,并将各类情势的旌旗灯号转换成大功率的液压能量的元件.电气伺服放大器.电液伺服阀均属于此类元件;履行元件——将产生调节动作的液压能量加于控制对象上的元件,如液压缸或液压马达.控制对象——各类临盆装备,如机械工作台.刀架等.液压伺服数学模子2.1 数学模子为了对伺服体系进行定量研讨,应找出体系中各变量(物理量)之间的关系.不单要搞清晰其静态关系,还要知道其动态特点,即各物理量随时光而变更的进程.描写这些变量之间关系的数学表达式称之为数学模子.2.1.1 微分方程伺服体系的动态行动可用各变量及其各阶导数所构成的微分方程来描写.当微分方程各阶导数为零时,则变成暗示各变量间静态关系的代数方程.有了体系活动的微分方程就可知道体系各变量的静态和动态行动.该微分方程就是体系的数学模子.2.1.2 拉氏变换与传递函数拉氏变换全称为拉普拉斯变换.它是将时光域的原函数f(t)变换成复变量s域的象函数F(s),将时光域的微分方程变换成s域的代数方程.再经由过程代数运算求出变量为s的代数方程解.最后经由过程拉氏反变换得到变量为t的原函数的解.数学大将时域原函数f(t)的拉氏变换界说为如下积分:而拉氏逆变换则记为现实应用中其实不须要对原函数一一作积分运算,与查对数表类似,查拉氏变换表(表1)即可求得.拉氏变换在解微分方程进程中有如下几共性质或定理:(1)线性性质设则有式中 B——随意率性常数.(2)迭加道理这一性质极为重要,它使我们可以不作拉氏逆变换就能预感体系的稳态行动.(6)初值定理微分方程表征了体系的动态特点,它在经由拉氏变换后生成了代数方程,仍然表征了体系的动态特点.假如所有肇端前提为零,设体系(或元件)输出y(t)的拉氏变换为Y(s)和输入x(t)的拉氏变换为X(s),则经由代数运算得(1)G(s)为一个以s为变量的函数,我们称这个函数为体系(或元件)的传递函数.故体系(或元件)的动态特点也可用其传递函数来暗示.传递函数是经典控制理论中一个重要的概念.用常系数线性微分方程暗示的体系(或元件),在初始前提为零的前提下,经拉氏变换后,微分方程中n阶的导数项响应地变换为s n项,而系数不变.即拉氏变换后所得代数方程为一系数与原微分方程雷同,以s n代替n阶导数的多项式,移项后就是其传递函数.故一个体系(或元件)的传递函数极易求得.表1 拉氏变换表(部分)原函数ƒ(t)拉氏变换函数F(s)原函数图形(t≥0)1 单位脉冲函数δ(t)= 1单位阶跃函数=1(t>0) 2=0(t≤0)3 t4 t n56 (1-)7 sinωt8 cosωt9 sin(ωt+θ)10 cos(ωt+θ)11 cosbt12131415 sinhωt16 coshωt例如图3所示为一个质量-弹性-油阻尼体系,该体系的力均衡微分方程为(2)式中 M——质量;x——质量的位移;B C——阻尼系数;k——弹簧刚度.图3 质量-弹性-油阻尼体系经拉氏变换得(3)写成传递函数为(4)方框图及其等效变换图4 所示是一种文字情势的方框图,它暗示体系构造中各元件的功用及它们之间的互相贯穿连接和旌旗灯号传递线路.这种方框图又称作构造方框图.另一种方框图即“函数方块图”,就是将元件或环节的传递函数写在响应的方框中,用箭头线将这些方框衔接起来,如图4所示.指向方框图的箭头暗示对其输入旌旗灯号;从方框图出来的箭头暗示输出.图中圆圈暗示比较点,亦称加减点,它对二个以上旌旗灯号根据其正.负进行代数运算.同一旌旗灯号线上的各引出旌旗灯号,数值与性质完整雷同.方框图输出旌旗灯号的因次,等于输入旌旗灯号的因次与方程中传递函数因次的乘积.图4 体系方框图1—输入旌旗灯号;2—比较点;3—引出旌旗灯号;4—输出旌旗灯号方框图等效变换.简化轨则见表2.表2 方块图变换轨则序号原方块图等效方块图1234567891011121314电液伺服阀电液伺服阀电液伺服阀既是电液转换元件,又是功率放大元件,它可以或许把渺小的电气旌旗灯号转换成大功率的液压能(流量和压力)输出.它的机能的好坏对体系的影响很大.是以,它是电液控制体系的焦点和症结.为了可以或许精确设计和应用电液控制体系,必须控制不合类型和机能的电液伺服阀.伺服阀输入旌旗灯号是由电气元件来完成的.电气元件在传输.运算和参量的转换等方面既快速又轻便,并且可以把各类物理量转换成为电量.所以在主动控制体系中广泛应用电气装配作为电旌旗灯号的比较.放大.反馈检测等元件;而液压元件具有体积小,构造紧凑.功率放大倍率高,线性度好,逝世区小,敏锐度高,动态机能好,响应速度快等长处,可作为电液转换功率放大的元件.是以,在一控制体系中常以电气为“神经”,以机械为“骨架”,以液压控制为“肌肉”最大限度地施展机电.液的长处.因为电液伺服阀的种类许多,但各类伺服阀的工作道理又基底细似,其剖析研讨的办法也大体雷同,故今以经常应用的力反馈两级电液伺服阀和地位反馈的双级滑阀式伺服阀为重点,评论辩论它的根本方程.传递函数.方块图及其特点剖析.其它伺服阀只介绍其工作道理,同时也介绍伺服阀的机能参数及其测试办法电液伺服阀的构成电液伺服阀在电液控制体系中的地位如图27所示.电液伺服阀包含电力转换器.力位移转换器.前置级放大器和功率放大器等四部分.3.1.1 电力转换器包含力矩马达(迁移转变)或力马达(直线活动),可把电气旌旗灯号转换为力旌旗灯号.3.1.2 力位移转换器包含钮簧.弹簧管或弹簧,可把力旌旗灯号变成位移旌旗灯号而输出.3.1.3 前置级放大器包含滑阀放大器.喷嘴挡板放大器.射流管放大器.3.1.4 功率放大器——滑阀放大器由功率放大器输出的液体流量则具有必定的压力,驱动履行元件进行工作.图27 电液控制体系方块图电液伺服阀的分类电液伺服阀的分类电液伺服阀的种类许多,根据它的构造和机能可作如下分类:1)按液压放大级数,可分为单级伺服阀.两级伺服阀和三级伺服阀,个中两级伺服阀应用较广.2)按液压前置级的构造情势,可分为单喷嘴挡板式.双喷嘴挡板式.滑阀式.射流管式和偏转板射流式.3)按反馈情势可分为地位反馈.流量反馈和压力反馈.4)按电-机械转换装配可分为动铁式和动圈式.5)按输出量情势可分为流量伺服阀和压力控制伺服阀.6)按输入旌旗灯号情势可分为中断控制式和脉宽调制式.伺服阀的工作道理伺服阀的工作道理下面介绍两种重要的伺服阀工作道理.力反馈式电液伺服阀的构造和道理如图28所示,无旌旗灯号电流输入时,衔铁和挡板处于中央地位.这时喷嘴4二腔的压力p a=p b,滑阀7二端压力相等,滑阀处于零位.输入电流后,电磁力矩使衔铁2连同挡板偏转θ角.设θ为顺时针偏转,则因为挡板的偏移使p a>p b,滑阀向右移动.滑阀的移动,经由过程反馈弹簧片又带动挡板和衔铁反偏向扭转(逆时针),二喷嘴压力差又减小.在衔铁的原始均衡地位(无旌旗灯号时的地位)邻近,力矩马达的电磁力矩.滑阀二端压差经由过程弹簧片感化于衔铁的力矩以及喷嘴压力感化于挡板的力矩三者取得均衡,衔铁就不再活动.同时感化于滑阀上的油压力与反馈弹簧变形力互相均衡,滑阀在分开零位一段距离的地位上定位.这种依附力矩均衡来决议滑阀地位的方法称为力反馈式.假如疏忽喷嘴感化于挡板上的力,则马达电磁力矩与滑阀二端不服衡压力所产生的力矩均衡,弹簧片也只是受到电磁力矩的感化.是以其变形,也就是滑阀分开零位的距离和电磁力矩成正比.同时因为力矩马达的电磁力矩和输入电流成正比,所以滑阀的位移与输入的电流成正比,也就是经由过程滑阀的流量与输入电流成正比,并且电流的极性决议液流的偏向,如许便知足了对电液伺服阀的功效请求.图28 力反馈式伺服阀的工作道理1—永远磁铁;2—衔铁;3—扭轴;4—喷嘴;5—弹簧片;6—过滤器;7—滑阀;8—线圈;9—轭铁因为采取了力反馈,力矩马达根本上在零位邻近工作,只请求其输出电磁力矩与输入电流成正比(不象地位反馈中请求力矩马达衔铁位移和输入电流成正比),是以线性度易于达到.别的滑阀的位移量在电磁力矩必定的情形下,决议于反馈弹簧的刚度,滑阀位移量便于调节,这给设计带来了便利.采取了衔铁式力矩马达和喷嘴挡板使伺服阀构造极为紧凑,并且动特点好.但这种伺服阀工艺请求高,造价高,对于油的过滤精度的请求也较高.所以这种伺服阀实用于请求构造紧凑,动特点好的场合.力反馈式电液伺服阀的方框图如图29.图29 力反馈式伺服阀方框图3.3.2 地位反馈式伺服阀图30为二级滑阀式地位反馈伺服阀构造.该类型电液伺服阀由电磁部分,控制滑阀和主滑阀构成.电磁部分是一只力马达,道理如前所述.动圈靠弹簧定位.前置放大器采取滑阀式(一级滑阀).如图所示,在均衡地位(零位)时,压力油从P腔进入,分别经由过程P腔槽,阀套窗口,固定撙节孔3.5到达上.下控制窗口,然后再经由过程主阀(二级阀芯)的回油口回油箱.输入正向旌旗灯号电流时,动圈向下移动,一级阀芯随之下移.这时,上控制窗口的过流面积减小,下控制窗口的过流面积增大.所以上控制腔压力升高而下控制腔的压力下降,使感化在主阀芯(二级阀芯)两头的液压力掉去均衡.主阀芯在这一液压力感化下向下移动.主阀芯下移,使上控制窗口的过流面积逐渐增大,下控制窗口的过流面积逐渐缩小.当主阀芯移动到上.下控制窗口过流面积从新相等的地位时,感化于主阀芯两头的液压力从新均衡.主阀芯就逗留在新的均衡地位上,形成必定的启齿.这时,压力油由P腔经由过程主阀芯的工作边到A腔而供应负载.回油则经由过程B腔,主阀芯的工作边到T腔回油箱.输入旌旗灯号电流反向时,阀的动作进程与此相反.油流反向为P→B,A→T.上述工作进程中,动圈的位移量,一级阀芯(先导阀芯)的位移量与主阀芯的位移量均相等.因动圈的位移量与输入旌旗灯号电流成正比,所以输出的流量和输入旌旗灯号电流成正比.图30 地位反馈伺服阀构造1—阀体;2—阀套;3—固定撙节口;4—二级阀芯;5—固定撙节口;6—一级阀芯;7—线圈;8—下弹簧;9—上弹簧;10—磁钢二级滑阀型地位反馈式伺服阀的方框图如图31所示.该型电液伺服阀具有构造简略,工作靠得住,轻易保护,可在现场进行调剂,对油液干净度请求不太高.图31 地位反馈式电液伺服阀方框图电液伺服阀的根本特点空载时输出流量和输入旌旗灯号电流之间的关系,经常应用空载流量特点曲线来暗示(图32).由这一曲线可得到该阀的额定值.线性度.滞环.流量增益等特点.额定电流I R——在这一电流规模内,阀的输出流量与输入旌旗灯号电流成正比.额定空载流量——在额定压力与额定电流下阀的空载流量.线性度——q-I曲线直线性的器量.图32 空载流量特点曲线I R——额定电流;q0——最大空载流量;tanθ——流量增益滞环——重要用来标明旌旗灯号电流转变偏向时,由摩擦力.磁滞等原因使I-q曲线不重合的程度.常以曲线上同一流量下电流最大差值△I max与阀的额定电流I R之比来暗示.流量增益——q L与I之比值,即q-I曲线的平均斜率.3.4.2 压力增益特点在必定供油压力下,在输入电流I和负载压力p L=p1-p2曲线上,比值△p L/△I称为压力增益.当负载流量保持为零时,在零位(中央均衡地位)邻近的压力增益称为零位压力增益.零位压力增益与主滑阀的启齿情势有关,以零启齿情势最高.进步供油压力p s也可进步零位压力增益.但这一特点重要与阀的制造质量有关.进步零位压力增益,对于减小不敏锐区.进步精度有感化,但对稳固性起相反的感化.图33是零启齿伺服阀的零位压力增益特点曲线.图33 零位压力增益特点曲线3.4.3 负载压力.流量特点这一特点往往是选用伺服阀的重要根据.图34即为负载压力-流量特点曲线.3.4.4 对数频率特点它暗示电液伺服阀的动态特点.幅频曲线中一3dB时频率为该阀的频宽.其值越大则该阀的工作频率规模越大.对数频率特点也是剖析伺服体系动特点以及设计.分解电液伺服体系的根据.图35即为阀的对数频率特点曲线.3.4.5 零飘与零偏伺服阀因为供油压力的变更和工作油温度的变更而引起的零位(Q L=p L=0的几何地位)变更称为零飘.零飘一般用使其恢复位所需加的电流值与额定电流值之比来权衡.这一比值越小越好.别的,因为制造.调剂.装配的不同,控制线圈中不加电流时,滑阀不必定位于中位.有时必须加必定的电流才干使其恢复中位(零位).这一现象称为零偏.零偏以使阀恢复零位所需加之电流值与额定电流值之比来权衡.图34 负载压力-流量特点曲线图35 对数频率特点曲线3.4.6 不敏锐度因为不敏锐区的消失,伺服阀只有在输入旌旗灯号电流达必定值时才会转变状况.使伺服阀产生状况变更的最小电流与额定电流之比称为不敏锐度.其值愈小愈好.液压伺服体系设计液压伺服体系设计在液压伺服体系中采取液压伺服阀作为输入旌旗灯号的转换与放大元件.液压伺服体系能以小功率的电旌旗灯号输入,控制大功率的液压能(流量与压力)输出,并能获得很高的控制精度和很快的响应速度.地位控制.速度控制.力控制三类液压伺服系同一般的设计步调如下:1)明白设计请求:充分懂得设计义务提出的工艺.构造实时体系各项机能的请求,并应具体剖析负载前提.2)拟定控制计划,画出体系道理图.3)静态盘算:肯定动力元件参数,选择反馈元件及其它电气元件.4)动态盘算:肯定体系的传递函数,绘制开环波德图,剖析稳固性,盘算动态机能指标.5)校核精度和机能指标,选择校订方法和设计校订元件.6)选择液压能源及响应的从属元件.7)完成履行元件及液压能源施工设计.本章的内容主如果按照上述设计步调,进一步解释液压伺服体系的设计原则和介绍具体设计盘算办法.因为地位控制体系是最根本和应用最广的体系,所以介绍将以阀控液压缸地位体系为主.4.1 周全懂得设计请求4.1.1 周全懂得被控对象液压伺服控制体系是被控对象—主机的一个构成部分,它必须知足主机在工艺上和构造上对其提出的请求.例如轧钢机液压压下地位控制体系,除了应可以或许推却最大轧制负载,知足轧钢机轧辊辊缝调节最大行程,调节速度和控制精度等请求外,履行机构—压下液压缸在外形尺寸上还受轧钢机牌楼窗口尺寸的束缚,构造上还必须包管知足改换轧辊便利等请求.要设计一个好的控制体系,必须充分看重这些问题的解决.所以设计师应周全懂得被控对象的工况,并分解应用电气.机械.液压.工艺等方面的理论常识,使设计的控制体系知足被控对象的各项请求.4.1.2 明角设计体系的机能请求1)被控对象的物理量:地位.速度或是力.2)静态极限:最大行程.最大速度.最大力或力矩.最大功率.3)请求的控制精度:由给定旌旗灯号.负载力.干扰旌旗灯号.伺服阀及电控体系零飘.非线性环节(如摩擦力.逝世区等)以及传感器引起的体系误差,定位精度,分辩率以及许可的飘移量等.4)动态特点:相对稳固性可用相位裕量和增益裕量.谐振峰值和超调量等来划定,响应的快速性可用载止频率或阶跃响应的上升时光和调剂时光来划定;5)工作情形:主机的工作温度.工作介质的冷却.振动与冲击.电气的噪声干扰以及响应的耐高温.防水防腐化.防振等请求;6)特别请求;装备重量.安然呵护.工作的靠得住性以及其它工艺请求.4.1.3 负载特点剖析精确肯定体系的外负载是设计控制体系的一个根本问题.它直接影响体系的构成和动力元件参数的选择,所以剖析负载特点应尽量反应客不雅现实.液压伺服体系的负载类型有惯性负载.弹性负载.粘性负载.各类摩擦负载(如静摩擦.动摩擦等)以及重力和其它不随时光.地位等参数变更的恒值负载等.4.2 拟定控制计划.绘制体系道理图在周全懂得设计请求之后,可根据不合的控制对象,按表6所列的根本类型选定控制计划并拟定控制体系的方块图.如对直线地位控制系同一般采取阀控液压缸的计划,方块图如图36所示.图36 阀控液压缸地位控制体系方块图表6 液压伺服体系控制方法的根本类型伺服体系控制旌旗灯号控制参数活动类型元件构成机液电液气液电气液模仿量数字量位移量地位.速度.加快度.力.力矩.压力直线活动摆动活动扭转活动1.阀控制:阀-液压缸,阀-液压马达2.容积控制:变量泵-液压缸;变量泵-液压马达;阀-液压缸-变量泵-液压马达3.其它:步近式力矩马达4.3 动力元件参数选择动力元件是伺服体系的症结元件.它的一个重要感化是在全部工作轮回中使负载按请求的速度活动.其次,它的重要机能参数能知足全部体系所请求的动态特点.此外,动力元件参数的选择还必须斟酌与负载参数的最佳匹配,以包管体系的功耗最小,效力高.动力元件的重要参数包含体系的供油压力.液压缸的有用面积(或液压马达排量).伺服阀的流量.当选定液压马达作履行元件时,还应包含齿轮的传动比.4.3.1 供油压力的选择选用较高的供油压力,在雷同输出功率前提下,可减小履行元件——液压缸的活塞面积(或液压马达的排量),因而泵和动力元件尺寸小重量轻,装备构造紧凑,同时油腔的容积减小,容积弹性模数增大,有利于进步体系的响应速度.但是随供油压力增长,因为受材料强度的限制,液压元件的尺寸和重量也有增长的趋向,元件的加工精度也请求进步,体系的造价也随之进步.同时,高压时,泄露大,发烧高,体系功率损掉增长,噪声加大,元件寿命下降,保护也较艰苦.所以前提许可时,平日照样选用较低的供油压力.经常应用的供油压力等级为7MPa到28MPa,可根据体系的要乞降构造限制前提选择恰当的供油压力.4.3.2 伺服阀流量与履行元件尺寸的肯定如上所述,动力元件参数选择除应知足拖动负载和体系机能两方面的请求外,还应斟酌与负载的最佳匹配.下面侧重介绍与负载最佳匹配问题.(1)动力元件的输出特点将伺服阀的流量——压力曲线经坐标变换绘于υ-F L平面上,所得的抛物线即为动力元件稳态时的输出特点,见图37.图37 参数变更对动力机构输出特点的影响a)供油压力变更;b)伺服阀容量变更;c)液压缸面积变更。
电液伺服控制系统概述摘要:电液伺服控制是液压领域的重要分支。
多年来,许多工业部门和技术领域对高响应、高精度、高功率——重量比和大功率液压控制系统的需要不断扩大,促使液压控制技术迅速发展。
特别是控制理论在液压系统中的应用、计算及电子技术与液压技术的结合,使这门技术不论在原件和系统方面、理论与应用方面都日趋完善和成熟,并形成一门学科。
目前液压技术已经在许多部门得到广泛应用,诸如冶金、机械等工业部门及飞机、船舶部门等。
关键词:电液伺服控制液压执行机构伺服系统又称随机系统或跟踪系统,是一种自动控制系统。
在这种系统中,执行元件能以一定的精度自动地按照输入信号的变化规律动作。
液压伺服系统是以液压为动力的自动控制系统,由液压控制和执行机构所组成。
一、电液控制系统的发展历史液压控制技术的历史最早可以追溯到公元前240年,一位古埃及人发明的液压伺服机构——水钟。
而液压控制技术的快速发展则是在18世纪欧洲工业革命时期,在此期间,许多非常实用的发明涌现出来,多种液压机械装置特别是液压阀得到开发和利用,使液压技术的影响力大增。
18世纪出现了泵、水压机及水压缸等。
19世纪初液压技术取得了一些重大的进展,其中包括采用油作为工作流体及首次用电来驱动方向控制阀等。
第二次世界大战期间及战后,电液技术的发展加快。
出现了两级电液伺服阀、喷嘴挡板元件以及反馈装置等。
20世纪50~60年代则是电液元件和技术发展的高峰期,电液伺服阀控制技术在军事应用中大显身手,特别是在航空航天上的应用。
这些应用最初包括雷达驱动、制导平台驱动及导弹发射架控制等,后来又扩展到导弹的飞行控制、雷达天线的定位、飞机飞行控制系统的增强稳定性、雷达磁控管腔的动态调节以及飞行器的推力矢量控制等。
电液伺服驱动器也被用于空间运载火箭的导航和控制。
电液控制技术在非军事工业上的应用也越来越多,最主要的是机床工业。
在早些时候,数控机床的工作台定位伺服装置中多采用电液系统(通常是液压伺服马达)来代替人工操作,其次是工程机械。
电液伺服系统电液伺服系统是一种由电信号处理装置和液压动力机构组成的反馈控制系统。
根据输入信号的形式不同,又可分为模拟伺服系统和数字伺服系统两类。
下面对模拟伺服系统和数字伺服系统作一简单的说明。
模拟伺服系统在模拟伺服系统中,全部信号都是连续的模拟量,如图1所示。
在此系统中,输入信号、反馈信号、偏差信号以及其放大、校正都是连续的模拟量。
电信号可以是直流量,也可以是交流量。
直流量和交流量相互转换可以通过调制器或解调器完成。
模拟伺服系统重复精度高,但分辨能力较低(绝对精度低)。
伺服系统的精度在很大程度上取决于检测装置的精度,而模拟式检测装置的精度一般低于数字式检测装置,所以模拟伺服系统分辨能力低于数字伺服系统。
另外模拟伺服系统中微小信号容易受到噪声和零漂的影响,因此当输入信号接近或小于输入端的噪声和零漂时,就不能进行有效的控制了。
图1 模拟伺服系统方块图数字伺服系统在数字伺服系统中,全部信号或部分信号是离散参量。
因此数字伺服系统又分为数字伺服系统和数字—模拟伺服系统两种。
在全数字伺服系统中,动力元件必须能够接收数字信号,可采用数字阀或电液步进马达。
数字模拟混合式伺服系统如2所示。
数控装置发出的指令脉冲与反馈脉冲相比较后产生数字偏差,经数模转化器把信号变为模拟偏差电压,后面的动力部分不变,仍是模拟元件。
系统输出通过数字检测器(即模数转换器)变为反馈脉冲信号。
图2 数字伺服系统方块图数字伺服系统有很高的绝对精度,受模拟量的噪声和零漂的影响很小。
当要求较高的绝对精度,而不是重复精度时,常采用数字模拟系统。
从经济性可靠性方面来看,简单的伺服系统采用采用模拟型控制为宜。
系统特点及使用场合电液伺服系统综合了电气和液压两方面的优点,具有控制精度高、响应速度快、输出功率大、信号处理灵活、易于实现各种参量的反馈等优点。
因此,在负载质量大又要求响应速度快的场合最为适合,其应用已遍及国民经济的各个领域,比如飞机与船舶舵机的控制、雷达与火炮的控制、机床工作台的位置控制、板带轧机的板厚控制、电炉冶炼的电极位置控制、各种飞机车里的模拟台的控制、发电机转速的控制、材料试验机及其他实验机的压力控制等等。