电液伺服系统详解共75页
- 格式:ppt
- 大小:8.81 MB
- 文档页数:75
1电液伺服控制系统1.1电液控制系统的发展历史概述液压控制技术的历史最早可以追溯到公元前240年,一位古埃及人发明的液压伺服机构———水钟。
而液压控制技术的快速发展则是在18世纪欧洲工业革命时期,在此期间,许多非常实用的发明涌现出来,多种液压机械装置特别是液压阀得到开发和利用,使液压技术的影响力大增。
18世纪出现了泵、水压机及水压缸等。
19世纪初液压技术取得了一些重大的进展,其中包括采用油作为工作流体及首次用电来驱动方向控制阀等。
第二次世界大战期间及战后,电液技术的发展加快。
出现了两级电液伺服阀、喷嘴挡板元件以及反馈装置等。
20世纪50~60年代则是电液元件和技术发展的高峰期,电液伺服阀控制技术在军事应用中大显身手,特别是在航空航天上的应用。
这些应用最初包括雷达驱动、制导平台驱动及导弹发射架控制等,后来又扩展到导弹的飞行控制、雷达天线的定位、飞机飞行控制系统的增强稳定性、雷达磁控管腔的动态调节以及飞行器的推力矢量控制等。
电液伺服驱动器也被用于空间运载火箭的导航和控制。
电液控制技术在非军事工业上的应用也越来越多,最主要的是机床工业。
在早些时候,数控机床的工作台定位伺服装置中多采用电液系统(通常是液压伺服马达)来代替人工操作,其次是工程机械。
在以后的几十年中,电液控制技术的工业应用又进一步扩展到工业机器人控制、塑料加工、地质和矿藏探测、燃气或蒸汽涡轮控制及可移动设备的自动化等领域。
电液比例控制技术及比例阀在20世纪60年代末70年代初出现。
70年代,随着集成电路的问世及其后微处理器的诞生,基于集成电路的控制电子器件和装置广泛应用于电液控制技术领域。
现代飞机上的操纵系统。
如驼机、助力器、人感系统,发动机与电源系统的恒速与恒频调节,火力系统中的雷达与炮塔的跟踪控制等大都采用了电液伺服控制系统。
飞行器的地面模拟设备,包括飞行模拟台、负载模拟器大功率模拟振动台、大功率材料实验加载等大多采用了电液控制,因此电液伺服控制的发展关系到航空与宇航事业的发展,在其他的国防工业中如机器人也大量使用了电液控制系统。
电液伺服系统原理
电液伺服系统是一种通过控制液压油流来实现位置、速度和力的精确控制的系统。
它由液压系统、电气系统和机械执行部分组成。
液压系统是电液伺服系统的核心部分,它包括液压泵、液压缸、液压阀和液压油箱。
液压泵通过压力油将液压油推送给液压缸,从而产生力或运动。
液压阀用于控制液压油的流动方向和流量。
液压油箱用于储存液压油,并保持其温度和清洁度。
电气系统通过控制电信号来控制液压系统。
它包括传感器、控制器和执行器。
传感器用于检测被控对象的位置、速度和力,并将其转化为电信号。
控制器接收传感器反馈的电信号,经过计算和处理后,输出控制信号给执行器。
执行器接收控制信号,并控制液压阀的开关状态,从而控制液压系统的运动和力。
机械执行部分将液压系统的力和运动传递给被控对象。
它包括液压缸、阀门、连接杆等元件。
液压缸接收液压油的力,并将其转化为线性运动。
阀门用于控制液压油流的方向和流量。
连接杆将液压缸的运动传递给被控对象,实现位置、速度和力的控制。
总之,电液伺服系统通过控制液压油流来实现位置、速度和力的精确控制。
液压系统、电气系统和机械执行部分相互配合,完成对被控对象的精确控制。
电液伺服控制系统概述摘要:电液伺服控制是液压领域的重要分支。
多年来,许多工业部门和技术领域对高响应、高精度、高功率——重量比和大功率液压控制系统的需要不断扩大,促使液压控制技术迅速发展。
特别是控制理论在液压系统中的应用、计算及电子技术与液压技术的结合,使这门技术不论在原件和系统方面、理论与应用方面都日趋完善和成熟,并形成一门学科。
目前液压技术已经在许多部门得到广泛应用,诸如冶金、机械等工业部门及飞机、船舶部门等。
关键词:电液伺服控制液压执行机构伺服系统又称随机系统或跟踪系统,是一种自动控制系统。
在这种系统中,执行元件能以一定的精度自动地按照输入信号的变化规律动作。
液压伺服系统是以液压为动力的自动控制系统,由液压控制和执行机构所组成。
一、电液控制系统的发展历史液压控制技术的历史最早可以追溯到公元前240年,一位古埃及人发明的液压伺服机构——水钟。
而液压控制技术的快速发展则是在18世纪欧洲工业革命时期,在此期间,许多非常实用的发明涌现出来,多种液压机械装置特别是液压阀得到开发和利用,使液压技术的影响力大增。
18世纪出现了泵、水压机及水压缸等。
19世纪初液压技术取得了一些重大的进展,其中包括采用油作为工作流体及首次用电来驱动方向控制阀等。
第二次世界大战期间及战后,电液技术的发展加快。
出现了两级电液伺服阀、喷嘴挡板元件以及反馈装置等。
20世纪50~60年代则是电液元件和技术发展的高峰期,电液伺服阀控制技术在军事应用中大显身手,特别是在航空航天上的应用。
这些应用最初包括雷达驱动、制导平台驱动及导弹发射架控制等,后来又扩展到导弹的飞行控制、雷达天线的定位、飞机飞行控制系统的增强稳定性、雷达磁控管腔的动态调节以及飞行器的推力矢量控制等。
电液伺服驱动器也被用于空间运载火箭的导航和控制。
电液控制技术在非军事工业上的应用也越来越多,最主要的是机床工业。
在早些时候,数控机床的工作台定位伺服装置中多采用电液系统(通常是液压伺服马达)来代替人工操作,其次是工程机械。
电液伺服系统的原理及应用一.电液伺服系统概述电液伺服系统在自动化领域是一类重要的控制设备,被广泛应用于控制精度高、输出功率大的工业控制领域.液体作为动力传输和控制的介质,跟电力相比虽有许多不甚便利之处且价格较贵,但其具有响应速度快、功率质量比值大及抗负载刚度大等特点,因此电液伺服系统在要求控制精度高、输出功率大的控制领域占有独特的优势。
电液伺服控制系统是以液压为动力,采用电气方式实现信号传输和控制的机械量自动控制系统。
按系统被控机械量的不同,它又可以分为电液位置伺服系统、电液速度伺服控制系统和电液力控制系统三种。
我国的电液伺服发展水平目前还处在一个发展阶段,虽然在常规电液伺服控制技术方面,我们有了一定的发展。
但在电液伺服高端产品及应用技术方面,我们距离国外发达国家的技术水平还有着很大差距。
电液伺服技术是集机械、液压和自动控制于一体的综合性技术,要发展国内的电液伺服技术必须要从机械、液压、自动控制和计算机等各技术领域同步推进。
二.电液伺服的组成电液控制系统是电气液压控制系统简称,它由电气控制及液压两部分组成。
在电子-液压混合驱动技术里,能量流是由电子控制,由液压回路传递,充分结合了电子控制和液压传动两者混合驱动技术的优点避免了它们各自的缺陷。
⑴电子驱动技术的特点①高精度、高效率,低能耗、低噪音②高性能动态能量控制③稳定的温度性能④能量再生及反馈电网⑤在循环空闲的时间没有能量损失⑵液压驱动技术的特点①高(力/功)密度②结构紧凑③液压马达(油缸)是大功率且经济的执行元件④在液压系统做压力控制的时候有明显的能量流失液压部分:以液体为传动介质,靠受压液体的压力能来实现运动和能量传递。
基于液压传动原理,系统能够根据机械装备的要求,对位置、速度、加速度、力等被控量按一定的精度进行控制,并且能在有外部干扰的情况下,稳定、准确的工作,实现既定的工艺目的。
(工控网)液压伺服阀是输出量与输入量成一定函数关系,并能快速响应的液压控制阀,是液压伺服系统的重要元件。
电液伺服系统工作原理
电液伺服系统是一种通过电气信号控制液压执行机构的系统。
它利用电液转换装置将电能转换为液压能,并通过液压传动将能量传递到执行机构上,从而实现机械装置的运动控制。
电液伺服系统具有快速、准确、可靠的特点,在工业自动化控制领域得到广泛应用。
电液伺服系统的工作原理主要包括信号处理、电液转换、液压传动和执行机构四个部分。
信号处理部分将控制信号转换为电压或电流信号,经过调节后送至电液转换部分。
电液转换部分由电液转换器和液压放大器组成,其主要功能是将电信号转换为液压信号,并放大转换后的液压信号,以便驱动液压执行机构。
液压传动部分是电液伺服系统的核心部分,通过液压传动装置将液压能量传递到执行机构上。
液压传动装置通常由液压泵、液压阀、液压缸等组成。
液压泵负责产生压力油液,液压阀用于控制液压油液的流动方向和流量,液压缸则是执行机构的核心部件,它根据液压信号产生的压力油液推动活塞运动,从而实现机械装置的运动控制。
执行机构接收液压信号并进行相应的动作。
执行机构通常由液压马达、液压缸或液压伺服阀等组成,它们根据液压信号产生的力或位移来控制机械装置的运动。
总的来说,电液伺服系统的工作原理是通过将控制信号转换为液压信号,并通过液压传动装置将液压能量传递到执行机构上,从而实现对机械装置的运动控制。
这种系统具有快速、准确、可靠的特点,广泛应用于工业自动化控制领域。
电液伺服控制1. 引言电液伺服控制是一种在工业自动化领域广泛应用的控制技术,通过控制电液伺服系统的输出来实现对机械装置的精确控制。
本文将介绍电液伺服控制的基本原理、控制策略和应用领域。
2. 电液伺服系统结构电液伺服系统由执行机构、传感器、控制器和液压装置等组成。
执行机构一般由液压缸和阀门组成,传感器用于对执行机构的运动状态进行反馈,控制器根据传感器反馈的信息进行计算和决策,液压装置则负责产生并传递液压能量。
3. 电液伺服控制原理电液伺服控制的基本原理是通过改变液压系统的压力和流量来实现对执行机构的运动控制。
控制器根据预定的信号和传感器反馈的信息计算出对应的控制指令,然后通过控制阀控制液压系统的工作状态,从而实现对执行机构的控制。
4. 电液伺服控制策略电液伺服控制有多种控制策略,常见的包括位置控制、速度控制和力控制。
位置控制是通过对液压缸的运动位置进行控制,实现对机械装置位置的精确控制。
速度控制则是控制液压缸的运动速度,实现对机械装置运动速度的精确控制。
力控制则是控制液压系统的输出力,实现对机械装置施加的力的精确控制。
5. 电液伺服控制的特点电液伺服控制具有以下特点:•高精度:电液伺服控制可以实现对机械装置位置、速度和力的精确控制,满足工业自动化对精度的要求。
•响应快:电液伺服控制系统的响应速度较快,可以实现快速而准确的控制。
•高可靠性:电液伺服系统采用液压传动,具有较高的可靠性和稳定性。
•适应性强:电液伺服控制适用于各种不同工况和负载情况下的控制需求。
6. 电液伺服控制的应用领域电液伺服控制广泛应用于各个工业领域,包括机床、起重机械、注塑机、机器人等。
在机床行业中,电液伺服控制可实现高精度的切削加工;在起重机械领域,电液伺服控制可以实现大力矩的精确控制,提高起重机械的工作效率;在注塑机和机器人领域,电液伺服控制可以实现高速、灵活的动作控制,提高生产效率和产品质量。
7. 总结电液伺服控制是一种在工业自动化领域应用广泛的控制技术,通过控制液压系统的输出来实现对机械装置的精确控制。