恒定电流的电场
- 格式:ppt
- 大小:200.50 KB
- 文档页数:31
第二章 静电场和恒定电流电场§2.1 静电场的基本方程1 静电场的定义:场的源-电荷,相对于观察者(坐标系)静止。
2 静电场的基本方程:0=∂∂t,因此有 ⎪⎪⎩⎪⎪⎨⎧=⋅∇==⋅∇==⨯∇=⨯∇000B HB D E D E H μρε 可以发现电场量(ε,,D E )与磁场量(μ,,B H)无耦合,故可以单独研究静电场和静磁场。
于是静电场的基本方程是⎪⎩⎪⎨⎧=⋅∇==⨯∇ρεD ED E3 静电场的物理特性;1)场源:电荷,散度源,旋度为零,是保守场,可以定义势能。
2)电力线:非环,始于正电荷或带正电荷的导体或无穷远,终于负电荷或带负电荷的导体或无穷远。
3)与磁场关系:无关。
§2.2 电位1 为什么需要电位:1)电位作辅助量,简化求解过程,矢量变标量。
2)静电场电位有物理意义:电位是单位正电荷的势能。
3)电位比电场易测量。
2 电位定义:前提是旋度为零。
任何标量梯度的旋度恒等于零:0=∇⨯∇ϕ (梯度的物理解释:最陡)因此只要让ϕ-∇=E静电场的旋度方程自然满足。
3 电位的物理意义:任意一点A 的电位等于把单位正电荷从该点移到电位参考点P (零电位点)电场力所做的功,也就是外力克服电场力把单位正电荷从电位参考点(零电位点)移到该点所做的功。
数值上也就是单位正电荷所具有的势能。
⎰⎰⎰⎰⎰⎰=-==⋅∇=⋅∇-=⋅→⋅=⋅=PAA PA PA P A PAP AP AAP d l d l d l d E l d E q l d F W ϕϕϕϕϕϕ上式结果与A 点到P 点的具体路径无关,这是因为⎰=⋅=+=-AMPNAANPAMP ANP AMP l d E W W W W 0AMNP所以 A N P A M P W W =因此我们才可以说(在静电场条件下)电位是单位正电荷的势能。
势能本身就意味着它只与状态有关,与过程无关。
4 电位参考点的选择:1)电荷在有限区域,无穷远点为参考点。
第四章 恒定电流的电场和磁场§4.1 恒定电流的电场§4.2 恒定电场与静电场的比拟§4.3 恒定磁场的基本方程§4.4 恒定磁场的矢量磁位§4.5 介质中的磁场§4.6 恒定磁场的边界条件§4.7 电感的计算§4.8 恒定磁场的能量和力§4.1 恒定电流的电场图 4-1 导体中的恒定电流4.1.1 微分形式的欧姆定律和焦耳定律它的定义是: 单位时间内通过导体任一横截面的电荷量, 数学表示式为所以恒定电流的电流强度定义为上式中Q 是在时间t 内流过导体任一横截面的电荷, I 是常量。
电流强度的单位为(A =C/s )。
图 4-2 电流密度矢量dtdQ t Q i t =∆∆=→∆0lim tQ I =式中J 是体传导电流密度, 单位为A/m2。
如果所取的面积元的法线方向 与电流方向不平行, 而成任意角θ, 如图4-2(b )所示, 则通过该面积的电流是所以通过导体中任意截面S 的电流强度与电流密度矢量的关系是1.欧姆定律的微分形式由实验已知, 当导体温度不变时, 通过一段导体的电流强度和导体两端的电压成正比, 这就是欧姆定律式中R 称为导体的电阻, 单位为Ω, 表示式为或上式中, l 为导体长度; S 为导体横截面; σ称为导体的电导率, 它由导体的材料决定, 单位为1/Ω·m=S/m 。
表 4-1 几种材料在常温下的电阻率和电导率 dS dIS I J S =∆∆=→∆0lim θcos Jds s d J dI =⋅= ⎰⎰⋅=⋅=S S ds n J s d J I 0 0n RI U =S l R σ=Sdl R lσ⎰=图 4-3 推导欧姆定律微分形式所以J =σE 。
在各向同性媒质中, 电流密度矢量J 和电场强度E 方向一致, 都是正电荷运动方向, 故有运流电流不服从欧姆定律, 所谓运流电流, 是指电荷在真空或气体中由于电场的作用而运动时形成的电流。