教学课件
数学 八年级上册 浙教版
第2章 特殊三角形
2.4 等腰三角形的性质定理
复习回顾:
等腰三角形的性等. (在同一个三角形中,等边对等角) 3、等腰三角形三线合一 顶角平分线、底边上的中线 和底边上的高
等腰三角形的判定方法:
1、有两边相等的三角形是等腰三角形。(定义)
解: ∵ ∠ DAC= ∠ C+ ∠ ABC (三角形外角和的性质) 又 ∵ ∠ C=30 ° ∠ DAC= 60 ° ∴ ∠ ABC= ∠ DAC -∠ ACB=60 °- 30 ° =30 °∴ ∠ ABC= ∠ C ∴ AB=AC(在同一个三角形中, 等角对等边) 即AC的长就是河宽。
30
O
60
形.
“在同一个三角形中,等角对等边。” 辨一辨: “在同一个三角形中, 等边对等角。” 性质 判定
在同一个三角形中, 等角对等边
问:如图,下列推理正确吗? A
1 2
C
1
D
B
D ∵∠1=∠2 ∴ BD=DC (等角对等边)
C
A
2
B
∵∠1=∠2 ∴ DC=BC (等角对等边)
错,因为都不是在同一个三角形中。
60°
A
C
∴∠A=∠B =∠C=60°.
∴△ABC是等边三角形(三个角都相等的三角形是等边三角 形).
第二种情况:顶角是60°; 已知:如图,在△ABC中,AB=AC,∠A=60°. 求证:△ABC是等边三角形. 证明:∵AB=AC,∠A=60°(已知), ∴∠C=∠B=60°(在同一个三角形 中,等角对等边) ∴∠A=∠B=∠C =60°, ∴△ABC是等边三角形(三个角都相 等的三角形是等边三角形). B C A