第三章基本立体的投影
- 格式:ppt
- 大小:2.69 MB
- 文档页数:57
第三章立体的投影(一)教学内容1. 基本平面几何体三面投影的特征,几何元素投影分析2.基本平面几何体三面投影的对应规律3. 基本平面几何体表面上点、线的投影4. 圆柱体、圆锥体、球体的几何要素及其投影5. 圆柱面、圆锥面、球面上取点取线的投影作图方法(二)教学要求1. 熟练画出基本几何体(平面立体、曲面立体)的三视图2. 掌握根据基本几何体的两个视图,想出它们的空间几何形状和位置3. 掌握根据基本几何体的两面投影,画出它们的第三个投影4. 掌握根据基本几何体的已知投影,画出已知表面上点、线的未知投影三、建筑形体的基本表达方法1.多面正投影图当物体的形状和结构比较复杂时,仅用三面投影图表达是难以满足要求的,为此,在制图标准中规定了多种表达方法,绘图时可根据工程形体的形状特征选用。
对于建筑形体往往要同时采用几种方法,才能将其内外结构表达清楚。
从图3-4a)中我们可以看出,将物体放在六个相互垂直的平面中,将从前向后、从上向下、从左向右、从后向前、从下向上、从右向左六个方向看到画在平面图纸上的六个基本投影图,得到物体的平面投影图。
用正投影法绘制的物体的图形称为视图。
对于形状简单的物体,一般用三个视图就可以表达清楚,而对于复杂的房屋建筑,各个方向的外形变化较大时,往往采用三个以上的视图才能完整表达其形状结构。
如图3-5所示的房屋形体,可由不同方向投射,从而得到有五个视图的多面正投影图。
绘制建筑房屋的视图,从前方投射的A向视图为正立面图,应尽量反映出物体的主要特征,从上方投射的B向视图为平面图,从左方投射的C向视图为左侧立面图,从右方投射的D向视图为右侧立面图,从后方投射的E向视图为背立面图。
2.镜像投影图镜像投影是物体在镜面中的反射图形的正投影,该镜面应平行于相应的投影面,如图3-6a所示。
用镜像投影法绘制的平面图应在图名后注写“镜像”二字,以便读图时识别,如图3-6b。
镜像投影图可用于表示某些工程的构造,在装饰工程中应用较多,如吊顶平面图,是将地面看作一面镜子,得到吊顶的镜像平面图。
本章是这门课程的一个难点,教师为了自身业务的提高,要试做一定数目的练习,这对于讲课、辅导答疑、画好黑板图等都有很大的帮助,下面是教师在教学过程中的部分练习,虽然不要求学生掌握到这种难度,但教师要能绘制这种图样。
在讲解本章内容时可作为参考案例。
教师绘制的作业(三棱住切割)教师绘制的作业(长方体切割)教师绘制的作业(五棱柱切割)教师绘制的作业(长方体切割)教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业教师绘制的作业学生作业学生作业学生作业学生作业学生作业学生作业返回第一讲基本立体的投影1.知识要点(1)平面基本立体的投影(2)圆柱体的投影(3)圆锥体的投影(4)球体的投影2.教学设计本讲的内容不多,表面上容易,实际上同学掌握起来比较难,所以教学上要注意直观教学和空间想象能力培养的关系,明确教学目的。
虽然在上一章介绍了平面立体三视图的画法,在本章开始时还要进一步归纳平面基本体的投影,及其与平面相交时交线的画法,这是一个难点,要逐步掌握。
通过对圆柱体、圆锥体和球体在三面投影体系中投影的研究,进一步巩固三视图的投影规律,通过研究曲面上点、线的投影,暗示线面分析法的思想方法。
在介绍基本曲面立体的投影时,要紧紧抓住转向轮廓线的概念和投影,这对于接下来的截交线和相贯线的学习也是非常重要的,在讲圆柱截交线时,利用动画、模型、虚拟现实等多媒体技术介绍基本概念和作图方法。
把粗实线圆规铅心的修理、圆规的使用放在这里介绍,目的是分散难点,学生有了绘制粗实线直线的经验,学习绘制粗实线圆弧就容易些。
3.课前准备准备教具、熟悉教学内容和要使用的教学课件,课前最好将要布置的作业试做一遍,对学生作业中的问题作到心中有数。
第3章立体的投影电子教案:3.1 基本立体的投影基本立体可分为平面立体和曲面立体。
表面均为平面的基本立体称为平面立体。
常见的有棱柱、棱锥,如图3-1所示。
表面由曲面和平面或完全由曲面组成的基本立体称为曲面立体。
最常见的曲面立体是回转体,包括圆柱、圆锥、球、圆环等,如图3-2所示。
将基本体放在三投影面体系中进行投射时,为了画图、读图的方便,通常将其“放平,摆正”。
放平——就是让基本体的底面处于平行面位置。
摆正——是在放平的基础上,让其余各面尽可能处于平行面或垂直面位置。
在以后画组合体视图或零件图时也要遵循这个原则。
图3-1 平面立体图3-2曲面立体3.1.1 平面立体的投影及其表面取点在投影图上表示平面立体就是把组成立体的平面和棱线表示出来,然后判别其可见性,把看得见的棱线投影画成实线,看不见的棱线投影画成虚线。
1.棱柱(1) 棱柱的投影常见的棱柱有正四棱柱和正六棱柱,图3-3(a)所示一正六棱柱,由六个相同的矩形棱面和上下底面(正六边形)所围成。
将其放平摆正后,上、下底面为水平面,其水平投影反映实形,另外两面投影积聚为直线。
正六棱柱的六个棱面中,前后两个面是正平面,正面投影反映实形;其余四个棱面均为铅垂面。
如图3-3(b)所示,作图过程如图3-4所示。
(a)(b)图3-3正六棱柱的投影及表面取点图3-4 正六棱柱的画图方法和步骤棱柱的投影特性是:在与棱线垂直的投影面上的投影为一多边形,它反映棱柱上、下底面的实形;另两个投影都是由粗实线或虚线组成的矩形线框,它反映棱面的实形或类似形。
(2) 在棱柱表面上取点在棱柱表面上取点,其原理和方法与在平面内取点相同。
该例中正六棱柱的各个表面都处于特殊位置,因此在其表面上取点均可利用平面投影积聚性的原理作图,并判别其可见性,如图3-3(b)所示。
2.棱锥(1) 投影分析和画法常见的棱锥有正三棱锥和正四棱锥,图3-5(a)所示为一正三棱锥,锥顶为S,其底面为等边△ABC,是水平面。