第九章 一元气体动力学基础要点
- 格式:ppt
- 大小:1.49 MB
- 文档页数:62
第九章 一元气体动力学基础一、学习指导 1. 基本参数 (1) 状态方程气体的压强p ,密度ρ以及温度(绝对)T 满足状态方程p RT ρ=式中,R 为气体常数,对于空气,287/()R J kg K =⋅。
(2) 绝热指数k/p v k c c =式中,c p 和c v 分别是等压比热和等容比热,他们与气体参数地关系为1p k c R k =-,11p c R k =-(3) 焓和熵焓h 的定义是ph e ρ=+式中,e 是气体内能,v e c T =。
h 可一表示为 p h c T =熵的表达式为ln()kps cv c ρ=+常数(4) 音速cc =(5) 马赫数马赫数M 的定义是uM c =式中,u 是气流速度;c 是音速。
2. 一元恒定流动的运动方程 (1) 气体一元定容流动ρ=常数22pv g γ+=常数 (2) 气体一元等温流动T =常数,pRT cρ==2ln 2v c p +=常量2ln 2v RT p +=常量(3) 气体一元绝热流动k p cρ= 212k p v k ρ⋅+-=常量3. 滞止参数气流在某断面的流速,设想以无摩擦绝热过程降低至零时,断面各参数所达到的值,称为气流在该断面的滞止参数。
用p 0、ρ0、T 0、i 0、c 0表示滞止压强、滞止密度、滞止温度、滞止焓值、滞止音速。
0/T T ,0/p p ,0/ρρ,0/c c 与马赫数M 的函数关系:20112T k M T -=+11200112k kk k p T k M p T ---⎛⎫⎛⎫==+ ⎪⎪⎝⎭⎝⎭1111200112k k T k M T ρρ---⎛⎫⎛⎫==+ ⎪⎪⎝⎭⎝⎭1122200112c T k M c T -⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭4. 气体一元恒定流动的连续性方程2(1)dA dv M A v =-(1) M<1为亚音速流动,v<c ,因此dv 与dA 正负号相反,速度随断面面积增大而减慢;随断面面积减小而加快。
一元气体动力学基础1.若要求22v p ρ∆小于0.05时,对20℃空气限定速度是多少? 解:根据220v P ρ∆=42M 知 42M < 0.05⇒M<0.45,s m kRT C /3432932874.1=⨯⨯== s m MC v /15334345.0=⨯==即对20℃ 空气限定速度为v <153m/s ,可按不压缩处理。
2.有一收缩型喷嘴,已知p 1=140kPa (abs ),p 2=100kPa (abs ),v 1=80m/s ,T 1=293K ,求2-2断面上的速度v 2。
解:因速度较高,气流来不及与外界进行热量交换,且当忽略能量损失时,可按等熵流动处理,应用结果:2v =2121)(2010v T T +-,其中T 1=293K1ρ=11RT p =1.66kg/m 3. k P P 11212)(ρρ==1.31kg/m 3. T 2=RP 22ρ=266 K 解得:2v =242m/s3.某一绝热气流的马赫数M =0.8,并已知其滞止压力p 0=5×98100N/m 2,温度t 0=20℃,试求滞止音速c 0,当地音速c ,气流速度v 和气流绝对压强p 各为多少?解:T 0=273+20=293K ,C 0=0KRT =343m/s根据 20211M K T T -+=知 T=260 K ,s m kRT C /323==,s m MC v /4.258==100-⎪⎭⎫ ⎝⎛=k k T T p p解得:2/9810028.3m N p ⨯=4.有一台风机进口的空气速度为v 1,温度为T 1,出口空气压力为p 2,温度为T 2,出口断面面积为A 2,若输入风机的轴功率为N ,试求风机质量流量G (空气定压比热为c p )。
解:由工程热力学知识:⎪⎪⎭⎫ ⎝⎛+=22v h G N ∆∆,其中PAGRT T c h P ==,pA GRT A G v ==ρ ∴⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+-⎥⎦⎤⎢⎣⎡+=)2()(2121122222v T c A p GRT T c G N P P 由此可解得G5.空气在直径为10.16cm 的管道中流动,其质量流量是1kg/s ,滞止温度为38℃,在管路某断面处的静压为41360N/m 2,试求该断面处的马赫数,速度及滞止压强。
第九章气体动力学基础第九章气体动力学基础一、微弱扰动在气流中的传播1、音速和马赫数音速是微弱扰动在流场中的传播速度。
微弱扰动通常是流场中某个位置上的压强产生了微小的变化。
在不可压缩流动中,任何扰动总是立即传播到整个流场,但是在可压缩流里,不是在任何情况下都能传播到整个流场,微弱扰动在流场中是按一定的速度传播的,这个速度就是音速。
一个直圆管,里面充满了压强为p、密度为ρ、温度为T的静止气体。
活塞以dv速度运动,将压缩(或膨胀)最相邻的气体层,致使那层气体的压强升高(或降低)、温度升高(或降低)。
这层气体又去压缩另外的气体层。
这样将在管道内形成微弱扰动的压缩波(或膨胀波),波面的传播速度假设为c,气体本身也将随活塞一起运动,其运动速度将和活塞的运动速度一致,是dv。
请注意,压缩(或膨胀)波的波面速度与活塞(因而是气体)的运动速度不一致的!现在来推导音速公式。
由于微弱扰动在管道里的传播是一个非定常运动,因此假设研究者和波面一同运动。
这样,波面是相对静止的,而波前气流速度为c,波后气流速度为c-dv,同时压强密度和温度分别由p、ρ和T升到p+dp、ρ+dρ和T+dT。
在波面附近取一个微元体,有连续方程:动量方程:因为我们讨论的是微弱扰动,故高阶项可忽略。
把dv消去,得到音速为弱扰动的过程可以认为是一个等熵过程,即有对于微弱扰动,其热力学过程接近于绝热的可逆过程,即等熵过程。
对完全气体,(1)音速的的大小是和流体介质有关:可压缩性大的介质,微弱扰动传播的速度慢、音速就小。
在20度的空气中,音速为343(m/s);在20度的水里,音速为1478(m/s)。
(2)音速是状态参数的函数。
在相同介质中,不同点的音速也不同。
提到音速,总是指当地音速。
(3)同一气体中,音速随气体温度的升高而升高马赫数的定义在音速定义后,可以定义马赫数1)马赫数是判断气体压缩性的标准, 它是个无量纲量,也是气体动力学的一个重要参数(2)按马赫数,可以将气流分成亚音速、音速和超音速流动。
气体动力学基础笔记手写一、气体动力学基本概念1. 气体:由大量分子组成的混合物,其分子在不断地运动和碰撞。
2. 温度:气体分子平均动能的量度,与分子平均动能成正比。
3. 压力:气体对容器壁的压强,由大量气体分子对容器壁的碰撞产生。
4. 密度:单位体积内的气体质量,与分子数和分子质量有关。
5. 流场:描述气体流动的空间和时间的函数,由速度、压力、密度等物理量描述。
二、理想气体状态方程1. 理想气体状态方程:pV = nRT,其中p为压力,V为体积,n为摩尔数,R为气体常数,T为温度。
2. 实际气体与理想气体的关系:实际气体在一定条件下可以近似为理想气体,但在某些情况下需要考虑分子间相互作用和分子内能等效应。
三、气体流动的基本方程1. 连续性方程:质量守恒方程,表示单位时间内流入流出控制体的质量流量相等。
2. 动量守恒方程:牛顿第二定律,表示单位时间内流入流出控制体的动量流量等于作用在控制体上的外力之和。
3. 能量守恒方程:热力学第一定律,表示单位时间内流入流出控制体的热量流量等于控制体内能的变化率加上作用在控制体上的外力所做的功。
四、一维定常流1. 一维流:流场中所有点的流速方向都在同一直线上。
2. 定常流:流场中各物理量不随时间变化而变化的流动。
3. 声速:气体中声速与温度和气体种类有关,是气体的特征速度。
4. 马赫数:流场中任意一点上流速与当地声速之比,是描述流动状态的重要参数。
五、膨胀波与压缩波1. 膨胀波:由于流体受压缩而产生的波,传播方向与流体运动方向相反,波前压力低于波后压力。
2. 压缩波:由于流体受扩张而产生的波,传播方向与流体运动方向相同,波前压力高于波后压力。