发动机万有特性
- 格式:ppt
- 大小:864.00 KB
- 文档页数:69
西华大学实验报告开课学院及实验室:交通与汽车工程学院内燃机实验室 实验时间: 2011 年 月 日1、实验目的2、实验设备、仪器及材料3、实验内容3.1 一般实验(非上机实验):3.1.1实验方案设计与选择(设计性、创新性实验需写该项内容) 3.1.2实验原理及实验步骤(实验工作原理或实验的主要操作过程) 3.1.3实验记录(核心代码及调试过程)3.2 上机实验:3.2.1上机实验的内容及要求 3.2.2算法设计思想与算法实现步骤3.2.3程序核心代码,程序调试过程中出现的问题及解决方法 3.2.4 程序运行的结果注解:理工科实验需记录实验过程中的数据、图表、计算、现象观察等,实验过程中出现的问题;其它如在计算机上进行的编程、仿真性或模拟性实验需记录程序核心代码以及程序在调式过程中出现的问题及解决方法;记录程序执行的结果。
4、实验总结4.1实验结果分析及问题讨论 4.2实验总结心得体会注解:实验总结的内容根据不同学科和类型实验要求不一样,一般理工科类的实验需要对实验结果进行分析,并且对实验过程中问题进行讨论;在计算机上进行的编程、仿真性或模拟性实验需要对上机实践结果进行分析,上机的心得体会及改进意见。
其它实验应总结实验过程写出心得体会及改进意见。
说明:各门实验课程实验报告的格式及内容要求,请按照实验指导书的要求手工书写。
一、实验目的和任务1、进一步掌握万有特性曲线意义2、掌握发动机万有特性曲线的测定和绘制方法3、了解万有特性曲线的用途负荷特性、速度特性只能表示某一油量控制机构位置固定或某一转速时,发动机参数间的变化规律,而对于工况变化范围大的发动机要分析各种工况下的性能,就需要在一张图上全面表示出发动机性能的特性曲线,这种能够表达发动机多参数的特性称为万有特性。
广泛应用的万有特性用n为横坐标,用平均有效压力Pme为纵坐标,在图上画出许多等油耗率曲线和等功率曲线。
根据需要,还可以在万有特性曲线上绘出等节气门开度线、等排放线、等过量空气系数线等。
一、外特性:发动机的速度特性曲线表示有效功率Pe(千瓦)、扭矩Me(牛顿米)、比燃料消耗量Ge(克/千瓦小时)随发动机转速n而连续变化的表现。
发动机的速度特性是在制动试验台架上测出的:1.保持发动机在一定节气门开度情况下,稳定转速,测取在这一工况下的功率、比耗油等;2.然后调整被测机载荷(扭距变化),使发动机转速改变,再测得另一转速下的功率、比耗油。
按照一定转速间隔依次进行上述步骤。
就能测出在不同转速下的数值,将这些数值点连点地组成连续曲线,就产生了功率曲线、扭矩曲线和比燃料消耗量曲线,它们与相应的转速区域对应。
二、万有特性试验方法:楼上说的不错,一般不会通过万有特性测试来确定外特性,而是先标定好外特性,然后再去进行万有特性测试。
不过这只是在正常开发新机时的顺序,如果是要测试一台不明状态的发动机,在油门设置好之后可以直接进行万有特性试验,万有特性数据里是包含外特性数据的。
手动进行万有特性测试的一般流程为:1.热机后,将发动机调整至额定工况,即额定转速、额定功率,假定为100kW@2000r/min,那么对应扭矩(也称负荷)应为477.5Nm,此时试验台架控制模式应为转速-油门模式,且油门全开,控制好水温、进气温度、进气湿度、进气负压、排气背压等边界条件后,记录各种所需参数;2.然后根据该工况的扭矩,计算出最大扭矩的10%,20%…90%的扭矩值,台架控制模式调整为转速-扭矩模式,保持额定转速不变,减小扭矩至90%*477.5Nm=429.75Nm,然后待发动机各参数基本稳定后记录所需参数,按此步骤记录该转速10个扭矩点,即可得到额定转速的负荷特性;3.然后试验台架再切换为转速-油门模式,油门全开,然后减小100r/min至1900r/min,重复上述相应步骤,从高到底记录十个扭矩点的所需参数,完成该转速下的负荷特性测试;4.再接着降转速进行负荷特性测试,直到所需的最低转速,如800r/min;最后根据这13*10=130个工况的数据绘制万有特性曲线即可。
绘制发动机万有特性图的程序和方法:①采用MATLAB编M文件,绘制发动机万有特性图,可以参照这个版本基础修改程序自己用。
②采用Origin软件来绘制发动机万有特性图,有详细步骤clcclear all%不同转速下的燃油消耗率与扭矩的曲线拟合clear allbe1=[222.8,220.4,232.4,228.5,227.8,232.6,248.5,245.9,272.4,329.7];Ttq1=[399.8,354.1,318.5,278.1,236.2,203.6,185.3,157.2,117.2,80.8];T1=80:320/9:400;%转换矩阵格式Be1=interp1(Ttq1,be1,T1,'spline');%n=1400r/min时燃油消耗率与扭矩的曲线拟合be2=[222.0,221.7,235.4,226.5,230.5,236.8,249.1,276.1,407.9,487.0];Ttq2=[409.1,365.7,328.3,284.1,243.7,203.2,164.3,123.9,83.5,39.7];T2=39:371/9:410;Be2=interp1(Ttq2,be2,T2,'spline');be3=[226.0,225.3,226.4,233.9,242.1,283.3,253.9,271.4,323.5,468.6];Ttq3=[408.3,368.3,328.3,289.0,244.4,208.8,167.7,132.1,89.5,46.1];T3=46:363/9:409;Be3=interp1(Ttq3,be3,T3,'spline');be4=[206.5,231.1,231.1,233.0,242.0,244.9,265.0,299.8,398.0,596.8];Ttq4=[425.6,380.3,332.7,290.9,244.4,205.1,160.2,114.5,68.8,30.7];T4=30:396/9:426;Be4=interp1(Ttq4,be4,T4,'spline');be5=[234.7,259.8,235.5,237.6,242.8,292.3,277.9,308.7,396.2,605.9];Ttq5=[420.7,379.6,334.6,291.6,244.4,202.8,157.5,116.0,74.1,37.8];T5=37:384/9:421;Be5=interp1(Ttq5,be5,T5,'spline');be6=[174.2,242.2,252.1,287.4,253.6,263.6,290.6,316.8,378.0,518.8];Ttq6=[404.6,360.5,322.7,283.0,243.3,205.5,162.1,124.7,86.8,52.4];T6=52:353/9:405;Be6=interp1(Ttq6,be6,T6,'spline');be7=[256.9,253.7,253.5,260.0,303.8,280.7,300.6,346.6,435.6,812.9];Ttq7=[378.0,344.7,310.3,264.3,226.1,186.8,154.2,115.3,76.3,34.1];T7=34:344/9:378;Be7=interp1(Ttq7,be7,T7,'spline');be8=[257.9,295.3,282.4,288.7,301.9,329.7,357.0,475.4,580.3,1080.1];Ttq8=[315.6,275.5,242.5,210.3,178.5,145.6,118.6,72.6,52.8,22.4];T8=22:294/9:316;Be8=interp1(Ttq8,be8,T8,'spline');B=[Be1';Be2';Be3';Be4';Be5';Be6';Be7';Be8'];N=[1400*ones(10,1);1600*ones(10,1);1800*ones(10,1);2000*ones(10,1);2200*ones(10,1);2400*ones (10,1);2600*ones(10,1);2800*ones(10,1)];Ttqn=[T1';T2';T3';T4';T5';T6';T7';T8'];G=[ones(80,1),N,Ttqn,N.^2,N.*Ttqn,Ttqn.^2];A=G\B;%A为6*1矩阵[n,Ttq]=meshgrid(1400:2800,100:600);%生成n-Ttq平面上的自变量“格点”矩阵be=A(1)+n.*A(2)++Ttq*A(3)+n.^2*A(4)+n.*Ttq*A(5)+Ttq.^2*A(6);Pe=Ttq.*n/9550;%外特性实验数据拟合Nw=[1403,1597,1797,1986,2102,2199,2303,2400,2507,2598,2700,2802]; Ttqw=[474,497,515,526,528.8,522.8,509.5,492.2,471.2,448.4,408.3,357.4]; n0=1400:2800;Ttqw_N=interp1(Nw,Ttqw,n0,'spline');h=repmat(Ttqw_N,501,1);ii=find(Ttq>h);%确定超出边界的“格点”下标be(ii)=NaN;%强制为非数Pe(ii)=NaN;%强制为非数%绘制等燃油消耗率曲线和等功率曲线三维拟合图subplot(1,2,1);mesh(n,Ttq,be);hold on;mesh(n,Ttq,Pe);axis([1000,3000,100,600,0,500]);hold on;xlabel('n(r/min)')ylabel('Ttq(N*m)')zlabel('Pe(KW) be(g/(KW*h))')title('等燃油消耗曲线和等功率曲线的三维拟合图')%绘制边界线(外特性曲线)subplot(1,2,2);plot(n0,Ttqw_N,'LineWidth',2);axis([1400,2800,100,550]);xlabel('n(r/min)');ylabel('Ttq(N*m)');title('万有特性曲线');hold on;%绘制等油耗率曲线的二维图B=contour(n,Ttq,be,11);%画等位线,并给出标识数据clabel(B);%把“等位值”沿等位线随机标识hold on;%绘制等功率曲线的二维图P=contour(n,Ttq,Pe,11);%画等位线,并给出标识数据clabel(P);%把“等位值”沿等位线随机标识legend('等油耗曲线','等功率曲线','外特性曲线')hold off用origin软件绘制发动机万有特性曲线方法一、万有特性数据输入在excel中整理好发动机万有特性数据,主要包括发动机转速、扭矩、燃油消耗率及功率数据。
“发动机万有特性试验”实验指导书(中南林机电院刘谦钢)一、实验目的及要求(参见“发动机原理实验教程”P8)1实验目的:1.1掌握发动机万有特性的试验方法。
1.1.1 掌握发动机负荷的加载方法和转速、燃油消耗率的测量方法。
1.1.2 掌握发动机功率、转速、油耗等测量仪器设备的选择、操作、使用方法。
1.1.3 熟悉发动机万有特性测试数据的分析和处理方法。
1.2 通过实验,学习绘制、分析发动机万有特性曲线。
1.2.1 依据原始数据和处理的数据,绘制发动机万有特性曲线。
1.2.2 通过分析万有特性曲线评价发动机在各种工况下的经济能,并为合理选用发动机和了解发动机在各种工况下的性能提供资料。
2 实验要求:2.1 每次参加试验的学生为10~20人。
2.2 实验前复习发动机原理教材中发动机万有特性的相关内容,认真阅读实验指导书及其附件。
2.3 实验时应作好记录纸笔等准备,按指导书操作仪器设备、试验及作好实验记录。
2.4 实验后,严格按实际实验数据正确处理实验数据,绘制发动机万有特性曲线,分析发动机在各种工况下的经济性,认真撰写实验报告。
二、实验预习及准备(参见“发动机原理实验教程”P8~P9。
)1 实验原理:(参见“发动机原理实验教程”P1~P4。
)1.1 万有特性定义:即发动机主要性能参数之间相互关系的综合特性。
在万有特性曲线上,可以表示3个或3个以上的性能参数之间的关系,故又称为多参数特性曲线。
最常见的形式是以转速n为横坐标,以平均有效压力Pc为纵坐标,在图上画出许多条等油耗率ge曲线、等功率Pe曲线。
1.2 万有特性的作用发动机负荷特性和功率特性分别从不同角度反映出发动机的主要性能随负荷或转速变化的规律,从而可以基本评价发动机的性能和判断是否能够满足发动机的要求。
而万有特性则是一种能同时反映出各种不同工况(功率(扭矩)/转速)下油耗率等性能的曲线。
1.3 测量原理1.3.1 功率测量原理(同发动机总功率试验)1.3.2 燃油消耗率测量原理(同发动机总功率试验)1.3.3 排温、油温测量原理(同发动机总功率试验)2 实验设备及仪器:详见附件2。
发动机万有特性曲线
万有特性曲线,也叫map图,左侧纵坐标是发动机输出扭矩,横坐标是发动机转速,右侧纵坐标是发动机做功汽缸平均有效压力。
最小的那个圈是指最小的燃油经济性,然后慢慢扩散,从图里可以看出在发动机转速2400-3200输出扭矩在85-100NM时燃油经济性最好。
将不同转速的负荷特性转换为以平均有效压力Pme或Ttq为横坐标、燃油消耗率b为纵坐标的负荷特性,并逆时针旋转90°。
在万有特性图的横坐标上,以一定比例标出转速数值。
纵坐标Pme的比例应与负荷特性Pme的比例相同。
万有特性的制取:
柴油机通常根据各种转速下的负荷特性曲线,用作图法可以得到万有特性;而汽油机通常用速度特性法作出万有特性图。
一、等燃油消耗率曲线
(1)将不同转速的负荷特性转换为以平均有效压力Pme或Ttq 为横坐标、燃油消耗率b为纵坐标的负荷特性,并逆时针旋转90°。
(2)在万有特性图的横坐标上,以一定比例标出转速数值。
纵坐标Pme的比例应与负荷特性Pme的比例相同。
二、等功率曲线
根据公式Pe= kPmen,可画出等功率曲线,是一组双曲线。
边界线
将外特性中的Ttq-n画在万有特性上,构成边界线。
书山有路勤为径;学海无涯苦作舟发动机万有特性曲线看油耗,省油是怎么来的本文概要:发动机万有特性看经济性、空挡带档行驶、变速器如何操作省油。
提到燃油经济性,大家最直观体验就是在开车的时候,烧了多少油,花了多少人民币,今天cartech8从专业的角度来分析一下燃油经济性。
目前世界上评论汽车燃油经济性一般用耗油量或油行程来表示。
汽油的燃油经济性指标与发动机的特性和汽车的自重、车速及各种运动阻力如空气阻力、滚动阻力和爬坡阻力等大小、传动系的效率及减速比等都有关系,因而在数值上往往与实际情况有差别。
要了解燃油经济性,我们先了解几个概念。
油耗率:通常以“克(燃油)/(千瓦小时)”来表示,以一千瓦的功率工作一小时的燃油消耗量多少克。
有效燃油耗率(BSFC)、指示燃油耗率(ISFC)两种,两者之间差了两个字,前一个有效燃油耗率意味着“现在实际是多少”,是实际。
指示燃油耗率意味着“原本可以有多少”,是潜力。
不同的时候得到关注的不一样,一般情况下,还是有效燃油耗率用的比较多。
发动机万有特性曲线:横坐标为发动机转速,纵坐标为平均有效压力(单位气缸工作容积发出的有效功称为平均有效压力,单位为bar)。
平均有效压力越大,发动机的作功能力越强。
这个平均有效压力,可能有点费解,我们就直接把它理解为发动机的负荷率。
发动机负荷率=(某点的扭矩/相同转速下最大扭矩)*100%,你也可以理解为特定转速下油门开度的百分比。
在万有特性曲线上,越高的点负荷率越高,到最高点(外特性)时就是100%负荷了。
发动机万有特性曲线的等油耗线主要反映的是:在不同的发动机转速和负荷情况下的油耗率,就是下图一圈一圈标有数字的曲线,这些曲线叫等油耗线。
数值越小表示油耗率越低,经济性越好。
在图上你会看到一个油耗最低的专注下一代成长,为了孩子。