发动机万有特性
- 格式:ppt
- 大小:910.50 KB
- 文档页数:69
西华大学实验报告开课学院及实验室:交通与汽车工程学院内燃机实验室 实验时间: 2011 年 月 日1、实验目的2、实验设备、仪器及材料3、实验内容3.1 一般实验(非上机实验):3.1.1实验方案设计与选择(设计性、创新性实验需写该项内容) 3.1.2实验原理及实验步骤(实验工作原理或实验的主要操作过程) 3.1.3实验记录(核心代码及调试过程)3.2 上机实验:3.2.1上机实验的内容及要求 3.2.2算法设计思想与算法实现步骤3.2.3程序核心代码,程序调试过程中出现的问题及解决方法 3.2.4 程序运行的结果注解:理工科实验需记录实验过程中的数据、图表、计算、现象观察等,实验过程中出现的问题;其它如在计算机上进行的编程、仿真性或模拟性实验需记录程序核心代码以及程序在调式过程中出现的问题及解决方法;记录程序执行的结果。
4、实验总结4.1实验结果分析及问题讨论 4.2实验总结心得体会注解:实验总结的内容根据不同学科和类型实验要求不一样,一般理工科类的实验需要对实验结果进行分析,并且对实验过程中问题进行讨论;在计算机上进行的编程、仿真性或模拟性实验需要对上机实践结果进行分析,上机的心得体会及改进意见。
其它实验应总结实验过程写出心得体会及改进意见。
说明:各门实验课程实验报告的格式及内容要求,请按照实验指导书的要求手工书写。
一、实验目的和任务1、进一步掌握万有特性曲线意义2、掌握发动机万有特性曲线的测定和绘制方法3、了解万有特性曲线的用途负荷特性、速度特性只能表示某一油量控制机构位置固定或某一转速时,发动机参数间的变化规律,而对于工况变化范围大的发动机要分析各种工况下的性能,就需要在一张图上全面表示出发动机性能的特性曲线,这种能够表达发动机多参数的特性称为万有特性。
广泛应用的万有特性用n为横坐标,用平均有效压力Pme为纵坐标,在图上画出许多等油耗率曲线和等功率曲线。
根据需要,还可以在万有特性曲线上绘出等节气门开度线、等排放线、等过量空气系数线等。
第9章发动机特性内容提要1 .发动机特性与特性曲线的含义、分类与意义2 .发动机调整特性的含义、分类与曲线3 .发动机负荷特性4 .发动机速度特性5 .发动机方有特性6 .发动机调速特性7 .发动机性能指标的校正9.1基本概念全面了解发动机在全部工况下的性能指标的变化,对合理使用、检查与修理发动机,都有很强的适用价值。
10.LI发动机特性与特性曲线1 .发动机特性发动机性能指标随调整状况及运转状况而变化的关系称为发动机特性。
发动机性能指标主要有功率、转矩、燃料消耗率、排气温度、排气烟度等;调整状况主要指柴油机的供油提前角、汽油机的点火提前角、发动机燃料等可调因素对发动机性能的影响;运转状况一般指发动机转速和负荷等。
2 .特性曲线为了直观显示发动机的特性,常以曲线形式表示,称为发动机特性曲i线。
图97为AUdi(奥迪)2.4L四缸5气式门汽油机的外特性曲线。
3 .发动机特性分类发动机特性分调整特性和性能特性两大类。
(1)调整特性指发动机的性能指标随调整状况而变化的关系。
如柴油机的供油提前角调整特性、汽油机的点火提前角调整特图9T发动机特性曲线性、汽油机的燃料调整特性等。
(Audi2.4L5气门V6汽油机外特性)(2)性能特性指内燃机的性能指标随运行工况而变化的关系。
如负荷特性、速度特性、调速特性、万有特性、螺旋桨特性等。
9.1.2 发动机特性的制取发动机特性需在特地的试验台(俗称发动机台架)上进行,图9-2显示了带水力测功器的试验台的基本组成。
它可以模拟发动机的实际工况,使其在要求的转速和负荷下工作,并可以同步测量发动机在各种工况下的功率、燃料消耗、废气排放、气缸压力等性能参数。
发动机特性试验,我国已有标准,需按有关标准,在规定的条件下进行。
9-水温传感器Io-油压传感器11-排温传感器12-气缸压力传感器13-油压传感器14-针阀升程仪15-电 荷放大器16-电荷放大器17-霍尔针阀传感器18-示 波器19-水力测功器20-转角信号发生器21-电荷放 大器22-A/D 转换板23-微机24-打印机25-显示器它是指在发动机转速肯定和油量掌握机构条件下,其功率、燃料消耗率等性能指标随供油提前角变化而变化的关系。
%不同转速下的燃油消耗率与扭矩的曲线拟合clear allbe仁[222.8,220.4,232.4,228.5,227.8,232.6,248.5,245.9,272.4,329.7];Ttq仁[399.8,354.1,318.5,278.1,236.2,203.6,185.3,157.2,117.2,80.8];T1=80:320/9:400;%转换矩阵格式Be仁in terp1(Ttq1,be1,T1,'spli ne');% n=1400r/mi n 时燃油消耗率与扭矩的曲线拟合be2=[222.0,221.7,235.4,226.5,230.5,236.8,249.1,276.1,407.9,487.0];Ttq2=[409.1,365.7,328.3,284.1,243.7,203.2,164.3,123.9,83.5,39.7];T2=39:371/9:410;Be2=i nterp1(Ttq2,be2,T2,'spl in e');be3=[226.0,225.3,226.4,233.9,242.1,283.3,253.9,271.4,323.5,468.6];Ttq3=[408.3,368.3,328.3,289.0,244.4,208.8,167.7,132.1,89.5,46.1];T3=46:363/9:409;Be3=i nterp1(Ttq3,be3,T3,'spl in e');be4=[206.5,231.1,231.1,233.0,242.0,244.9,265.0,299.8,398.0,596.8];Ttq4=[425.6,380.3,332.7,290.9,244.4,205.1,160.2,114.5,68.8,30.7];T4=30:396/9:426;Be4=i nterp1(Ttq4,be4,T4,'spl in e');be5=[234.7,259.8,235.5,237.6,242.8,292.3,277.9,308.7,396.2,605.9];Ttq5=[420.7,379.6,334.6,291.6,244.4,202.8,157.5,116.0,74.1,37.8];T5=37:384/9:421;Be5=i nterp1(Ttq5,be5,T5,'spl in e');be6=[174.2,242.2,252.1,287.4,253.6,263.6,290.6,316.8,378.0,518.8];Ttq6=[404.6,360.5,322.7,283.0,243.3,205.5,162.1,124.7,86.8,52.4];T6=52:353/9:405;Be6=i nterp1(Ttq6,be6,T6,'spl in e');be7=[256.9,253.7,253.5,260.0,303.8,280.7,300.6,346.6,435.6,812.9];Ttq7=[378.0,344.7,310.3,264.3,226.1,186.8,154.2,115.3,76334.1];T7=34:344/9:378;Be7=i nterp1(Ttq7,be7,T7,'spl in e');be8=[257.9,295.3,282.4,288.7,301.9,329.7,357.0,475.4,580.3,1080.1];Ttq8=[315.6,275.5,242.5,210.3,178.5,145.6,118.6,72.6,52.8,22.4];T8=22:294/9:316;Be8=i nterp1(Ttq8,be8,T8,'spl in e');B=[Be1';Be2';Be3';Be4';Be5';Be6';Be7';Be8'];N=[1400*o nes(10,1);1600*o nes(10,1);1800*o nes(10,1);2000*o nes(10,1);2200* on es(10,1);2400*o nes(10,1);2600*o nes(10,1);2800*o nes(10,1)];Ttq n=[T1';T2';T3';T4';T5';T6';T7';T8'];G=[o nes(80,1),N,Ttq n,N.A2,N.*Tt qn ,Ttq n. A2];A=G\B;%A 为6*1 矩阵[n,Ttq]=meshgrid(1400:2800,100:600);% 生成n-Ttq 平面上的自变量“格点”矩阵be=A(1)+n. *A (2)++Ttq*A(3)+n.A2*A(4)+n.*Ttq*A(5)+Ttq.A2*A(6);Pe=Ttq.* n/9550;%外特性实验数据拟合Nw=[1403,1597,1797,1986,2102,2199,2303,2400,2507,2598,2700,2802];Ttqw=[474,497,515,526,528.8,522.8,509.5,492.2,471.2,448.4,408.3,357.4]; n0=1400:2800; Ttqw_N=i nterp1(Nw,Ttqw ,n 0,'spli ne');h=repmat(Ttqw_N,501,1);ii=find(Ttq>h);%确定超出边界的“格点”下标be(ii)=NaN;%强制为非数Pe(ii)=NaN;%强制为非数%绘制等燃油消耗率曲线和等功率曲线三维拟合图subplot(1,2,1);mesh( n, Ttq,be);hold on;mesh( n,Ttq,Pe);axis([1000,3000,100,600,0,500]);hold on;xlabel(' n(r/mi n)')ylabel('Ttq(N*m)')zlabel('Pe(KW) be(g/(KW*h))')title('等燃油消耗曲线和等功率曲线的三维拟合图')%绘制边界线(外特性曲线)subplot(1,2,2);plot( nO,Ttqw_N,'Li neWidth',2);axis([1400,2800,100,550]);xlabel(' n(r/mi n)');ylabel('Ttq(N*m)');title('万有特性曲线');hold on;%绘制等油耗率曲线的二维图B=contour(n,Ttq,be,11);%画等位线,并给出标识数据clabel(B);%把“等位值”沿等位线随机标识hold on;%绘制等功率曲线的二维图P=contour(n,Ttq,Pe,11);%画等位线,并给出标识数据clabel(P);%把“等位值”沿等位线随机标识lege nd('等油耗曲线','等功率曲线','外特性曲线')hold off。
项目六发动机特性学习目标:重点掌握发动机的负荷特性、速度特性、万有特性及柴油机调速特性的定义。
理解各个特性曲线的变化趋势及原因;各个曲线的正式成立和位置对发动机的性能有何影响;柴油机安装调速器的原因。
了解柴油机和汽油机特性曲线的异同点及形成原因;万有特性的应用;两级式调速器和全程式调速器对柴油机性能的影响及各自的特点。
本项目是本课程的重点之一。
发动机经常在较大的负荷和转速范围内工作,仅了解某点或几点的性能指标和参数,往往是不够的,而需要了解在整个工作范围内的变化规律和发展趋势。
任务一发动机工况、性能指标与工作过程参数的关系一、工况发动机的运行情况,简称工况。
工况以功率Pe和转速n来表示。
根据发动机的用途,其工况可分为以下几类:(1)恒速工况 n=常数,如发电机组中的发动机,其转速基本保挂持不变,功率Pe随负荷而变化,称为线工况。
(2)螺旋桨工况作为船舶主机的柴油机按推进特性工作,柴油机功率与转速的立主成正比Pe=kn3,k为比例常数,见图中的曲线2。
(3)面工况汽车在运输作业时,发动机的功率Pe和转速n都在很大的范围内变化。
如图中阴影所示,曲线3中发动机在各种转速下所能发出的最大功率。
(4)点工况内燃机的转速n及功率P e均近似不变,如内燃机作为排灌动力。
二、发动机特性发动机性指标随着调整情况及运转工况变化而变化的关系称为发动特性,特性用曲线表示称为特性曲线。
其中随着调整情况而变化又称为调整特性。
发动机的性能特性包括负荷特性、速度特性、万有特性、空转特性等,速度特性又包括外特性和部分速度特性。
三、发动机性能指标与工作过程参数的关系发动机的有效指标P me、T tq、Pe、be、B与工作过程参数的关系如下列诸式:平均有效压力有效功率有效转矩燃油消耗率小时耗油量要了解上述指标随工况变化的情况,就必须分析ηv、ηi、ηm、α随工况的变化。
四、发动机功率标定根据国家标准CB1105.1─1987《内燃机台架性能试验方法》的规定,内燃机标定功率依不同用途分类如下:(1)15min功率适用于汽车、军用车辆、摩托车的发动机功率的标定。
绘制发动机万有特性图的程序和方法:①采用MATLAB编M文件,绘制发动机万有特性图,可以参照这个版本基础修改程序自己用。
②采用Origin软件来绘制发动机万有特性图,有详细步骤clcclear all%不同转速下的燃油消耗率与扭矩的曲线拟合clear allbe1=[222.8,220.4,232.4,228.5,227.8,232.6,248.5,245.9,272.4,329.7];Ttq1=[399.8,354.1,318.5,278.1,236.2,203.6,185.3,157.2,117.2,80.8];T1=80:320/9:400;%转换矩阵格式Be1=interp1(Ttq1,be1,T1,'spline');%n=1400r/min时燃油消耗率与扭矩的曲线拟合be2=[222.0,221.7,235.4,226.5,230.5,236.8,249.1,276.1,407.9,487.0];Ttq2=[409.1,365.7,328.3,284.1,243.7,203.2,164.3,123.9,83.5,39.7];T2=39:371/9:410;Be2=interp1(Ttq2,be2,T2,'spline');be3=[226.0,225.3,226.4,233.9,242.1,283.3,253.9,271.4,323.5,468.6];Ttq3=[408.3,368.3,328.3,289.0,244.4,208.8,167.7,132.1,89.5,46.1];T3=46:363/9:409;Be3=interp1(Ttq3,be3,T3,'spline');be4=[206.5,231.1,231.1,233.0,242.0,244.9,265.0,299.8,398.0,596.8];Ttq4=[425.6,380.3,332.7,290.9,244.4,205.1,160.2,114.5,68.8,30.7];T4=30:396/9:426;Be4=interp1(Ttq4,be4,T4,'spline');be5=[234.7,259.8,235.5,237.6,242.8,292.3,277.9,308.7,396.2,605.9];Ttq5=[420.7,379.6,334.6,291.6,244.4,202.8,157.5,116.0,74.1,37.8];T5=37:384/9:421;Be5=interp1(Ttq5,be5,T5,'spline');be6=[174.2,242.2,252.1,287.4,253.6,263.6,290.6,316.8,378.0,518.8];Ttq6=[404.6,360.5,322.7,283.0,243.3,205.5,162.1,124.7,86.8,52.4];T6=52:353/9:405;Be6=interp1(Ttq6,be6,T6,'spline');be7=[256.9,253.7,253.5,260.0,303.8,280.7,300.6,346.6,435.6,812.9];Ttq7=[378.0,344.7,310.3,264.3,226.1,186.8,154.2,115.3,76.3,34.1];T7=34:344/9:378;Be7=interp1(Ttq7,be7,T7,'spline');be8=[257.9,295.3,282.4,288.7,301.9,329.7,357.0,475.4,580.3,1080.1];Ttq8=[315.6,275.5,242.5,210.3,178.5,145.6,118.6,72.6,52.8,22.4];T8=22:294/9:316;Be8=interp1(Ttq8,be8,T8,'spline');B=[Be1';Be2';Be3';Be4';Be5';Be6';Be7';Be8'];N=[1400*ones(10,1);1600*ones(10,1);1800*ones(10,1);2000*ones(10,1);2200*ones(10,1);2400*ones (10,1);2600*ones(10,1);2800*ones(10,1)];Ttqn=[T1';T2';T3';T4';T5';T6';T7';T8'];G=[ones(80,1),N,Ttqn,N.^2,N.*Ttqn,Ttqn.^2];A=G\B;%A为6*1矩阵[n,Ttq]=meshgrid(1400:2800,100:600);%生成n-Ttq平面上的自变量“格点”矩阵be=A(1)+n.*A(2)++Ttq*A(3)+n.^2*A(4)+n.*Ttq*A(5)+Ttq.^2*A(6);Pe=Ttq.*n/9550;%外特性实验数据拟合Nw=[1403,1597,1797,1986,2102,2199,2303,2400,2507,2598,2700,2802]; Ttqw=[474,497,515,526,528.8,522.8,509.5,492.2,471.2,448.4,408.3,357.4]; n0=1400:2800;Ttqw_N=interp1(Nw,Ttqw,n0,'spline');h=repmat(Ttqw_N,501,1);ii=find(Ttq>h);%确定超出边界的“格点”下标be(ii)=NaN;%强制为非数Pe(ii)=NaN;%强制为非数%绘制等燃油消耗率曲线和等功率曲线三维拟合图subplot(1,2,1);mesh(n,Ttq,be);hold on;mesh(n,Ttq,Pe);axis([1000,3000,100,600,0,500]);hold on;xlabel('n(r/min)')ylabel('Ttq(N*m)')zlabel('Pe(KW) be(g/(KW*h))')title('等燃油消耗曲线和等功率曲线的三维拟合图')%绘制边界线(外特性曲线)subplot(1,2,2);plot(n0,Ttqw_N,'LineWidth',2);axis([1400,2800,100,550]);xlabel('n(r/min)');ylabel('Ttq(N*m)');title('万有特性曲线');hold on;%绘制等油耗率曲线的二维图B=contour(n,Ttq,be,11);%画等位线,并给出标识数据clabel(B);%把“等位值”沿等位线随机标识hold on;%绘制等功率曲线的二维图P=contour(n,Ttq,Pe,11);%画等位线,并给出标识数据clabel(P);%把“等位值”沿等位线随机标识legend('等油耗曲线','等功率曲线','外特性曲线')hold off用origin软件绘制发动机万有特性曲线方法一、万有特性数据输入在excel中整理好发动机万有特性数据,主要包括发动机转速、扭矩、燃油消耗率及功率数据。
“发动机万有特性试验”实验指导书(中南林机电院刘谦钢)一、实验目的及要求(参见“发动机原理实验教程”P8)1实验目的:1.1掌握发动机万有特性的试验方法。
1.1.1 掌握发动机负荷的加载方法和转速、燃油消耗率的测量方法。
1.1.2 掌握发动机功率、转速、油耗等测量仪器设备的选择、操作、使用方法。
1.1.3 熟悉发动机万有特性测试数据的分析和处理方法。
1.2 通过实验,学习绘制、分析发动机万有特性曲线。
1.2.1 依据原始数据和处理的数据,绘制发动机万有特性曲线。
1.2.2 通过分析万有特性曲线评价发动机在各种工况下的经济能,并为合理选用发动机和了解发动机在各种工况下的性能提供资料。
2 实验要求:2.1 每次参加试验的学生为10~20人。
2.2 实验前复习发动机原理教材中发动机万有特性的相关内容,认真阅读实验指导书及其附件。
2.3 实验时应作好记录纸笔等准备,按指导书操作仪器设备、试验及作好实验记录。
2.4 实验后,严格按实际实验数据正确处理实验数据,绘制发动机万有特性曲线,分析发动机在各种工况下的经济性,认真撰写实验报告。
二、实验预习及准备(参见“发动机原理实验教程”P8~P9。
)1 实验原理:(参见“发动机原理实验教程”P1~P4。
)1.1 万有特性定义:即发动机主要性能参数之间相互关系的综合特性。
在万有特性曲线上,可以表示3个或3个以上的性能参数之间的关系,故又称为多参数特性曲线。
最常见的形式是以转速n为横坐标,以平均有效压力Pc为纵坐标,在图上画出许多条等油耗率ge曲线、等功率Pe曲线。
1.2 万有特性的作用发动机负荷特性和功率特性分别从不同角度反映出发动机的主要性能随负荷或转速变化的规律,从而可以基本评价发动机的性能和判断是否能够满足发动机的要求。
而万有特性则是一种能同时反映出各种不同工况(功率(扭矩)/转速)下油耗率等性能的曲线。
1.3 测量原理1.3.1 功率测量原理(同发动机总功率试验)1.3.2 燃油消耗率测量原理(同发动机总功率试验)1.3.3 排温、油温测量原理(同发动机总功率试验)2 实验设备及仪器:详见附件2。
用origin软件绘制发动机万有特性曲线方法一、万有特性数据输入在excel中整理好发动机万有特性数据,主要包括发动机转速、扭矩、燃油消耗率及功率数据。
打开origin,将excel中整理好的数据直接复制粘贴到Book1中即可,可以在左下方的信息栏对Book1进行重命名。
origin中表格操纵与excel中类似。
可以编辑数据的名称、单位、备注等信息,也可空着以后再绘制好的图表上修改。
同时选中燃油消耗率和功率数据两列,点右键选择Set as Z,也可以在Column菜单下点选Set as Z,如下图所示。
二、绘制万有特性曲线选中表格中所有数据列表,在绘图命令菜单Plot下绘制等高线命令Contour的颜色填充Color Fill选项,将出现图表窗口,如下图所示。
三、万有特性曲线图调整上一步完成的万有特性曲线只是一个雏形,与常见的还很不一样,需要进行调整细化。
在已绘制好的万有特性曲线图中,由于点选的是颜色填充的绘制方法,数据源有两组Z轴分量,相当于在一张图上绘制了两层,而等燃油消耗率曲线在等功率曲线的下方,被覆盖住无法看到。
因此,需要取消等功率曲线图层的颜色填充效果。
如图所示,在图片窗口左上角的1上右击,选择图层属性Layer Properties命令,在弹出的对话框中打开图层Layer1的下一级,选中转速、扭矩、功率曲线,并去掉Color Fill Control下Enabled之前的勾选,即可取消等功率曲线图层的颜色填充效果。
等燃油消耗率曲线还需要进行进一步的调整,才能变成最常见的样子。
需要调整曲线的层次间隔,让等值曲线分布的疏密合理,还要加上等值线的数据标注,以便于观看查阅。
同样是在图层属性对话框里,选中转速、扭矩、燃油消耗率曲线,在列标题或单元格编辑表格中,单击列标题或单元格可以完成曲线的层次、填充颜色、层次线型及添加数据标注的修改。
如图所示,单击Level栏表头,弹出Set Level设置层次对话框,先点击find min/max命令,找到燃油消耗率的最小值与最大值,并自动设置为等值曲线变化范围,选择线性变化,并选中增量increment选项,设置增量值为1,既让等燃油消耗率曲线从184.5g/kw.h开始,每隔1g/kw.h就绘制一条,直至367g/kw.h结束,一共183条。
发动机万有特性曲线
万有特性曲线,也叫map图,左侧纵坐标是发动机输出扭矩,横坐标是发动机转速,右侧纵坐标是发动机做功汽缸平均有效压力。
最小的那个圈是指最小的燃油经济性,然后慢慢扩散,从图里可以看出在发动机转速2400-3200输出扭矩在85-100NM时燃油经济性最好。
将不同转速的负荷特性转换为以平均有效压力Pme或Ttq为横坐标、燃油消耗率b为纵坐标的负荷特性,并逆时针旋转90°。
在万有特性图的横坐标上,以一定比例标出转速数值。
纵坐标Pme的比例应与负荷特性Pme的比例相同。
万有特性的制取:
柴油机通常根据各种转速下的负荷特性曲线,用作图法可以得到万有特性;而汽油机通常用速度特性法作出万有特性图。
一、等燃油消耗率曲线
(1)将不同转速的负荷特性转换为以平均有效压力Pme或Ttq 为横坐标、燃油消耗率b为纵坐标的负荷特性,并逆时针旋转90°。
(2)在万有特性图的横坐标上,以一定比例标出转速数值。
纵坐标Pme的比例应与负荷特性Pme的比例相同。
二、等功率曲线
根据公式Pe= kPmen,可画出等功率曲线,是一组双曲线。
边界线
将外特性中的Ttq-n画在万有特性上,构成边界线。
书山有路勤为径;学海无涯苦作舟发动机万有特性曲线看油耗,省油是怎么来的本文概要:发动机万有特性看经济性、空挡带档行驶、变速器如何操作省油。
提到燃油经济性,大家最直观体验就是在开车的时候,烧了多少油,花了多少人民币,今天cartech8从专业的角度来分析一下燃油经济性。
目前世界上评论汽车燃油经济性一般用耗油量或油行程来表示。
汽油的燃油经济性指标与发动机的特性和汽车的自重、车速及各种运动阻力如空气阻力、滚动阻力和爬坡阻力等大小、传动系的效率及减速比等都有关系,因而在数值上往往与实际情况有差别。
要了解燃油经济性,我们先了解几个概念。
油耗率:通常以“克(燃油)/(千瓦小时)”来表示,以一千瓦的功率工作一小时的燃油消耗量多少克。
有效燃油耗率(BSFC)、指示燃油耗率(ISFC)两种,两者之间差了两个字,前一个有效燃油耗率意味着“现在实际是多少”,是实际。
指示燃油耗率意味着“原本可以有多少”,是潜力。
不同的时候得到关注的不一样,一般情况下,还是有效燃油耗率用的比较多。
发动机万有特性曲线:横坐标为发动机转速,纵坐标为平均有效压力(单位气缸工作容积发出的有效功称为平均有效压力,单位为bar)。
平均有效压力越大,发动机的作功能力越强。
这个平均有效压力,可能有点费解,我们就直接把它理解为发动机的负荷率。
发动机负荷率=(某点的扭矩/相同转速下最大扭矩)*100%,你也可以理解为特定转速下油门开度的百分比。
在万有特性曲线上,越高的点负荷率越高,到最高点(外特性)时就是100%负荷了。
发动机万有特性曲线的等油耗线主要反映的是:在不同的发动机转速和负荷情况下的油耗率,就是下图一圈一圈标有数字的曲线,这些曲线叫等油耗线。
数值越小表示油耗率越低,经济性越好。
在图上你会看到一个油耗最低的专注下一代成长,为了孩子。