定积分的应用: 平面图形面积
- 格式:ppt
- 大小:1.08 MB
- 文档页数:20
定积分求平面图形面积在实际生活中的应用定积分是数学中重要的概念,定积分可以用来计算函数在一定范围(定义域)内的积分值。
它是一种可以用来计算面积或计算曲线积分问题的一种技术。
在实际生活中,定积分用于求解平面图形面积的问题,广泛应用于水利、建筑、航空航天等各个领域。
首先,定积分可以用于求解椭圆面积的问题。
椭圆面积可以用定积分来计算,其计算公式为:S=[π/2*(a2-b2)],其中a是椭圆的长轴,b是椭圆的短轴。
这个公式能够准确地计算出椭圆的面积,在水利等领域中,椭圆管道的运用非常广泛,可以用定积分计算出椭圆管道的面积,从而帮助水利设计者准确地计算水利结构的尺寸。
其次,定积分可以用于求解三角形面积的问题。
三角形的面积也可以通过定积分进行计算,其计算公式为:S=*a*b*sin(C),其中a 和b是三角形的底边,C是三角形的内角。
这个公式可以准确的计算出三角形的面积,在建筑设计等领域中,三角形结构的运用非常广泛,可以用定积分计算出三角形结构的面积,从而帮助设计者准确地计算建筑结构的尺寸。
此外,定积分还可以用于求解复杂图形的面积。
复杂图形的面积可以用定积分来计算,例如可以用定积分计算圆柱体的表面积、圆柱管的表面积以及球的表面积等。
在航空航天等领域中,复杂图形的运用也非常广泛,例如飞机机身的设计、航天器的设计等,可以用定积分计算出复杂图形的面积,从而帮助设计者准确地计算机构的尺寸。
综上所述,定积分在实际生活中极具价值,它可以用于求解椭圆
面积、三角形面积以及复杂图形的面积等问题,在水利、建筑、航空航天等各个领域都有很广泛的应用,其准确的计算方法可以为实际生活中的设计者提供帮助。
定积分求平面图形面积在生活上的应用
定积分是一种重要的数学方法,可以求出曲线或平面图形的面积,它可以用来预测及解决许多实际问题。
其实,定积分在我们的生活中也起着广泛的作用,即通过定积分可以求得许多日常中的实际图形图形的面积,再进而用于实际应用。
首先,定积分可以用来求解拟空间图形的体积,如正方体、圆柱体等。
在家装工程、楼宇建筑等工程中,我们往往希望通过计算室内分段图形物体的体积,来确定施工量、进行报价。
因此,定积分可以方便地计算出各自图形的面积,求得一个准确的体积,有利于家装施工工作。
其次,定积分还可以延伸到土木建筑学方面,主要应用在把土堤劈开形成群堤劈口时,需要用定积分来计算滩坝的面积。
在给江河加固筑坝中,也会用定积分帮助计算出河道及整体筑堤的面积,以便进行设计分析标志,精确洪水启动洪水的等级,把握工程参数,使工程质量更有保障。
而且,还可以控制工程造价,提高工程施工质量。
最后,定积分也广泛用于测量地理空间,如绘制剖分图形等。
目前,在社会经济发展过程中,各种自然资源、土地开发成为重要话题,资源管理成为一个完善的管理体系。
地块剖分时,根据图形形状和边缘位置,即以定积分来求出这些图形的面积,从而能很好地管理相应的资源和土地使用。
通过以上叙述,可以很清晰地看出定积分在我们的生活中起着非常重要的作用。
它有助于计算出各种图形的面积,从而可以在家庭清淤、室内装修工程、水利筑坝工程及地块剖分等领域派上用场,它不仅可以提高工程品质,也能控制造价,极大的方便了实际工程的日常管理和分析等。
定积分求平面图形面积在实际生活中的应用定积分是一种在数学中用来计算平面图形面积的方法,在实际生活中具有重要意义,这里简要介绍它在实际生活中的应用情况。
首先,定积分可以用来估算台形的面积。
台形的底部被分割为一系列的小矩形,每个小矩形的面积是定值,相互之间相差一定的距离,而高度则是由上下两边的函数描述的,由此可以将台形的面积分解为一系列的矩形的面积的和,然后用定积分的方法可以计算出台形的面积。
其次,定积分可以用来计算曲线与直线之间的面积,以及曲线与坐标轴之间的面积。
例如,当一定区域内某曲线与X轴之间的面积可用定积分进行计算,具体来说,是将这定区域内某曲线与X轴之间分解为一系列的小矩形,每个小矩形的面积都是定值,然后用定积分的方法计算出这一系列矩形的面积的和,从而得出曲线与X轴之间的面积。
此外,定积分还可以用来计算三维图形的体积。
例如,当某三维图形在某个区域内时,可以用定积分该区域内某曲面与XOY面之间的面积进行计算,然后再分别用某直线与XOZ面之间的面积和某曲线与YOZ面之间的面积进行计算,最后把这三个面积的和相乘就可以得出三维图形的体积。
最后,定积分还可以用来计算容积问题。
例如,当求某容器的容积时,可以用某曲线与XOY面的面积来计算出容器的内曲面的面积,然后用某直线与XOZ面的面积来计算容器的内曲面到XOZ面的距离,
最后将这两个面积的乘积相加即可得出容器的容积。
以上就是定积分求取平面图形面积在实际生活中的应用情况。
定积分是一种重要的数学工具,广泛应用于实际生活中,对于理解和掌握定积分相关知识,可以帮助我们更好地、更有效地解决实际中的问题。
定积分应用1、直角坐标系下平面图形面积的计算①连续】11|线y = f(x)(f(x)>O)Rx = a J x = h及兀轴所围成的平而图形而积为^f(x)dx②设平而图形山上下两条曲线)=广上⑴与)=f心)及左右两条肓线与x=b所|韦|成,则血•积元素为[f f r(x)]dx,于是平而图形的而积为:S = W-.A F(x)]dx .③连续曲线兀=久刃(0(y)» 0)及y = c, y = d及V轴所围成的平iM图形面积为A= [ 0(y)〃y④由方程X = 01 (y)与X = 02(歹)以及y = y = d所围成的平面图形面积为A=f”(y)—0(y)〕dy 翎>©)例1计算两条抛物线y = 0与兀=y2所围成的而积.解求解而积问题,一般需要先画一草图(图3),我们要求的是阴影部分的而积.需y = x2x = y2要先找出交点处标以便确定积分限,为此解方程组:得交点(0,0)和(1,1).选取兀为积分变量,则积分区间为[0,1],根据公式(1),所求的面积为3 lo 3—•般地,求解而积问题的步骤为:(1)作草图,求曲线的交点,确定积分变最和积分限.(2)写出积分公式.(3)计算定积分.例2计算抛物线r=2v与直线)=x-4所围成的图形的面积.解(1)画图.(2)确定在y轴上的投影区间:L-2,4J.(3)确定左右曲线:0左(刃=如2, 0右(y) = y+4.⑷计算积分s =匸。
+4-号y2)dy 二母y2+4)一”,3]役=]8.例3求在区间[丄,2 ]上连续|11|线y=ln x , x轴及二直线x =-,与x二2所围成平面区2 2域(如图2)的面积o解:已知在[$2]上,in淀°;在区间[1 , 2 ]上,In x $0,则此区域的面积为:Ji |ln x^/x =21二-(x \n x - x) i + T4ln2-1•29例4 求抛物线y =x与x-2y-3=0所围成的平面图形(图3)的面积A。
定积分求平面图形面积在实际生活中的应用把复杂的积分问题求解出来就可以计算出平面图形的面积,在实际生活中也可以看到它的很多应用。
其中有一类是涉及设计的,比如建筑设计中的空间分配、土地开发等;另一类是分析的,比如海洋表面的波浪分析等。
1、建筑设计建筑设计中,定积分可以用来求解空间分配问题。
比如,在房屋设计中,它可以用来确定楼层、楼梯、墙壁、门窗等占用了多少面积。
此外,它还可以用来求解不规则房间布局时,室外墙体和室内墙体的面积分配。
同样,在土地开发中也可以看到定积分的应用,如计算出道路两端的封闭区域面积,以及计算建筑的总面积。
定积分也可以帮助规划者精确计算出规划区域的面积,从而更好地管理规划区域的开发。
2、海洋表面的波浪分析定积分也可以用来求解海洋表面的波浪。
水波的主要性质是在洋流中运动,它的变化符合泊松方程,这是一个带积分的方程,可以用定积分来求解。
这种波浪分析可以更好地解释海洋表面的复杂性,进而指导航管理者和建筑者采取更安全有效的导航措施。
此外,在海岸线上,可以使用定积分来计算海岸线内各子区域的面积,以及海岸线及其各个部分的面积,为海洋管理者提供有形的参考数据。
3、农业此外,定积分在农业中也有非常广泛的应用。
比如,在种植作物时,可以使用定积分来计算出作物地的面积,以及需要灌溉地区的面积;在研究农田开发时,可以利用定积分来计算出耕作面积。
通过计算出具体的面积数据,可以更好地规划农田的分布和种植规模,从而节约农业资源,提高农作物的产量。
总结定积分是一种有用的数学技术,可以把复杂的数学问题转化成计算机可计算的简单形式,在计算平面图形面积上表现出很强的优势。
它在实际生活中有很多应用,比如建筑设计、土地开发、海洋洋面波浪分析,以及农业规划等。
定积分求平面图形面积====================定积分是一种数学方法,用于计算曲线下的面积或曲面上的体积。
它可以用来求解平面图形的面积。
本文将讨论定积分求平面图形面积的原理,并通过实例说明它的应用。
一、定积分求平面图形面积的原理----------------------------------------------------------定积分求平面图形面积的原理是:将平面图形分解为若干矩形,利用每个矩形的面积来求得平面图形的面积。
具体来说,首先需要将平面图形的边界抽象为一个函数,然后将这个函数从横坐标的最小值到最大值分割成若干等份,每份称为一个矩形,每个矩形的面积可以用函数的值来计算,最后将所有矩形的面积加起来就可以得到平面图形的面积。
二、实例说明----------------------------------------------------------下面我们用一个实例来说明定积分求平面图形面积的方法。
假设我们要求解的平面图形是一个三角形,其边界可以用函数y=x-1来描述,且横坐标的最小值为0,最大值为2。
首先,我们将横坐标从0到2分割成4份,即0,0.5,1,1.5,2,每份称为一个矩形,然后计算每个矩形的面积。
由于横坐标的最小值为0,所以第一个矩形的面积为0;第二个矩形的面积为0.5*(1-1)=0;第三个矩形的面积为1*(2-1)=1;第四个矩形的面积为1.5*(2-1)=1.5;最后,将4个矩形的面积加起来,即可得到三角形的面积为2.5。
结论----------------------------------------------------------以上就是定积分求平面图形面积的原理及其应用,它可以用来计算各种平面图形的面积,是一种有效的数学方法。
第十章 定积分的应用1 平面图形的面积一、直角坐标系下平面图形连续曲线()(0)y f x =≥直线,x a x b ==和x 轴所围成的曲边梯形面积为S=()bbaaf x dx ydx =⎰⎰;若()y f x =在[,]a b 上不是非负的, 则上述围成图形的面积为S=|()|||bbaaf x dx y dx =⎰⎰.一般地,1) 由上下两根连续曲线2()y f x =和1()y f x =以及直线,x a x b ==所围成平面图形面积为 21S=()()ba f x f x dx -⎰.2) 由两条曲线1()y f x =,2()y f x =围成的平面图形面积为21S=()()ba f x f x dx -⎰,其中,x a x b ==与曲线1()y f x =与2()y f x =所有交点中横坐标最小值和最大值.例 1 求曲线1, 0, 2xy x y x =-==围成的平面图形面积.例 2 求由抛物线2y x =直线230x y --=所围成的平面图形面积.设[,]a b 上的曲边梯形的曲边由方程()x t χ=,()y y t =,t αβ≤≤,()a χα=,()b χβ=. 又设()0t χ'>(())t χ↑,于是存在反函数1t=()x χ-, 则曲边方程为[]1()(()),,y y t y x x a b χ-==∈.从而,曲边梯形面积为1(())ba S y x dx χ-=⎰()'()y t t dt βαχ=⎰y dx βα=⎰例 3 求由摆线(sin ),(1cos )(0)x a t t y a t a =-=->的一拱与x 轴所围成的平面图形面积.例 4 求椭圆22221x y a b+=所围成图形面积.二、极坐标下平面图形的面积设曲线C 由极坐标方程() [,]r r θθαβ=∈给出,其中()r θ在[,]αβ上连续,2βαπ-≤下求由曲线C 与两射线,θαθβ==所围成的平面图形(称之为扇形)面积.221121()21()21()2i i i n ni i i i i A r A A r A r d βαξθξθθθ==∆≈∆=∆≈⋅∆⇒=∑∑⎰例 5 求由双纽线22cos 2r a θ=所围成平面图形的面积.(35cos 20,[,][,]4444ππππθθ≥∈-或)[ 简单介绍微元法:x 的范围a≤x≤b微元 dx, ds=f(x)dx (△s ≈f(x)△x )⇒()ba S f x dx =⎰ 微元 d θ 21()2dA r d θθ=21()2A r d βαθθ=⎰ ]“化曲为直”,“以直代曲”.三、微元法若令()()xa x f t dt Φ=⎰,则当f 为连续函数时,()()x f x 'Φ=或()()d x f x dx Φ=,且()0, ()()baa b f x dx Φ=Φ=⎰.(现在把问题倒过来) 如求的量Φ是分布在某区间[,]a x 上的, 或说其是x 的函数()x Φ=Φ,[,]x a b ∈,且当x=b 时,()b Φ就是最终所求值.任取小区间[,][,]x x x a b +∆⊂,若能把Φ的微小增量∆Φ近似表示为x ∆的线性形式 ()f x x ∆Φ≈∆其中f 为某一连续函数,且0x ∆→时,()()f x x o x ∆Φ-∆=∆, 即 ()d f x dx Φ=从而只要把()ba f x dx ⎰积分出来就是所求结果.上述方法称为微元法. 使用微元法时要求:i)所求量Φ关于分布区间是代数可加的 ()f x x ∆Φ≈∆ii)微元法的关键是正确给出∆Φ的近似表达式,在一般情形下,要严格检验()f x x ∆Φ-∆是否为x ∆的高阶无穷小.2211() ()22A y x dA y dxA r dA r d θθθθ∆≈∆=∆≈∆=2. 由平行截面面积求体积一、已知平行截面面积() () ()ba a xb v A x xdv A x dx v A x dx≤≤∆≈∆=⇒=⎰祖暅原理:夫幂势相同,则积不容异.[亦可通过分割,求和取极限方法得到]例 1 由两个圆柱面222x y a +=和222x z a +=所围成立体体积.例 2 求由椭球面2222221x y z a b c++=所围成立体(椭球)的体积.二、旋转体设f 为[,]a b 上的连续函数(f(x)≥0),则曲线y=f(x)绕x 轴旋转一周得到的旋转体V ,易证V 的体积为2()ba V f x dx π=⎰例 3 求圆锥体的体积公式.例 4 求圆222(),(0)x y R r r R +-≤<<绕x 轴旋转一周所得到的环状立体体积.1) 22[[rrrrV R dx R dx ππ--=--⎰⎰222) ()2rrV A x dx r R π-==⎰例 5 sin ,0y x x π=≤≤,绕x 轴(y 轴)旋转所得立体体积.220sin 2V xdx πππ==⎰1()V A y dy =⎰22()[(arcsin )(arcsin )]A y y y ππ=--3 平面曲线的弧长1、弧长的定义设平面曲线c AB =,在A,B 上取点011,,,n n A P P P P B -==构成AB 的一个分割,记作T ,11i i i i P P P P --≈,11ni i i s PP -=≈∑,11||||max i i i nT P P -≤≤=,11()ni i i s T P P -==∑.定义 1 对于曲线c 上无论怎样的分割T ,如果存在有限数s ,使0lim ()T s T s →=,那么称曲线c 是可求长的,并把极限s 定义为曲线c 的弧长.2、弧长的计算设曲线方程(),y f x a x b =≤≤, 由微元法, ds ==as ⇒=⎰进一步, 若曲线c 的方程为[](),(),,x x t y y t t αβ==∈,则ds ==s βα=⎰(提出光滑曲线概念) ,x y ''连续定义 2 设平面曲线c 由参数方程 [](),(),,x x t y y t t αβ==∈ (*)给出.若()x t ,()y t 在[],αβ上有连续导数,22()()0x t y t ''+≠,则称c 为一条光滑曲线.定理 设曲线c 由参数方程(*)给出,若c 为一条光滑曲线,则c 是可求长的,且 弧长为s βα=⎰.例 1 求摆线一拱(sin ),(1cos ),(0)x a t t y a t a =-=->一拱的弧长.(202sin 2ts a dt π=⎰)例 2 求悬链线2x xe e y -+=,从x a =-到x a =一段的弧长.若曲线c 由极坐标方程[](),,r r θθαβ=∈给出,则[]()cos ,()sin ,,x r y r θθθθθαβ==∈从而 ()()cos ()sin ,x r r θθθθθ''=- ()()sin ()cos y r r θθθθθ''=+. 故 2222()()()()x y r r θθθθ'''+=+则当()r θ'在[],αβ上连续,且()r θ与()r θ'不同时为0时,此极坐标曲线为一光滑曲线. 此时弧长公式为s βαθ=⎰.例 3 求心形线(1cos ),(0)r a a θ=+⋅>的弧长.弧长01lim ni T i s s →==∆∑, ()()()222i i i s x y ∆=∆+∆ ,1i i i x x x -∆=-,1()()()i i i i i y f x f x f x ξ-'∆=-=∆, 11n ni i i i s x ==⇒∆=∑as ⇒=⎰(f '连续)下面反过来求弧长微分dS . 考察从A 到AB 上一点(,)M x y 的弧长()s x ,则()as x =⎰()ds S x dx'⇒==ds ⇒=几何意义 ds 为s ∆的线性主要部分直线段MP 之长就和曲线MM '之长很接近(相差一个高阶无穷小). 若[](),,r r θθαβ=∈, 则s βαθ=⎰.4 旋转曲面的面积设平面光滑曲线C 的方程为()y f x =,[],x a b ∈,(()0)f x ≥此段曲线绕x 轴旋转一周得到一旋转曲面.下面求其面积.[]()()S f x f x x π∆≈++∆[]2()f x y x π=+∆由于0y ∆→→(0)x ∆→(2()2(()f x y x f x x o x ππ⇒+∆-=∆2(dS f x π⇒=2(ba S f x π⇒=⎰若曲线C 由参数方程(),()x x t y y t ==,[],t αβ∈,且()0y t ≥,则曲线C 绕x 轴旋转所得的旋转曲面的面积为2(S y t βαπ=⎰.例 1 求圆222x y R +=在[][]12,,x x R R ⊂-上的弧段绕x 轴旋转所得球带的面积.例2求内摆线33==绕x轴旋转所得旋转曲面的面积.x a t y a tcos,sin5 定积分在物理中的某些应用一、液体静压力例1如图所示为一管道的圆形闸门,半径为3米. 问水面齐及直径时, 闸门所受到的水的静压力有多大?二、引力例2一根长为l的均匀细杆,质量为M, 在其中垂线上相距细杆为a处有一质量为m的质点,试求细杆对质点的万有引力.三、功与平均功率例3一圆锥形水池,池口直径30米,深10米,池中盛满水,试求将全部池水抽出池外所作的功.例 4 在地面上将质量为m 的物体沿着轨线((),(),())t x t y t z t →举起,()a t b ≤≤,(t 为时间,,,x y z 为空间笛卡尔坐标) 要求在时间段[],a b 内克服重力做的功.这样所做的功只依赖于(),()r a r b ,即只依赖于物体在初始时刻和结束时刻离地球中心的距离.令()GMU r r =,从而将质量为m 的物体从半径为0r 的球面上任一点移动到半径为1r 的球面上任一点,克服重力所做的功01,01(()())r r W m U r U r =-,称()U r 为牛顿位势. 设R 为地球半径,则2()gR U r r =,2()GMg R=.现将质量为m 的物体从地球表面飞到距地心无限远的地方, 所需的功为,lim R r r W →+∞,即22,lim ()R r gR gR W W m mgR R r∞→+∞==-=. 由能量守恒定律,要求初速度0v 至少为2012mv mgR =.0v =. ——第二宇宙速度264()P。
定积分求平面图形面积在实际生活中的应用定积分是一种重要的数学工具,可以被用来求解很多问题。
在实际生活中,定积分也能够帮助我们解决诸多问题,特别是一些关于平面图形面积的问题。
本文将介绍定积分求平面图形面积在实际生活中的应用。
首先,定积分可以用来计算平面图形的面积。
以二次函数为例,给定一个二次函数,积分可以用来计算函数图像在某一范围内的面积。
例如,若二次函数的方程为 y = ax2 + bx + c,令a = 1,b = 2,c = 5,在[0,2]范围内,可以用积分求出该函数图像的面积为 9.8。
其次,定积分可以用来计算一个圆柱体的体积。
例如,假设有一个圆柱体,其中一个轴的长度为a,另一轴的长度为b,则该圆柱体
的体积可以用定积分计算出来。
此外,定积分也可以用来计算汽车行驶的总里程数。
例如,若给定汽车从A地到B地的时与距离函数,则可以用定积分来计算汽车的总里程数。
最后,定积分还可以用来计算公路或铁路运营成本。
例如,对于一条公路或铁路,可以假定各个部分之间的距离关系,并用定积分来计算运营成本。
这在很大程度上有助于管理部门控制费用,提高效率。
以上就是定积分求平面图形面积在实际生活中的应用,它可以用来计算二次函数图像的面积、计算一个圆柱体的体积、计算汽车行驶的总里程数以及计算公路或铁路运营成本等。
定积分的应用在很大程度上有助于人们高效地解决诸多实际生活中的问题。
定积分求平面图形面积”在实际生活中的应用案例
实际生活中,使用积分求平面图形面积的应用非常广泛。
比如,土木工程的测量是一个经常要用到积分求平面图形面积的地方。
在实际的施工场景中,工程师要精确测算出建筑物的面积,以便按比例设计施工;例如,在建筑物的形状是一个多边形时,工程师就要利用积分求解该图形的面积;一般情况下,解决这类多边形面积问题会根据弦切原理,把多边形分解成由相邻线段组成的小三角形,根据三角形面积公式和微积分积分公式累加,然后就可以求得具体的多边形面积。
另外,还有一些科学实验时,也需要利用积分求平面图形面积,一个常见的例子是物理实验中的摩擦力的测量,将滑板分别放在静止的木架上,在滑板上放入物体,通过测量滑板的面积,就能算出其上的摩擦系数,而物体滑动时,摩擦力变化就可以由动能守恒方程式解出,这一数据也是日常实验要用到的。
而在市政规划上,也会涉及到使用积分求平面图形面积的应用,例如,要给一个城市进行公共绿地的开发设计时,城市规划师需要精确测量出绿地的面积,这时,便要借助积分的技术,来求解绿地的面积。
总的来说,在实际生活当中,平面图形面积的求解是一种经常会使用到的科学技术,积分是其中用来求解多边形面积的一种常用方法,比如工程测量、物理科学实验、城市规划设计等,积分求平面图形面积在实际生活中的应用非常广泛,是日常生活中非常实用的一项科学知识。
第十章 定积分的应用1 平面图形的面积公式1:连续曲线y=f(x)(≥0),以及直线x=a, x=b(a<b)和x 轴所围曲边梯形面积为:A=⎰b a f(x )dx=⎰ba y dx.若f(x)在[a,b]变号,则所围图形的面积为:A=⎰b a |f(x )|dx=⎰ba |y |dx.公式2:上下两条连续曲线y=f 2(x)与y=f 1(x)以及两条直线x=a 与x=b(a<b)所围的平面图形面积为:A=⎰ba 12(x )]-f (x )[f dx.例1:求由抛物线y 2=x 与直线x-2y-3=0所围图形的面积A.?解法一:A 等同于由抛物线y=x 2与直线y=2x+3所围图形的面积. 解方程组:⎩⎨⎧=+= x y 32x y 2,得⎩⎨⎧==9y 3x , ⎩⎨⎧=-=1y 1x . ∴A=⎰-+312)x -3(2x dx=[32-(-1)2]+3[3-(-1)]-3(-1)-333=332. 解法二:如图,图形被x=1分为左右两部分, A 左=⎰--10)]x (x [dx=3⎰10x dx=34. A 右=⎰⎪⎭⎫ ⎝⎛-9123-x x dx=312-9233-41-922+21)-(93⨯=328. A= A 左+ A 右=34+328=332.:公式3:设曲线C 为参数方程x=x(t), y=y(t), t ∈[α,β],在[α,β]上y(t)连续,x(t)连续且可微且x ’(t)≠0(类似地可讨论y(t)连续可微且y ’(t)≠0的情形). 记a=x(α), b=x(β), (a ≠b),则由曲线C 及直线x=a, x=b 和x 轴所围的图形,其面积计算公式为:A=⎰'βα(t)x )t (y dt.例2:求由摆线x=a(t-sint), y=a(1-cost) (a>0)的一拱与x 轴所围平面图形的面积.解:摆线的一拱可取t ∈[0,2π],又x ’=a(1-cost), ∴A=⎰-2π022)t cos 1(a dt=3πa 2.公式4:若参数方程所表示的曲线是封闭的,即有x(α)=x(β), y(α)=y(β), 且在(α,β)内曲线自身不再相交,则由曲线自身所围图形面积为::A=⎰'βα(t)dt x )t (y 或A=⎰'βα(t)dt y )t (x .例3:求椭圆22a x +22by =1所围的面积.解:化为参数方程:x=asint, y=bcost, t ∈[0,2π], 又x ’=acost , ∴A=⎰2π02tdt abcos =πab.公式5:设曲线C 为极坐标方程r=r(θ), θ∈[α,β],且r(θ)在[α,β]上连续, β-α≤2π.由曲线C 与两条射线θ=α, θ=β所围成的平面图形,通常也称为扇形,此扇形的面积为:A=⎰βα2d θ)θ(r 21.证:如图,对区间[α,β]作任意分割T:α=θ0<θ1<…<θn-1<θn=β,<射线θ=θi(i=1,2,…,n-1)把扇形分成n个小扇形.∵r(θ)在[α,β]上连续,∴当T很小时,在每一个△i=[θi-1, θi]上r(θ)的值变化也很小,任取ξi∈△i,便有r(θ)≈r(ξi), θ∈△i, i=1,2,…,n.这时,第i个小扇形的面积△A i≈21r2(ξi)△θi, ∴A≈∑=n1i21r2(ξi)△θi.当T→0时,两边取极限,就有A=⎰βα2dθ)θ(r21.-例3:求双纽线r2=a2cos2θ所围平面图形的面积.解:如图,∵r2≥0,∴θ∈[-4π,4π]∪[43π,45π],由图形的对称性可得:A=4·⎰4π2θdθ2cosa21=a2 sin2θ|4π=a2 .习题1、求由抛物线y=x2与y=2-x2所围图形的面积.解:求得两曲线交点为(-1,1), (1,1). ∴所围图形的面积为:A=⎰-1122)x-x-(2dx=38.{2、求曲线y=|lnx|与直线x=101, x=10, y=0所围图形的面积. 解:所围图形的面积为:A=⎰10101|lnx |dx=-⎰1101lnx dx+⎰101lnx dx =-(xlnx|1101-⎰1101x dlnx)+ xlnx|101+⎰101x dlnx=-(101ln10-109)+10ln10-9=1099ln10-1081.3、抛物线y 2=2x 把圆x 2+y 2=8分成两部分,求这两部分面积之比. 解:问题等同于抛物线y=21x 2把圆x 2+y 2=8分成两部分,求面积比.:它们的交点为(2,2),(-2,2). 记两部分的面积为A 1,A 2,则A 1=⎰--2222)x 21x -8(dx=8⎰-4π4π2θcos d θ-38=2π+34;A 2=8π-A 1=6π-34.∴21A A =34-6π34+2π=2 -9π2 +3π.4、求内摆线x=acos 3t, y=asin 3t (a>0)所围图形的面积. 解:如图,所围图形面积为: A=4⎰'2π033dt |)t t(asin cos a |=12a2⎰2π024tdttsin cos=12a2⎰2π024tdt tsin cos =83πa 2.【5、求心形线r=a(1+cos θ) (a>0)所围图形的面积. 解法一:根据心形线的对称性,得A=2·⎰+π022d θ)θcos 1(a 21=a 2⎰++π02d θ)θcos θcos 21(=23πa 2.解法二:化为参数方程:x=a(1+cos θ)cos θ, y=a(1+cos θ)sin θ, θ∈[0,2π], A=|⎰'++2π0d θ]θsin )θcos θ[a(1cos )θcos a(1| =a 2|⎰-+2π0234θ)dθθsin cos θcos 2θcos (2|=23πa 2.,6、求三叶形曲线r=asin3θ (a>0)所围图形的面积.解:根根三叶形曲线的形态特点,所围图形由相同的三部分组成,即 A=3⎰32π3π223θsin a 21d θ=⎰32π3π223θsin a 21d3θ=4πa 2.7、求曲线a x +by =1 (a,b>0)与坐标轴所围图形的面积. 解:曲线与x 轴的交点为(a,0),∴所围图形的面积为:A=b ⎰⎪⎪⎭⎫ ⎝⎛+-a0a x a x 21dx=6ab .$8、求曲线x=t-t 3, y=1-t 4所围图形的面积.解:当t=-1,1时,x=0,y=0,∴曲线在t ∈[-1,1]围成封闭图形,即 A=|⎰'-11-43)t -)(1t t (dt|=4|⎰-11-46)t t (dt|=3516.9、求二曲线r=sin θ与r=3cos θ所围公共部分的面积.解法一:化为圆的方程:x 2+(y-21)2=41, (x-23)2+y 2=43. 它们的交点为O(0,0)与P(43,43),∴所围公共部分的面积为: A=⎰⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+---⎪⎭⎫ ⎝⎛-4302223y 4321-y 41dy=⎰-6π2π2t cos 41dt+⎰3π02t cos 43dt -833 =323+12π+3233+8π-833=245π-43. *解法二:由sin θ=3cos θ, 得tan θ=3,∴二曲线相交于θ=3π.A=⎰3π02θsin 21d θ+⎰2π3π2θcos 23d θ=-)1(cos2θ413π0-⎰d θ+⎰+2π3π1)(cos2θ43d θ =-163+12π+8π-1633=245π-43.(参考解法)如图:求得P(43,43) S 阴=S P OO 1扇形+S P OO 2扇形-S P OO 1∆ -S P OO 2∆ =3πOO 12+6πOO 22-21·43·OO 1-21·43·OO 2=12π+8π-163-1633=245π-43.10、求两椭圆22a x +22b y =1与22b x +22ay =1(a>b>0)所围公共部分的面积.解:两椭圆在第一象限的交点为:⎪⎪⎭⎫ ⎝⎛++2222b a abba ab,. 根据图形的对称性,可得:A=8⎰+⎪⎪⎭⎫ ⎝⎛--22baab022x a x 1b dx=4abarcsin 22b a b +-2222b a b 4a +.。
定积分求平面图形面积在实际生活中的
应用案例
面积的应用案例
面积的应用案例在我们的日常生活中是随处可见的,最常见的例子之一就是制作房屋,也就是建筑学中所说的建筑物的平面布局图。
建筑物的平面布局图是建筑设计的一个重要组成部分,在平面布局图中,通过把不同房间以图形的形式表示出来,将特定房间以不同形式圈出来,通过计算图形的面积,可以大致了解建筑中每一个房间的大小,而且通过计算建筑物的总面积,可以比较容易了解建筑物的大小。
另外,人们在种植面积大小也是一个重要因素,用于决定可以种植的农作物数量是多少,在实际中,用了计算一块土地的面积来决定可以种植的农作物数量是很重要的,特别是在把田拆分出来种植小麦,小麦是面类粮食的主要来源,所以拆分的田地的面积是一个很有意义的参考因素,有助于农民们更好的估计可以收获多少,从而提高种植小麦的效益。
平面图形的面积还有一个历史悠久的应用,即地图解绘,即设计出特定地区的地图,地图解绘也是一种非常严谨的科学,需要准确测量出特定地区的面积,再结合空间关系进行综合分析,比如地质勘查和土地利用图
等,这些都需要准确解绘出平面图形的面积进行分析,最后得出比较准确
的数据。
当然,许多日常物品也是由平面图形组成的,比如妆桌,牙刷,笔等,而这些物品的制作都需要精确测量出平面图形的面积,这样才能保证精确
制作出非常好用的物品。
可见,积分求平面图形面积已经渗透到了我们的日常生活,是影响我
们实际生活的一个非常重要的技术和工具,它的应用覆盖的范围很广,由
于它潜移默化的作用,使我们的日常生活变得更加舒适便捷。
因此,我们
可以以此来彰显积分求平面图形面积在实际生活中的应用价值。