定积分的应用--平面图形的面积
- 格式:ppt
- 大小:3.31 MB
- 文档页数:144
定积分应用1、直角坐标系下平面图形面积的计算①连续】11|线y = f(x)(f(x)>O)Rx = a J x = h及兀轴所围成的平而图形而积为^f(x)dx②设平而图形山上下两条曲线)=广上⑴与)=f心)及左右两条肓线与x=b所|韦|成,则血•积元素为[f f r(x)]dx,于是平而图形的而积为:S = W-.A F(x)]dx .③连续曲线兀=久刃(0(y)» 0)及y = c, y = d及V轴所围成的平iM图形面积为A= [ 0(y)〃y④由方程X = 01 (y)与X = 02(歹)以及y = y = d所围成的平面图形面积为A=f”(y)—0(y)〕dy 翎>©)例1计算两条抛物线y = 0与兀=y2所围成的而积.解求解而积问题,一般需要先画一草图(图3),我们要求的是阴影部分的而积.需y = x2x = y2要先找出交点处标以便确定积分限,为此解方程组:得交点(0,0)和(1,1).选取兀为积分变量,则积分区间为[0,1],根据公式(1),所求的面积为3 lo 3—•般地,求解而积问题的步骤为:(1)作草图,求曲线的交点,确定积分变最和积分限.(2)写出积分公式.(3)计算定积分.例2计算抛物线r=2v与直线)=x-4所围成的图形的面积.解(1)画图.(2)确定在y轴上的投影区间:L-2,4J.(3)确定左右曲线:0左(刃=如2, 0右(y) = y+4.⑷计算积分s =匸。
+4-号y2)dy 二母y2+4)一”,3]役=]8.例3求在区间[丄,2 ]上连续|11|线y=ln x , x轴及二直线x =-,与x二2所围成平面区2 2域(如图2)的面积o解:已知在[$2]上,in淀°;在区间[1 , 2 ]上,In x $0,则此区域的面积为:Ji |ln x^/x =21二-(x \n x - x) i + T4ln2-1•29例4 求抛物线y =x与x-2y-3=0所围成的平面图形(图3)的面积A。
第六讲 定积分的应用一、基础知识几何应用(一)平面图形的面积 1.直角坐标情形由曲线)0)(()(≥=x f x f y 及直线 x a =与 x b = ( a b < ) 与 x 轴所围成的曲边梯形面积A 。
()baA f x dx =⎰ 其中:f x dx ()为面积元素。
由曲线y f x =()与y g x =()及直线x a =,x b =(a b <)且f x g x ()()≥所围成的图形面积A 。
()()[()()]=-=-⎰⎰⎰b b baaaA f x dx g x dx f x g x dx2.极坐标情形设平面图形是由曲线 )(θϕ=r 及射线αθ=,βθ=所围成的曲边扇形。
取极角θ为积分变量,则 βθα≤≤,在平面图形中任意截取一典型的面积元素A ∆,它是极角变化区间为],[θθθd +的窄曲边扇形。
曲边梯形的面积元素 θθϕd dA 2])([21= ⎰=βαθθϕd A )(212(二)旋转体的体积计算由曲线y f x =()直线x a =,x b =及x 轴所围成的曲边梯形,绕x 轴旋转一周而生成的立体的体积。
取x 为积分变量,则],[b a x ∈,对于区间],[b a 上的任一区间],[dx x x +,它所对应的窄曲边梯形绕x 轴旋转而生成的薄片似的立体的体积近似等于以)(x f 为底半径,dx 为高的圆柱体体积。
即:体积元素为 []dx x f dV 2)(π=所求的旋转体的体积为 []dx x f V ba⎰=2)(π(三)平面曲线的弧长 1.直角坐标情形设函数)(x f 在区间],[b a 上具有一阶连续的导数,计算曲线)(x f y =的长度s 。
取x 为积分变量,则],[b a x ∈,在],[b a 上任取一小区间],[dx x x +,弧长元素为[]dx x f ds 2)(1'+= 弧长为 []⎰'+=badx x f s 2)(12.参数方程的情形若曲线由参数方程)()()(βαφϕ≤≤⎩⎨⎧==t t y t x 给出,弧微分[][]dt t t dy dx ds 2222)()()()(φϕ'+'=+=则 [][]⎰'+'=βαφϕdt t t s 22)()(3.极坐标情形若曲线由极坐标方程)()(βθαθ≤≤=r r 给出,将极坐标方程化成参数方程,曲线的参数方程为x r y r ==⎧⎨⎩≤≤()cos ()sin ()θθθθαθβ,弧长元素为θθθθθθθd r r d r r d r r dy dx ds 22222222)()cos sin ()()sin cos ()()('+=+'+-'=+= 从而有 ⎰'+=βαθd r r s 22(四).曲率与曲率半径 曲率记作,k 0lims d k s dsαα∆→∆==∆, 222''''tan '''sec sec 1'd d y y y y dx dx y ααααα=⇒=⋅⇒==+, 2''1'y d dx y α=+,又,ds =故322''(1')y d k dsy α==+.曲率半径 3221(1')''y k y ρ+==. 曲率圆二、例题1.平面图形的面积与旋转体的体积例 1. 已知抛物线2,y px qx =+(其中0,0p q <>)在第一象限内与直线5x y +=相切,且抛物线与x 轴所围成的平面图形的面积为s .问: (1)p q 和为何值时,s 达到最大值? (2)求出此最大值.【答案】,3p q =4=-5,22532s =例2.设⎪⎩⎪⎨⎧>≤=-0,0,)(22x ex e x F x x ,S 表示夹在x 轴与曲线()y F x =之间的面积. 对任何)(x f0t >,)(1t S 表示矩形t x t -≤≤,0()y F t ≤≤的面积. 求(I) 1()()S t S S t =-的表达式; (II) ()S t 的最小值.【答案】(I) t te t S 221)(--=,t ∈ (0 , +∞).(II) eS 11)21(-=. 例3.设曲线的极坐标方程为(0)a e a θρ=>,则该曲线上相应于θ从0到2π的一段弧与极轴所围成的图形的面积为41(1)4a e aπ-. 例 4.设1D 是由抛物线22y x =和直线x a =, 2x =及0y =所围成的平面区域; 2D 是由抛物线22y x =和直线x a =,0y =所围成的平面区域,其中02a <<.(1)试求1D 绕x 轴旋转而成的旋转体体积1V ;2D 绕y 轴旋转而成的旋转体体积2V . (2)问当a 为何值时,12V V +取得最大值?试求此最大值. 【答案】54(32)5a π- 4a π 1295π 例5.设曲线2(0,0)y ax a x =>≥与21y x =-交于点A ,过坐标原点O 和点A 的直线与曲线2y ax =围成一平面图形.问a 为何值时,该图形绕x 轴旋转一周所得的旋转体体积最大?最大体积是多少?【答案】4a =是体积最大,其最大体积为:522161518755V π=⋅= 例6.过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D . (1).求D 的面积A ;(2).求D 绕直线x e =旋转一周所得旋转体的体积V . 【答案】(1)112A e =- (2)2(5123)6V e e π=-+ 例7.(15-2) 设A>0,D 是由曲线段sin (0)2y A x x π=≤≤及直线0y =,2x π=所围成的平面区域,1V ,2V 分别表示D 绕x 轴与绕y 轴旋转成旋转体的体积,若12V V =,求A 的值.【答案】8π例8.(09-3-10 分)设曲线()y f x =,其中()y f x =是可导函数,且()0f x >,已知曲线()y f x =与直线0,1y x ==及(1)x t t =>所围成的曲边梯形,绕x 轴旋转一周所得的立体体积值是曲边梯形面积值的t π倍,求该曲线方程。
定积分求平面图形面积====================定积分是一种数学方法,用于计算曲线下的面积或曲面上的体积。
它可以用来求解平面图形的面积。
本文将讨论定积分求平面图形面积的原理,并通过实例说明它的应用。
一、定积分求平面图形面积的原理----------------------------------------------------------定积分求平面图形面积的原理是:将平面图形分解为若干矩形,利用每个矩形的面积来求得平面图形的面积。
具体来说,首先需要将平面图形的边界抽象为一个函数,然后将这个函数从横坐标的最小值到最大值分割成若干等份,每份称为一个矩形,每个矩形的面积可以用函数的值来计算,最后将所有矩形的面积加起来就可以得到平面图形的面积。
二、实例说明----------------------------------------------------------下面我们用一个实例来说明定积分求平面图形面积的方法。
假设我们要求解的平面图形是一个三角形,其边界可以用函数y=x-1来描述,且横坐标的最小值为0,最大值为2。
首先,我们将横坐标从0到2分割成4份,即0,0.5,1,1.5,2,每份称为一个矩形,然后计算每个矩形的面积。
由于横坐标的最小值为0,所以第一个矩形的面积为0;第二个矩形的面积为0.5*(1-1)=0;第三个矩形的面积为1*(2-1)=1;第四个矩形的面积为1.5*(2-1)=1.5;最后,将4个矩形的面积加起来,即可得到三角形的面积为2.5。
结论----------------------------------------------------------以上就是定积分求平面图形面积的原理及其应用,它可以用来计算各种平面图形的面积,是一种有效的数学方法。
第十章 定积分的应用1 平面图形的面积一、直角坐标系下平面图形连续曲线()(0)y f x =≥直线,x a x b ==和x 轴所围成的曲边梯形面积为S=()bbaaf x dx ydx =⎰⎰;若()y f x =在[,]a b 上不是非负的, 则上述围成图形的面积为S=|()|||bbaaf x dx y dx =⎰⎰.一般地,1) 由上下两根连续曲线2()y f x =和1()y f x =以及直线,x a x b ==所围成平面图形面积为 21S=()()ba f x f x dx -⎰.2) 由两条曲线1()y f x =,2()y f x =围成的平面图形面积为21S=()()ba f x f x dx -⎰,其中,x a x b ==与曲线1()y f x =与2()y f x =所有交点中横坐标最小值和最大值.例 1 求曲线1, 0, 2xy x y x =-==围成的平面图形面积.例 2 求由抛物线2y x =直线230x y --=所围成的平面图形面积.设[,]a b 上的曲边梯形的曲边由方程()x t χ=,()y y t =,t αβ≤≤,()a χα=,()b χβ=. 又设()0t χ'>(())t χ↑,于是存在反函数1t=()x χ-, 则曲边方程为[]1()(()),,y y t y x x a b χ-==∈.从而,曲边梯形面积为1(())ba S y x dx χ-=⎰()'()y t t dt βαχ=⎰y dx βα=⎰例 3 求由摆线(sin ),(1cos )(0)x a t t y a t a =-=->的一拱与x 轴所围成的平面图形面积.例 4 求椭圆22221x y a b+=所围成图形面积.二、极坐标下平面图形的面积设曲线C 由极坐标方程() [,]r r θθαβ=∈给出,其中()r θ在[,]αβ上连续,2βαπ-≤下求由曲线C 与两射线,θαθβ==所围成的平面图形(称之为扇形)面积.221121()21()21()2i i i n ni i i i i A r A A r A r d βαξθξθθθ==∆≈∆=∆≈⋅∆⇒=∑∑⎰例 5 求由双纽线22cos 2r a θ=所围成平面图形的面积.(35cos 20,[,][,]4444ππππθθ≥∈-或)[ 简单介绍微元法:x 的范围a≤x≤b微元 dx, ds=f(x)dx (△s ≈f(x)△x )⇒()ba S f x dx =⎰ 微元 d θ 21()2dA r d θθ=21()2A r d βαθθ=⎰ ]“化曲为直”,“以直代曲”.三、微元法若令()()xa x f t dt Φ=⎰,则当f 为连续函数时,()()x f x 'Φ=或()()d x f x dx Φ=,且()0, ()()baa b f x dx Φ=Φ=⎰.(现在把问题倒过来) 如求的量Φ是分布在某区间[,]a x 上的, 或说其是x 的函数()x Φ=Φ,[,]x a b ∈,且当x=b 时,()b Φ就是最终所求值.任取小区间[,][,]x x x a b +∆⊂,若能把Φ的微小增量∆Φ近似表示为x ∆的线性形式 ()f x x ∆Φ≈∆其中f 为某一连续函数,且0x ∆→时,()()f x x o x ∆Φ-∆=∆, 即 ()d f x dx Φ=从而只要把()ba f x dx ⎰积分出来就是所求结果.上述方法称为微元法. 使用微元法时要求:i)所求量Φ关于分布区间是代数可加的 ()f x x ∆Φ≈∆ii)微元法的关键是正确给出∆Φ的近似表达式,在一般情形下,要严格检验()f x x ∆Φ-∆是否为x ∆的高阶无穷小.2211() ()22A y x dA y dxA r dA r d θθθθ∆≈∆=∆≈∆=2. 由平行截面面积求体积一、已知平行截面面积() () ()ba a xb v A x xdv A x dx v A x dx≤≤∆≈∆=⇒=⎰祖暅原理:夫幂势相同,则积不容异.[亦可通过分割,求和取极限方法得到]例 1 由两个圆柱面222x y a +=和222x z a +=所围成立体体积.例 2 求由椭球面2222221x y z a b c++=所围成立体(椭球)的体积.二、旋转体设f 为[,]a b 上的连续函数(f(x)≥0),则曲线y=f(x)绕x 轴旋转一周得到的旋转体V ,易证V 的体积为2()ba V f x dx π=⎰例 3 求圆锥体的体积公式.例 4 求圆222(),(0)x y R r r R +-≤<<绕x 轴旋转一周所得到的环状立体体积.1) 22[[rrrrV R dx R dx ππ--=--⎰⎰222) ()2rrV A x dx r R π-==⎰例 5 sin ,0y x x π=≤≤,绕x 轴(y 轴)旋转所得立体体积.220sin 2V xdx πππ==⎰1()V A y dy =⎰22()[(arcsin )(arcsin )]A y y y ππ=--3 平面曲线的弧长1、弧长的定义设平面曲线c AB =,在A,B 上取点011,,,n n A P P P P B -==构成AB 的一个分割,记作T ,11i i i i P P P P --≈,11ni i i s PP -=≈∑,11||||max i i i nT P P -≤≤=,11()ni i i s T P P -==∑.定义 1 对于曲线c 上无论怎样的分割T ,如果存在有限数s ,使0lim ()T s T s →=,那么称曲线c 是可求长的,并把极限s 定义为曲线c 的弧长.2、弧长的计算设曲线方程(),y f x a x b =≤≤, 由微元法, ds ==as ⇒=⎰进一步, 若曲线c 的方程为[](),(),,x x t y y t t αβ==∈,则ds ==s βα=⎰(提出光滑曲线概念) ,x y ''连续定义 2 设平面曲线c 由参数方程 [](),(),,x x t y y t t αβ==∈ (*)给出.若()x t ,()y t 在[],αβ上有连续导数,22()()0x t y t ''+≠,则称c 为一条光滑曲线.定理 设曲线c 由参数方程(*)给出,若c 为一条光滑曲线,则c 是可求长的,且 弧长为s βα=⎰.例 1 求摆线一拱(sin ),(1cos ),(0)x a t t y a t a =-=->一拱的弧长.(202sin 2ts a dt π=⎰)例 2 求悬链线2x xe e y -+=,从x a =-到x a =一段的弧长.若曲线c 由极坐标方程[](),,r r θθαβ=∈给出,则[]()cos ,()sin ,,x r y r θθθθθαβ==∈从而 ()()cos ()sin ,x r r θθθθθ''=- ()()sin ()cos y r r θθθθθ''=+. 故 2222()()()()x y r r θθθθ'''+=+则当()r θ'在[],αβ上连续,且()r θ与()r θ'不同时为0时,此极坐标曲线为一光滑曲线. 此时弧长公式为s βαθ=⎰.例 3 求心形线(1cos ),(0)r a a θ=+⋅>的弧长.弧长01lim ni T i s s →==∆∑, ()()()222i i i s x y ∆=∆+∆ ,1i i i x x x -∆=-,1()()()i i i i i y f x f x f x ξ-'∆=-=∆, 11n ni i i i s x ==⇒∆=∑as ⇒=⎰(f '连续)下面反过来求弧长微分dS . 考察从A 到AB 上一点(,)M x y 的弧长()s x ,则()as x =⎰()ds S x dx'⇒==ds ⇒=几何意义 ds 为s ∆的线性主要部分直线段MP 之长就和曲线MM '之长很接近(相差一个高阶无穷小). 若[](),,r r θθαβ=∈, 则s βαθ=⎰.4 旋转曲面的面积设平面光滑曲线C 的方程为()y f x =,[],x a b ∈,(()0)f x ≥此段曲线绕x 轴旋转一周得到一旋转曲面.下面求其面积.[]()()S f x f x x π∆≈++∆[]2()f x y x π=+∆由于0y ∆→→(0)x ∆→(2()2(()f x y x f x x o x ππ⇒+∆-=∆2(dS f x π⇒=2(ba S f x π⇒=⎰若曲线C 由参数方程(),()x x t y y t ==,[],t αβ∈,且()0y t ≥,则曲线C 绕x 轴旋转所得的旋转曲面的面积为2(S y t βαπ=⎰.例 1 求圆222x y R +=在[][]12,,x x R R ⊂-上的弧段绕x 轴旋转所得球带的面积.例2求内摆线33==绕x轴旋转所得旋转曲面的面积.x a t y a tcos,sin5 定积分在物理中的某些应用一、液体静压力例1如图所示为一管道的圆形闸门,半径为3米. 问水面齐及直径时, 闸门所受到的水的静压力有多大?二、引力例2一根长为l的均匀细杆,质量为M, 在其中垂线上相距细杆为a处有一质量为m的质点,试求细杆对质点的万有引力.三、功与平均功率例3一圆锥形水池,池口直径30米,深10米,池中盛满水,试求将全部池水抽出池外所作的功.例 4 在地面上将质量为m 的物体沿着轨线((),(),())t x t y t z t →举起,()a t b ≤≤,(t 为时间,,,x y z 为空间笛卡尔坐标) 要求在时间段[],a b 内克服重力做的功.这样所做的功只依赖于(),()r a r b ,即只依赖于物体在初始时刻和结束时刻离地球中心的距离.令()GMU r r =,从而将质量为m 的物体从半径为0r 的球面上任一点移动到半径为1r 的球面上任一点,克服重力所做的功01,01(()())r r W m U r U r =-,称()U r 为牛顿位势. 设R 为地球半径,则2()gR U r r =,2()GMg R=.现将质量为m 的物体从地球表面飞到距地心无限远的地方, 所需的功为,lim R r r W →+∞,即22,lim ()R r gR gR W W m mgR R r∞→+∞==-=. 由能量守恒定律,要求初速度0v 至少为2012mv mgR =.0v =. ——第二宇宙速度264()P。
第十章 定积分的应用 1 平面图形的面积公式1:连续曲线y=f(x)(≥0),以及直线x=a, x=b(a<b)和x 轴所围曲边梯形面积为:A=⎰b a f(x )dx=⎰ba y dx.若f(x)在[a,b]变号,则所围图形的面积为:A=⎰b a |f(x )|dx=⎰ba |y |dx.公式2:上下两条连续曲线y=f 2(x)与y=f 1(x)以及两条直线x=a 与x=b(a<b)所围的平面图形面积为:A=⎰ba 12(x )]-f (x )[f dx.例1:求由抛物线y 2=x 与直线x-2y-3=0所围图形的面积A. 解法一:A 等同于由抛物线y=x 2与直线y=2x+3所围图形的面积. 解方程组:⎩⎨⎧=+= x y 32x y 2,得⎩⎨⎧==9y 3x , ⎩⎨⎧=-=1y 1x . ∴A=⎰-+312)x -3(2x dx=[32-(-1)2]+3[3-(-1)]-3(-1)-333=332. 解法二:如图,图形被x=1分为左右两部分, A 左=⎰--10)]x (x [dx=3⎰10x dx=34. A 右=⎰⎪⎭⎫ ⎝⎛-9123-x x dx=312-9233-41-922+21)-(93⨯=328. A= A 左+ A 右=34+328=332.公式3:设曲线C 为参数方程x=x(t), y=y(t), t ∈[α,β],在[α,β]上y(t)连续,x(t)连续且可微且x ’(t)≠0(类似地可讨论y(t)连续可微且y ’(t)≠0的情形). 记a=x(α), b=x(β), (a ≠b),则由曲线C 及直线x=a, x=b 和x 轴所围的图形,其面积计算公式为:A=⎰'βα(t)x )t (y dt.例2:求由摆线x=a(t-sint), y=a(1-cost) (a>0)的一拱与x 轴所围平面图形的面积.解:摆线的一拱可取t ∈[0,2π],又x ’=a(1-cost), ∴A=⎰-2π022)t cos 1(a dt=3πa 2.公式4:若参数方程所表示的曲线是封闭的,即有x(α)=x(β), y(α)=y(β), 且在(α,β)内曲线自身不再相交,则由曲线自身所围图形面积为: A=⎰'βα(t)dt x )t (y 或A=⎰'βα(t)dt y )t (x .例3:求椭圆22a x +22by =1所围的面积.解:化为参数方程:x=asint, y=bcost, t ∈[0,2π], 又x ’=acost , ∴A=⎰2π02tdt abcos =πab.公式5:设曲线C 为极坐标方程r=r(θ), θ∈[α,β],且r(θ)在[α,β]上连续, β-α≤2π.由曲线C 与两条射线θ=α, θ=β所围成的平面图形,通常也称为扇形,此扇形的面积为:A=⎰βα2d θ)θ(r 21. 证:如图,对区间[α,β]作任意分割T :α=θ0<θ1<…<θn-1<θn =β, 射线θ=θi (i=1,2,…,n-1)把扇形分成n 个小扇形.∵r(θ)在[α,β]上连续,∴当T 很小时,在每一个△i =[θi-1, θi ]上r(θ)的值变化也很小,任取ξi ∈△i ,便有r(θ)≈r(ξi ), θ∈△i , i=1,2,…,n.这时,第i 个小扇形的面积△A i ≈21r 2(ξi)△θi , ∴A ≈∑=n1i 21r 2(ξi )△θi .当T →0时,两边取极限,就有A=⎰βα2d θ)θ(r 21.例3:求双纽线r 2=a 2cos2θ所围平面图形的面积. 解:如图,∵r 2≥0,∴θ∈[-4π,4π]∪[43π,45π],由图形的对称性可得: A=4·⎰4π02θdθ2cos a 21=a 2 sin2θ|4π0=a 2 .习题1、求由抛物线y=x 2与y=2-x 2所围图形的面积.解:求得两曲线交点为(-1,1), (1,1). ∴所围图形的面积为: A=⎰-1122)x -x -(2dx=38.2、求曲线y=|lnx|与直线x=101, x=10, y=0所围图形的面积. 解:所围图形的面积为: A=⎰10101|lnx |dx=-⎰1101lnx dx+⎰101lnx dx =-(xlnx|1101-⎰1101x dlnx)+ xlnx|101+⎰101x dlnx=-(101ln10-109)+10ln10-9=1099ln10-1081.3、抛物线y 2=2x 把圆x 2+y 2=8分成两部分,求这两部分面积之比. 解:问题等同于抛物线y=21x 2把圆x 2+y 2=8分成两部分,求面积比. 它们的交点为(2,2),(-2,2). 记两部分的面积为A 1,A 2,则A 1=⎰--2222)x 21x -8(dx=8⎰-4π4π2θcos d θ-38=2π+34;A 2=8π-A 1=6π-34.∴21A A =34-6π34+2π=2 -9π2 +3π.4、求内摆线x=acos 3t, y=asin 3t (a>0)所围图形的面积. 解:如图,所围图形面积为: A=4⎰'2π033dt |)t t(asin cos a |=12a2⎰2π024tdttsin cos=12a 2⎰2π024tdt tsin cos =83πa 2.5、求心形线r=a(1+cos θ) (a>0)所围图形的面积. 解法一:根据心形线的对称性,得A=2·⎰+π022d θ)θcos 1(a 21=a 2⎰++π02d θ)θcos θcos 21(=23πa 2.解法二:化为参数方程:x=a(1+cos θ)cos θ, y=a(1+cos θ)sin θ, θ∈[0,2π], A=|⎰'++2π0d θ]θsin )θcos θ[a(1cos )θcos a(1| =a 2|⎰-+2π0234θ)dθθsin cos θcos 2θcos (2|=23πa 2.6、求三叶形曲线r=asin3θ (a>0)所围图形的面积.解:根根三叶形曲线的形态特点,所围图形由相同的三部分组成,即 A=3⎰32π3π223θsin a 21d θ=⎰32π3π223θsin a 21d3θ=4πa 2.7、求曲线a x +by =1 (a,b>0)与坐标轴所围图形的面积. 解:曲线与x 轴的交点为(a,0),∴所围图形的面积为: A=b ⎰⎪⎪⎭⎫ ⎝⎛+-a0a x a x 21dx=6ab.8、求曲线x=t-t 3, y=1-t 4所围图形的面积.解:当t=-1,1时,x=0,y=0,∴曲线在t ∈[-1,1]围成封闭图形,即 A=|⎰'-11-43)t -)(1t t (dt|=4|⎰-11-46)t t (dt|=3516.9、求二曲线r=sin θ与r=3cos θ所围公共部分的面积. 解法一:化为圆的方程:x 2+(y-21)2=41, (x-23)2+y 2=43. 它们的交点为O(0,0)与P(43,43),∴所围公共部分的面积为: A=⎰⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+---⎪⎭⎫ ⎝⎛-4302223y 4321-y 41dy=⎰-6π2π2t cos 41dt+⎰3π02t cos 43dt -833 =323+12π+3233+8π-833=245π-43. 解法二:由sin θ=3cos θ, 得tan θ=3,∴二曲线相交于θ=3π.A=⎰3π02θsin 21d θ+⎰2π3π2θcos 23d θ=-)1(cos2θ413π0-⎰d θ+⎰+2π3π1)(cos2θ43d θ =-163+12π+8π-1633=245π-43.(参考解法)如图:求得P(43,43) S 阴=S P OO 1扇形+S P OO 2扇形-S P OO 1∆ -S P OO 2∆ =3πOO 12+6πOO 22-21·43·OO 1-21·43·OO 2=12π+8π-163-1633=245π-43.10、求两椭圆22a x +22b y =1与22b x +22ay =1(a>b>0)所围公共部分的面积.解:两椭圆在第一象限的交点为:⎪⎪⎭⎫⎝⎛++2222b a abb a ab ,. 根据图形的对称性,可得:A=8⎰+⎪⎪⎭⎫ ⎝⎛--22baab022x a x 1b dx=4abarcsin 22b a b +-2222b a b 4a +.。
第十章 定积分的应用§1 平面图形的面积在上一章开头讨论过由连续曲线y =f (x )(≥0),以及直线x =a ,x =b (a 〈b )和x 轴所围曲边梯形的面积为()b ba a A f x dx ydx ==⎰⎰,如果f (x )在[a ,b ]上不都是非负的,则所围图形的面积为|()|||b ba a A f x dx y dx ==⎰⎰,一般地,由上下两条连续曲线y =f 2(x )和y =f 1(x )以及两条直线x =a , x =b (a 〈b )所围的平面图形,它的面积计算公式为21[()()]ba A f x f x dx =-⎰ 例1 求由抛物线y ²=x 与直线x -2y -3=0所围平面图形的面积.解 该平面图形如图所示。
先求出抛物线与直线的交点坐标(1,-1)、(9,3),用x =1把图形分成左右两部分,应用公式得111004[()]23A x x dx xdx =--==⎰⎰,921328[]23x A x dx -=-=⎰,所以A=A 1+A 2=32/3. 本题还可以把抛物线方程和直线方程改成x =y ²,x =2y +3,y∈[1,3],改取积分变量为y ,便得32132[23]3A y y dy -=--=⎰。
设曲线C 由参数方程x=x(t),y=y (t ),t ∈[,]给出,在[a ,b ]上y(t)连续,x=x(t )连续可微且x ’(t )≠0(对x(t )连续,y=y(t )连续可微且y'(t)≠0的情形可类似讨论),记a=x(),b=x ()(a 〈b 或a>b),则由曲线C 及直线x =a 、x =b 和x 轴所围的图形,其面积计算公式为|()()|A y t x t dt βα'=⎰ 例2 求由摆线x=a(t-sint),y=a (1-cost )(a>0)的一拱与 x 轴所围平面图形的面积.解 摆线的一拱可取t ∈[0,2π],所求面积为2222200(1cos )[(sin )](1cos )3A a t a t t dt a t dt a πππ'=--=-=⎰⎰ 如果由参数方程表示的曲线x=x(t),y=y (t ),t ∈[,]是封闭的,既有x ()=x(),y()=y (),且在(,)上曲线自身不再相交,那么由曲线自身所围成的图形面积为|()()|A y t x t dt βα'=⎰(或|()()|A x t y t dt βα'=⎰),此公式可由前面推出,绝对值内的积分,其正负由曲线x=x(t),y=y (t ),t ∈[a ,b ]的旋转方向所确定。