例1
设函数f(x)=aln
x+x
x
1 1
,其中a为常数.讨论函数f(x)的单调性.
解析
函数f(x)的定义域为(0,+∞),
f
'(x)=
a x
+
(
x
2 1)2
=
ax2
(2a 2)x x(x 1)2
a
,
当a≥0时, f '(x)>0,函数f(x)在(0,+∞)上单调递增,
当a<0时,令g(x)=ax2+(2a+2)x+a,
3
3
3
, 1
1 3
3a
∪
1
1 3a ,+∞
3
时, f '(x)>0,当x∈
1 1 3a, 1 1 3a 时, f '(x)<0,所
3
3
以f(x)在 ,1
1 3
3a
和
1
1 3
3a
,
上单调递增,在
1
1 3a 1
3,
1 3a 3
上单调
递减.
(2)设过原点的切线与曲线y=f(x)相切于点P(x0,y0),则切线的斜率为f '(x0)=3x02-2x0+a,故
a
a
即练即清
1.(2024届湖南长沙一中基础测试,8)若函数g(x)=ln x+ 1 x2-(b-1)x存在单调递减区间,则
2
实数b的取值范围是 ( B ) A.[3,+∞) B.(3,+∞) C.(-∞,3) D.(-∞,3]
题型2 利用导数研究函数的极(最)值 1.解决函数极值问题的一般思路