高中数学(向量的数量积)教案4 苏教版必修4 教案
- 格式:doc
- 大小:358.00 KB
- 文档页数:5
一、课题:向量的数量积二、教学目标:要求学生掌握平面向量数量积的运算律,明确向量垂直的充要条件。
三、教学重、难点:向量数量积的运算律和运算律的理解; 四、教学过程: (一)复习:1.平面向量数量积(内积)的定义及其几何意义、性质; 2.判断下列各题正确与否:①若0a =,则对任一向量b ,有0a b ⋅=; ( √ ) ②若0a ≠,则对任一非零向量b ,有0a b ⋅≠; ( × ) ③若0a ≠,0a b ⋅=,则0b =; ( × ) ④若0a b ⋅=,则,a b 至少有一个为零向量; ( × ) ⑤若a b a c ⋅=⋅,则b c =当且仅当0a ≠时成立; ( × ) ⑥对任意向量a ,有22||a a =. ( √ ) (二)新课讲解: 1.交换律:a b b a ⋅=⋅证:设,a b 夹角为θ,则||||cos a b a b θ⋅=⋅⋅,||||cos b a b a θ⋅=⋅⋅ ∴a b b a ⋅=⋅.2.()()()a b a b a b λλλ⋅=⋅=⋅ 证:若0λ>,()||||cos a b a b λλθ⋅=,()||||cos a b a b λλθ⋅=, ()||||cos a b a b λλθ⋅=,若0λ<,()||||cos()||||(cos )||||cos a b a b a b a b λλπθλθλθ⋅=-=--=,()||||cos a b a b λλθ⋅=,()||||cos()||||(cos )||||cos a b a b a b a b λλπθλθλθ⋅=-=--=.3.()a b c a c b c +⋅=⋅+⋅.在平面内取一点O ,作OA a =, AB b =,OC c =, ∵a b +(即OB )在c 方向上的投影等于,a b在c 方向上的投影和,即:12||cos ||cos ||cos a b a b θθθ+=+ ∴12||||cos ||||cos ||||cos c a b c a c b θθθ+=+,∴()c a b c a c b ⋅+=⋅+⋅ 即:()a b c a c b c +⋅=⋅+⋅. 4. 例题分析:例1 已知,a b 都是非零向量,且3a b +与75a b -垂直,4a b -与72a b -垂直,求a 与b 的夹角。
高中数学第二章平面向量2.4 向量的数量积学案苏教版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章平面向量2.4 向量的数量积学案苏教版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章平面向量2.4 向量的数量积学案苏教版必修4的全部内容。
2.4 向量的数量积典题精讲例 1 若向量a,b,c满足a+b+c=0,且|a|=3,|b|=1,|c|=4,则a·b+b·c+a·c=_____________.思路解析:本题可以利用数量积公式两边平方求解;也可由已知条件,得出三个向量之间的两两夹角,再用数量积公式求解。
方法一:∵a+b+c=0,∴(a+b+c)2=a2+b2+c2+2a·b+2b·c+2a·c=0。
∴2(a·b+b·c+a·c)=—(a2+b2+c2)=—(|a|2+|b|2+|c|2)=—(32+12+42)=-26.∴a·b+b·c+a·c=-13。
方法二:根据已知条件可知|c|=|a|+|b|,c=-a-b,所以a与b同向,c与a+b反向.所以有a·b+b·c+a·c=3cos0°+4cos180°+12cos180°=3-4—12=-13。
答案:-13绿色通道:由向量数量积定义及其运算律可推导出如下常用性质:a2=|a|2,(a+b)(c+d)=a·c+a·d+b·c+b·d,(a+b)2=a2+2a·b+b2,(a+b+c)2=a2+b2+c2+2a·b+2b·c+2a·c.变式训练已知|a|=5,|b|=12,当且仅当m为何值时,向量a+m b与a-m b互相垂直?思路分析:(a+m b)⊥(a-m b) (a+m b)·(a-m b)=0.根据这一点可以很容易寻找到解题突破口。
2、4 平面向量得数量积教案A第1课时教学目标一、知识与技能1.掌握平面向量得数量积及其几何意义;2.掌握平面向量数量积得重要性质及运算律;3.了解用平面向量得数量积可以处理有关长度、角度与垂直得问题;二、过程与方法本节学习得关键就是启发学生理解平面向量数量积得定义,理解定义之后便可引导学生推导数量积得运算律,然后通过概念辨析题加深学生对于平面向量数量积得认识.三、情感、态度与价值观通过问题得解决,培养学生观察问题、分析问题与解决问题得实际操作能力;培养学生得交流意识、合作精神;培养学生叙述表达自己解题思路与探索问题得能力.教学重点、难点教学重点:平面向量数量积得定义.教学难点:平面向量数量积得定义及运算律得理解与平面向量数量积得应用、教学关键:平面向量数量积得定义得理解.教学方法本节学习得关键就是启发学生理解平面向量数量积得定义,理解定义之后便可引导学生推导数量积得运算律,然后通过概念辨析题加深学生对于平面向量数量积得认识.学习方法通过类比物理中功得定义,来推导数量积得运算.教学准备教师准备: 多媒体、尺规、学生准备:练习本、尺规、教学过程一、创设情境,导入新课在物理课中,我们学过功得概念,即如果一个物体在力F得作用下产生位移s,那么力F所做得功W可由下式计算:W=|F | | s|cosθ,其中θ就是F与s得夹角.我们知道力与位移都就是向量,而功就是一个标量(数量).故从力所做得功出发,我们就顺其自然地引入向量数量积得概念.二、主题探究,合作交流提出问题①a·b得运算结果就是向量还就是数量?它得名称就是什么?②由所学知识可以知道,任何一种运算都有其相应得运算律,数量积就是一种向量得乘法运算,它就是否满足实数得乘法运算律?师生活动:已知两个非零向量a与b,我们把数量|a||b|cosθ叫做a与b得数量积(或内积),记作a·b,即a·b=|a||b|cosθ(0≤θ≤π).其中θ就是a与b得夹角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)得投影.在教师与学生一起探究得活动中,应特别点拨引导学生注意:(1)两个非零向量得数量积就是个数量,而不就是向量,它得值为两向量得模与两向量夹角得余弦得乘积;(2)零向量与任一向量得数量积为0,即a·0=0;(3)符号“·”在向量运算中不就是乘号,既不能省略,也不能用“×”代替;(4)当0≤θ<时cosθ>0,从而a·b>0;当<θ≤π时,cosθ<0,从而a·b<0.与学生共同探究并证明数量积得运算律.已知a、b、c与实数λ,则向量得数量积满足下列运算律:①a·b=b·a(交换律);②(λa)·b=λ(a·b)=a·(λb)(数乘结合律);③(a+b)·c=a·c+b·c(分配律).特别就是:(1)当a≠0时,由a·b=0不能推出b一定就是零向量.这就是因为任一与a垂直得非零向量b,都有a·b=0.注意:已知实数a、b、c(b≠0),则ab=bca=c.但对向量得数量积,该推理不正确,即a·b=b·c不能推出a=c.由上图很容易瞧出,虽然a·b=b·c,但a≠c.对于实数a、b、c有(a·b)c=a(b·c);但对于向量a、b、c,(a·b)c=a(b·c)不成立.这就是因为(a·b)c表示一个与c共线得向量,而a(b·c)表示一个与a共线得向量,而c与a不一定共线,所以(a·b)c=a(b·c)不成立.提出问题①如何理解向量得投影与数量积?它们与向量之间有什么关系?②能用“投影”来解释数量积得几何意义吗?师生活动:教师引导学生来总结投影得概念,可以结合“探究”,让学生用平面向量得数量积得定义,从数与形两个角度进行探索研究.教师给出图形并作结论性得总结,提出注意点“投影”得概念,如下图.定义:|b|cosθ叫做向量b在a方向上得投影.并引导学生思考、A、投影也就是一个数量,不就是向量;B、当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ=0°时投影为|b|;当θ=180°时投影为-|b|.教师结合学生对“投影”得理解,让学生总结出向量得数量积得几何意义:数量积a·b等于a得长度与b在a方向上投影|b|cosθ得乘积.让学生思考:这个投影值可正、可负,也可为零,所以我们说向量得数量积得结果就是一个实数.教师与学生共同总结两个向量得数量积得性质:设a、b为两个非零向量,θ为两向量得夹角,e就是与b同向得单位向量.A、e·a=a·e=|a|cosθ.B、a⊥ba·b=0.C、当a与b同向时,a·b=|a||b|;当a与b反向时,a·b=-|a||b|.特别地a·a=|a|2或|a|=.D、cosθ=.E、|a·b|≤|a||b|.上述性质要求学生结合数量积得定义自己尝试推证,教师给予必要得补充与提示,在推导过程中理解并记忆这些性质.讨论结果:①略.②向量得数量积得几何意义为数量积a·b等于a得长度与b在a方向上投影|b|co sθ得乘积.三、拓展创新,应用提高例1 已知|a|=5,|b|=4,a与b得夹角为120°,求a·b活动:教师引导学生利用向量得数量积并结合两向量得夹角来求解.解:a·b=|a||b|cosθ=5×4×cos120°=5×4×()=-10.点评: 确定两个向量得夹角,利用数量积得定义求解.例 2 我们知道,对任意a,b∈R,恒有(a+b)2=a2+2ab+b2,(a+b)(a-b)=a2-b2.对任意向量a、b,就是否也有下面类似得结论?(1)(a+b)2=a2+2a·b+b2;(2)(a+b)·(a-b)=a2-b2.解:(1)(a+b)2=(a+b)·(a+b)=a·b+a·b+b·a+b·b=a2+2a·b+b2;(2)(a+b)·(a-b)=a·a-a·b+b·a-b·b=a2-b2.例3已知|a|=6,|b|=4,a与b得夹角为60°,求(a+2b)·(a-3b).解:(a+2b)·(a-3b)=a·a-a·b-6b·b=|a|2-a·b-6|b|2=|a|2-|a||b|cosθ-6|b|2=62-6×4×cos60°-6×42=-72.例4已知|a|=3,|b|=4,且a与b不共线,当k为何值时,向量a+k b与a-kb互相垂直?解:a+kb与a-k b互相垂直得条件就是(a+kb)·(a-k b)=0,即a2-k2b2=0.∵a2=32=9,b2=42=16,∴9-16k2=0.∴k=±.也就就是说,当k=±时,a+kb与a-k b互相垂直.点评:本题主要考查向量得数量积性质中垂直得充要条件.四、小结1.先由学生回顾本节学习得数学知识,数量积得定义、几何意义,数量积得重要性质,数量积得运算律.2.教师与学生总结本节学习得数学方法,归纳类比、定义法、数形结合等.在领悟数学思想方法得同时,鼓励学生多角度、发散性地思考问题,并鼓励学生进行一题多解.课堂作业1.已知a,b,c就是非零向量,则下列四个命题中正确得个数为( )①|a·b|=|a||b|a∥b②a与b反向a·b=-|a||b|③a⊥b|a+b|=|a-b| ④|a|=|b||a·c|=|b·c|A.1 B.2 C.3 D.42.有下列四个命题:①在△ABC中,若·>0,则△ABC就是锐角三角形;②在△ABC中,若·>0,则△ABC为钝角三角形;③△ABC为直角三角形得充要条件就是·=0;④△ABC为斜三角形得充要条件就是·≠0.其中为真命题得就是()A.①ﻩB.②ﻩC.③ D.④3.设|a|=8,e为单位向量,a与e得夹角为60°,则a在e方向上得投影为()A.4ﻩB.4C.42D.8+4.设a、b、c就是任意得非零平面向量,且它们相互不共线,有下列四个命题:①(a·b)c-(c·a)b=0; ②|a|-|b|<|a-b|;③(b·c)a-(c·a)b不与c垂直; ④(3a+2b)·(3a-2b)=9|a|2-4|b|2.其中正确得就是( )A.①②B.②③ C.③④D.②④5.在△ABC中,设=b,=c,则等于( )A.0B.S△ABCC.S△ABCD.2S△ABC6.设i,j就是平面直角坐标系中x轴、y轴方向上得单位向量,且a=(m+1)i-3j,b=i+(m-1)j,如果(a+b)⊥(a-b),则实数m=_____________.7.若向量a、b、c满足a+b+c=0,且|a|=3,|b|=1,|c|=4,则a·b+b·c+c·a=_________.参考答案:1.C 2.B 3.B 4.D 5.D 6.-2 7.-13第2课时教学目标一、知识与技能1.掌握平面向量数量积运算规律、2.能利用数量积得性质及数量积运算规律解决有关问题、3.掌握两个向量共线、垂直得几何判断,会证明两向量垂直,以及能解决一些简单问题.二、过程与方法教师应在坐标基底向量得数量积得基础上,推导向量数量积得坐标表示.通过例题分析、课堂训练,让学生总结归纳出对于向量得坐标、数量积、向量所成角及模等几个因素,知道其中一些因素,求出其她因素基本题型得求解方法.平面向量数量积得坐标表示就是在学生学习了平面向量得坐标表示与平面向量数量积得基础上进一步学习得,这都为数量积得坐标表示奠定了知识与方法基础.三、情感、态度与价值观通过平面向量数量积得坐标表示,进一步加深学生对平面向量数量积得认识,提高学生得运算速度,培养学生得运算能力,培养学生得创新能力,提高学生得数学素质.教学重点、难点教学重点:平面向量数量积得坐标表示.教学难点:向量数量积得坐标表示得应用.教学关键:平面向量数量积得坐标表示得理解.教学突破方法:教师应在坐标基底向量得数量积得基础上,推导向量数量积得坐标表示.并通过练习,使学生掌握数量积得应用.教法与学法导航教学方法:启发诱导,讲练结合、学习方法:主动探究,练习巩固.教学准备教师准备:多媒体、尺规、学生准备:练习本、尺规、教学过程一、创设情境,导入新课前面我们学习了平面向量得坐标表示与坐标运算,以及平面向量得数量积,那么,能否用坐标表示平面向量得数量积呢?若能,如何表示呢?由此又能产生什么结论呢?本节课我们就来研究这个问题.(板书课题)二、主题探究,合作交流提出问题:①已知两个非零向量a=(x1,y1),b=(x2,y2),怎样用a与b得坐标表示a·b呢?②怎样用向量得坐标表示两个平面向量垂直得条件?③您能否根据所学知识推导出向量得长度、距离与夹角公式?师生活动:教师引导学生利用前面所学知识对问题进行推导与探究.提示学生在向量坐标表示得基础上结合向量得坐标运算进行推导数量积得坐标表示.教师可以组织学生到黑板上板书推导过程,教师给予必要得提示与补充.推导过程如下:∵a=x1i+y1j,b=x2i+y2j,∴a·b=(x1i+y1j)·(x2i+y2j)=x1x2i2+x1y2i·j+x2y1i·j+y1y2j2.又∵i·i=1,j·j=1,i·j=j·i=0,∴a·b=x1x2+y1y2.教师给出结论性得总结,由此可归纳如下:A、平面向量数量积得坐标表示两个向量得数量积等于它们对应坐标得乘积得与,即a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.B、向量模得坐标表示若a=(x,y),则|a|2=x2+y2,或|a|=.如果表示向量a得有向线段得起点与终点得坐标分别为(x1,y1)、(x2,y2),那么a=(x2-x1,y2-y1),|a|=C、两向量垂直得坐标表示设a=(x1,y1),b=(x2,y2),则a⊥b x1x2+y1y2=0.D、两向量夹角得坐标表示设a、b都就是非零向量,a=(x1,y1),b=(x2,y2),θ就是a与b得夹角,根据向量数量积得定义及坐标表示,可得cosθ=三、拓展创新,应用提高例1已知A(1,2),B(2,3),C(-2,5),试判断△ABC得形状,并给出证明.活动:教师引导学生利用向量数量积得坐标运算来解决平面图形得形状问题.判断平面图形得形状,特别就是三角形得形状时主要瞧边长就是否相等,角就是否为直角.可先作出草图,进行直观判定,再去证明.在证明中若平面图形中有两个边所在得向量共线或者模相等,则此平面图形与平行四边形有关;若三角形得两条边所在得向量模相等或者由两边所在向量得数量积为零,则此三角形为等腰三角形或者为直角三角形.教师可以让学生多总结几种判断平面图形形状得方法.解:在平面直角坐标系中标出A(1,2),B(2,3),C(-2,5)三点,我们发现△ABC就是直角三角形.下面给出证明.∵=(2-1,3-2)=(1,1),=(-2-1,5-2)=(-3,3),∴·=1×(-3)+1×3=0.∴⊥.∴△ABC就是直角三角形.点评:本题考查得就是向量数量积得应用,利用向量垂直得条件与模长公式来判断三角形得形状.当给出要判定得三角形得顶点坐标时,首先要作出草图,得到直观判定,然后对您得结论给出充分得证明.例2设a=(5,-7),b=(-6,-4),求a·b及a、b间得夹角θ(精确到1°).解:a·b=5×(-6)+(-7)×(-4)=-30+28=-2.|a|=,|b|=由计算器得cosθ=≈-0.03.利用计算器得θ≈1.6rad=92°.四、小结1.在知识层面上,先引导学生归纳平面向量数量积得坐标表示,向量得模,两向量得夹角,向量垂直得条件.其次引导学生总结数量积得坐标运算规律,夹角与距离公式、两向量垂直得坐标表示.2.在思想方法上,教师与学生一起回顾探索过程中用到得思维方法与数学思想方法,定义法,待定系数法等.课堂作业1.若a=(2,-3),b=(x,2x),且a·b=,则x等于()A.3B.C.ﻩD.-32.设a=(1,2),b=(1,m),若a与b得夹角为钝角,则m得取值范围就是( )A.m>B.m< C.m> D.m<3.若a=(cosα,sinα),b=(cosβ,sinβ),则( )A.a⊥bB.a∥bC.(a+b)⊥(a-b)D.(a+b)∥(a-b)4.与a=(u,v)垂直得单位向量就是( )A.()B.()C.()D.()或()5.已知向量a=(cos23°,cos67°),b=(cos68°,cos22°),u=a+t b(t∈R),求u得模得最小值.6.已知a,b都就是非零向量,且a+3b与7a-5b垂直,a-4b与7a-2b垂直,求a与b得夹角.7.已知△ABC得三个顶点为A(1,1),B(3,1),C(4,5),求△ABC得面积.参考答案:1.C2.D 3.C 4.D5.|a|==1,同理有|b|=1.又a·b=cos23°cos68°+cos67°cos22°=cos23°cos68°+sin23°sin68°=cos45°=,∴|u|2=(a+t b)2=a2+2t a·b+t2b2=t2+t+1=(t+)2+≥.当t=时,|u|min=.6.由已知(a+3b)⊥(7a-5b)(a+3b)·(7a-5b)=07a2+16a·b-15b2=0.①又(a-4b)⊥(7a-2b)(a-4b)·(7a-2b)=07a2-30a·b+8b2=0. ②①-②得46a·b=23b2,即a·b=③将③代入①,可得7|a|2+8|b|2-15|b|2=0,即|a|2=|b|2,有|a|=|b|,∴若记a与b得夹角为θ,则cosθ=.又θ∈[0°,180°],∴θ=60°,即a与b得夹角为60°.7.分析:S△ABC=||||sin∠BAC,而||,||易求,要求sin∠BAC可先求出cos∠BA C.解:∵=(2,0),=(3,4),||=2,||=5,∴cos∠BAC=.∴sin∠BAC=.∴S△ABC=||||sin∠BAC=×2×5×=4.教案 B第一课时教学目标一、知识与技能1、了解平面向量数量积得物理背景,理解数量积得含义及其物理意义;2、体会平面向量得数量积与向量投影得关系,理解掌握数量积得性质与运算律,并能运用性质与运算律进行相关得判断与运算.二、过程与方法体会类比得数学思想与方法,进一步培养学生抽象概括、推理论证得能力.三、情感、态度与价值观通过自主学习、主动参与、积极探究,学生能感受数学问题探究得乐趣与成功得喜悦,增加学习数学得自信心与积极性,并养成良好得思维习惯.教学重点平面向量数量积得定义,用平面向量得数量积表示向量得模、夹角.教学难点平面向量数量积得定义及运算律得理解,平面向量数量积得应用.教具多媒体、实物投影仪.内容分析本节学习得关键就是启发学生理解平面向量数量积得定义,理解定义之后便可引导学生推导数量积得运算律,然后通过概念辨析题加深学生对于平面向量数量积得认识.主要知识点:平面向量数量积得定义及几何意义;平面向量数量积得3个重要性质;平面向量数量积得运算律.教学流程概念引入→概念获得→简单运用→运算律探究→理解掌握→反思提高教学设想:一、情境设置:问题1:回忆一下物理中“功”得计算,功得大小与哪些量有关?结合向量得学习您有什么想法?力做得功:W= ||⋅||cosθ,θ就是与得夹角.(引导学生认识功这个物理量所涉及得物理量,从“向量相乘”得角度进行分析)二、新课讲解1.平面向量数量积(内积)得定义:已知两个非零向量a与b,它们得夹角就是θ,则数量|a||b|cosθ叫a与b得数量积,记作a⋅b,即有a⋅b= |a||b|cosθ,(0≤θ≤π).并规定:0与任何向量得数量积为0.问题2:定义中涉及哪些量?它们有怎样得关系?运算结果还就是向量吗?(引导学生认清向量数量积运算定义中既涉及向量模得大小,又涉及向量得交角,运算结果就是数量)注意:两个向量得数量积与向量同实数积有很大区别.(1)两个向量得数量积就是一个实数,不就是向量,符号由cosθ得符号所决定.(2)两个向量得数量积称为内积,写成a⋅b;今后要学到两个向量得外积a×b,而a⋅b就是两个向量得数量得积,书写时要严格区分.符号“·”在向量运算中不就是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若a≠0,且a⋅b=0,则b=0;但就是在数量积中,若a≠0,且a⋅b=0,不能推出b=0.因为其中cosθ有可能为0.(4)已知实数a、b、c(b≠0),则ab=bc ⇒a=c.但就是在向量得数量积中,a⋅b= b⋅c 推导不出a= c、如下图:a⋅b= |a||b|cosβ = |b||OA|,b⋅c= |b||c|cosα = |b||OA|⇒a⋅b=b⋅c,但a≠c、(5)在实数中,有(a⋅b)c = a(b⋅c),但就是在向量中,(a⋅b)c≠a(b⋅c)显然,这就是因为左端就是与c共线得向量,而右端就是与a共线得向量,而一般a 与c不共线.( “投影”得概念):作图2.定义:|b|cosθ叫做向量b在a方向上得投影.投影也就是一个数量,不就是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ=0︒时投影为|b|;当θ =180︒时投影为-|b|.3.向量得数量积得几何意义:数量积a⋅b等于a得长度与b在a方向上投影|b|cosθ得乘积.例1已知平面上三点A、B、C满足||=2,||=1,||=,求·+·+.得值、解:由已知,||2+||2=||2,所以△ABC就是直角三角形、而且∠ACB=90°,从而sin∠ABC=,sin∠BAC=、∴∠ABC=60°,∠BAC=30°、∴与得夹角为120°,与得夹角为90°,与得夹角为150°、故·+·+·=2×1×cos120°+1×cos90°+×2cos150°=-4、点评:确定两个向量得夹角,应先平移向量,使它们得起点相同,再考察其角得大小,而不就是简单地瞧成两条线段得夹角,如例题中与得夹角就是120°,而不就是60°、探究1:非零向量得数量积就是一个数量,那么它何时为正,何时为0,何时为负?当0°≤θ<90°时a·b为正;当θ =90°时a·b为零;90°<θ ≤180°时a·b为负、探究2:两个向量得夹角决定了它们数量积得符号,那么它们共线或垂直时,数量积有什么特殊性呢?4.两个向量得数量积得性质:设a、b为两个非零向量.(1)a⊥b⇔a⋅b=0.(2)当a与b同向时,a⋅b= |a||b|;当a与b反向时,a⋅b= -|a||b|.特别得a⋅a=|a|2或.(3) |a⋅b|≤|a||b|.公式变形:cosθ =探究3:对一种运算自然会涉及运算律,回忆过去研究过得运算律,向量得数量积应有怎样得运算律?(引导学生类比得出运算律,老师作补充说明)向量a、b、c与实数λ,有(1) a⋅b= b⋅a(2)(λa)⋅b= λ(a⋅ b )=a⋅(λb)(3)(a +b)⋅ c= a·c+b⋅ c(进一步)您能证明向量数量积得运算律吗?(引导学生证明(1)、(2))例2 判断正误:①a·0=0;②0·a=0;③0-=;④|a·b|=|a||b|;⑤若a≠0,则对任一非零b有a·b≠0;⑥a·b=0,则a与b中至少有一个为0;⑦对任意向量a,b,с都有(a·b)с=a(b·с);⑧a 与b就是两个单位向量,则a2=b2.上述8个命题中只有②③⑧正确;例3已知|a|=3,|b|=6,当①a∥b,②a⊥b,③a与b得夹角就是60°时,分别求a·b.解:①当a∥b时,若a与b同向,则它们得夹角θ=0°,∴a·b=|a|·|b|cos0°=3×6×1=18;若a与b反向,则它们得夹角θ=180°,∴a·b=|a||b|cos180°=3×6×(-1)=-18;②当a⊥b时,它们得夹角θ=90°,∴a·b=0;③当a与b得夹角就是60°时,有a·b=|a||b|cos60°=3×6×=9.评述:两个向量得数量积与它们得夹角有关,其范围就是[0°,180°],因此,当a∥b时,有0°或180°两种可能.评述:这一类型题,要求学生确实把握好数量积得定义、性质、运算律.三、课堂练习1.已知|a|=1,|b|=,且(a-b)与a垂直,则a与b得夹角就是()A.60° B.30°C.135° D.45°2.已知|a|=2,|b|=1,a与b之间得夹角为,那么向量m=a-4b得模为( )A.2 B.2 C.6D.123.已知a、b就是非零向量,若|a|=|b|则(a+b)与(a-b)、4.已知向量a、b得夹角为,|a|=2,|b|=1,则|a+b|·|a-b|=.5.已知a+b=2i-8j,a-b=-8i+16j,其中i、j就是直角坐标系中x轴、y轴正方向上得单位向量,那么a·b=.6.已知|a|=1,|b|=,(1)若a∥b,求a·b;(2)若a、b得夹角为45°,求|a+b|;(3)若a -b与a垂直,求a与b得夹角.参考答案:1.D2.B3.垂直 4. 5.-36、解:(1)若a、b方向相同,则a·b=;若a、b方向相反,则a·b=;(2)|a+b|=.(3)45°.四、知识小结(1)通过本节课得学习,您学到了哪些知识?(2)关于向量得数量积,您还有什么问题?五、课后作业教材第108页习题2.4A组1、2、3、6、7教学后记数学课堂教学应当就是数学知识得形成过程与方法得教学,数学活动就是以学生为主体得活动,没有学生积极参与得课堂教学就是失败得.本节课教学设计按照“问题——讨论——解决”得模式进行,并以学生为主体,教师以课堂教学得引导者、评价者、组织者与参与者同学生一起探索平面向量数量积定义、性质与运算律得形成与发展过程.始终做到以“学生为主体、教师为主导、思维为主攻、训练为主线”.第2课时教学目标一、知识与技能掌握平面向量得数量积坐标运算及应用.二、过程与方法1、通过平面向量数量积得坐标运算,体会向量得代数性与几何性、2、从具体应用体会向量数量积得作用.三、情感、态度与价值观学会对待不同问题用不同得方法分析得态度、教学重点、难点教学重点:平面向量数量积得坐标表示、教学难点:平面向量数量积得坐标表示得综合运用、教具多媒体、实物投影仪、教学设想一、复习引入向量得坐标表示,为我们解决有关向量得加、减、数乘运算带来了极大得方便.上一节,我们学习了平面向量得数量积,那么向量得坐标表示,对平面向量得数量积得表示方式又会带来哪些变化呢?由此直接进入主题.二、探究新知:⒈平面两向量数量积得坐标表示已知两个非零向量,,试用与得坐标表示.设就是轴上得单位向量,就是轴上得单位向量,那么,.所以.又,,,所以.这就就是说:两个向量得数量积等于它们对应坐标得乘积得与.即.2.平面内两点间得距离公式(1)设,则或.如果表示向量得有向线段得起点与终点得坐标分别为、,那么(平面内两点间得距离公式).(2)向量垂直得判定设,,则ﻩ.(3)两非零向量夹角得余弦()cosθ=.三、例题讲解例1已知a=(3,-1),b = (1, 2),求满足x⋅a = 9与x⋅b = -4得向量x.解:设x = (t,s),由、∴x= (2,-3)、例2 已知a=(1,),b=(+1,-1),则a与b得夹角就是多少?分析:为求a与b夹角,需先求a·b及|a|·|b|,再结合夹角θ得范围确定其值.解:由a=(1,),b=(+1,-1)、有a·b=+1+(-1)=4,|a|=2,|b|=2.记a与b得夹角为θ,则cosθ=、又∵0≤θ≤π,∴θ=、评述:已知三角形函数值求角时,应注重角得范围得确定.例3如图,以原点与A(5, 2)为顶点作等腰直角△OAB,使∠B=90︒,求点B 与向量得坐标.解:设B点坐标(x, y),则= (x, y),=(x-5, y-2)、∵⊥∴x(x-5)+ y(y-2) = 0即:x2 + y2-5x- 2y = 0、又∵||= || ∴x2 +y2= (x-5)2 + (y-2)2即:10x +4y= 29、由、∴B点坐标或;=或、例4在△ABC中,=(2, 3),=(1,k),且△ABC得一个内角为直角,求k值. 解:当∠A = 90︒时,⋅=0,∴2×1+3×k = 0,∴k =.当∠B = 90︒时,⋅=0,=-=(1-2, k-3)= (-1, k-3),∴2×(-1) +3×(k-3) =0 ∴k=.当∠C=90︒时,⋅= 0,∴-1+ k(k-3) =0,∴k =.四、小结1.本节课得内容:有关公式、结论(由学生归纳、总结)、2.本节课得思想方法:数形结合思想、分类讨论思想、方程(组)思想等、五、课外作业教材第107页练习.。
苏教版高中高二数学必修4《向量的数量积》教案及教学反思一、教案设计1. 教学目标1.理解向量数量积的概念和特点;2.掌握向量数量积的计算方法;3.运用向量数量积解决几何问题。
2. 教学难点1.向量数量积的概念和特点的理解;2.向量数量积的计算方法的掌握;3.运用向量数量积解决几何问题的能力。
3. 教学重点1.向量数量积的概念和特点的理解;2.向量数量积的计算方法的掌握。
4. 教学方法1.探究法;2.演示法;3.练习法;4.归纳法。
5. 教学内容1.向量数量积的概念;2.向量数量积的计算方法;3.向量数量积的性质;4.向量数量积在几何问题中的应用。
6. 教学过程(1) 导入新课教师将一张图片放在黑板上,上面画有一只猎人和一只飞禽。
请学生思考以下问题:1.猎人用什么手段来抓飞禽?2.飞禽飞行时用什么力量来行进?3.猎人与飞禽之间有什么关系?经过学生讨论,引出向量的概念,并简要介绍向量的加减和数量积。
(2) 学习新课1.向量数量积的定义:$ \mathbf{a} \cdot\mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos\theta $,其中 $\\mathbf{a}$ 和 $\\mathbf{b}$ 分别为向量$\\boldsymbol{OA}$ 和 $\\boldsymbol{OB}$,$\\theta$ 为 $\\boldsymbol{OA}$ 和$\\boldsymbol{OB}$ 的夹角。
2.向量数量积的性质:交换律、分配律、数量积为0的充要条件是 $\\boldsymbol{OA}$ 与$\\boldsymbol{OB}$ 垂直。
3.向量数量积的应用。
(3) 练习1.根据上述内容,让学生完成以下例题:例题:已知向量 $\\mathbf{a} = \\boldsymbol{OA}$,$\\mathbf{b} = \\boldsymbol{OB}$,$\\mathbf{c} =\\boldsymbol{OC}$,$\\boldsymbol{OA} = 2\\boldsymbol{i} + \\boldsymbol{j}$,$\\boldsymbol{OB} = \\boldsymbol{i} + 3\\boldsymbol{j}$,$\\boldsymbol{OC} =3\\boldsymbol{i} + 4\\boldsymbol{j}$,求$\\boldsymbol{OA} \\cdot \\boldsymbol{OB}$ 和$\\boldsymbol{AB}$ 的夹角。
2.4 向量的数量积整体设计教学分析课本从学生熟知的功的概念出发,引出了平面向量数量积的概念及其几何意义,接着介绍了向量数量积的5个重要性质、运算律.向量的数量积把向量的长度和三角函数联系起来,这样为解决三角形的有关问题提供了方便,特别能有效地解决线段的垂直问题.因此利用向量运算可以讨论一些几何元素的位置关系.既然向量可以进行加减运算,一个自然的想法是两个向量能否做乘法运算呢?如果能,运算结果应该是什么呢?另外,距离和角是刻画几何元素(点、线、面)之间度量关系的基本量我们需要一个向量运算来反映向量的长度和两个向量间夹角的关系.众所周知,向量概念的引入与物理学的研究密切相关,物理学家很早就知道,如果一个物体在力F的作用下产生位移s(如图1),那么力F所做的功图1W=|F||s|cosθ.功W是一个数量,其中既涉及“长度”,也涉及“角”,而且只与向量F,s有关.熟悉的数的运算启发我们把上式解释为两个向量的运算,从而引进向量的数量积的定义a²b=|a||b|cosθ.这个定义不仅满足人们熟悉的运算律(如交换律、分配律等),而且还可以用它来更加简捷地表述几何中的许多结果.向量的数量积是一种新的向量运算,与向量的加法、减法、数乘运算一样,它也有明显的物理意义、几何意义.但与向量的线性运算不同的是,它的运算结果不是向量而是数量.平面向量的数量积,教材将其分为两部分,在第一部分向量的数量积中,首先研究平面向量所成的角,其次,介绍了向量数量积的定义,最后研究了向量数量积的基本运算法则和基本结论;在第二部分平面向量数量积的坐标表示中,在平面向量数量积的坐标表示的基础上,利用数量积的坐标表示研讨了平面向量所成角的计算方式,得到了两向量垂直的判定的方法.本节课可采用“启发探索”式的教学方法,从教材内容看,由于前面已经学习了平面向量的线性运算的坐标表示,因此在教学中运用指导探究为教学的主线,通过启发引导学生运用科学的思维方法进行自主探索,将学生的独立思考、自主探究、交流讨论等探索活动贯穿于课堂教学的全过程,突出学生的主体地位.三维目标1.通过经历探究过程,掌握平面向量的数量积及其几何意义;掌握平面向量数量积的重要性质及运算律;了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,并掌握向量垂直的条件.2.通过问题的解决,培养学生观察问题、分析问题和解决问题的实际操作能力;培养学生的交流意识、合作精神;培养学生叙述表达自己解题思路和探索问题的能力.3.通过探究平面向量的数量积的坐标运算,掌握两个向量数量积的坐标表示方法;掌握两个向量垂直的坐标条件以及能运用两个向量的数量积的坐标表示解决有关长度、角度、垂直等几何问题.4.通过平面向量数量积的坐标表示,进一步加深学生对平面向量数量积的认识,提高学生的运算速度,培养学生的运算能力,培养学生的创新能力,提高学生的数学素质.重点难点教学重点:平面向量数量积的定义,平面向量数量积的坐标表示.教学难点:平面向量数量积的定义及其运算律的理解和平面向量数量积的应用,平面向量坐标表示的应用.课时安排2课时教学过程第1课时导入新课思路1.我们前面知道向量概念的原型就是物理中的力、速度、位移以及几何中的有向线段等概念,向量是既有大小、又有方向的量,它与物理学中的力学、运动学等有着天然的联系,将向量这一工具应用到物理中,可以使物理题解答地更简捷、更清晰.并且向量知识不仅是解决物理许多问题的有利工具,而且用数学的思想方法去审视相关物理现象,研究相关物理问题,可使我们对物理问题认识更深刻.物理中有许多量,比如力、速度、加速度、位移等都是向量,这些物理现象都可以用向量来研究.在物理课中,我们学过功的概念,即如果一个物体在力F 的作用下产生位移s ,那么力F 所做的功W 可由下式计算:W =|F||s |cos θ.其中θ是F 与s 的夹角.我们知道力和位移都是向量,而功是一个标量(数量). 故从力所做的功出发,我们就顺其自然的引入向量数量积的概念.思路2.前面我们已学过,任意的两个向量都可以进行加减运算,并且两个向量的和与差仍是一个向量.我们结合任意的两个实数之间可以进行加减乘除(除数不为零)运算,就自然地会想到,任意的两个向量是否可以进行乘法运算呢?如果能,其运算结果是什么呢?推进新课新知探究1.平面向量数量积的概念,向量的夹角. 2.数量积的重要性质及运算律. 3.两向量垂直的条件.活动:已知两个非零向量a 与b ,我们把数量|a||b |cos θ叫做a 与b 的数量积(或内积),记作a²b ,即a²b =|a||b |cos θ(0≤θ≤π),其中θ是a 与b 的夹角.图2为两向量数量积的关系,并且可以知道向量夹角的范围是0°≤θ≤180°.图2教师在与学生的一起探究活动中,应特别点拨引导学生注意:(1)两个非零向量的数量积是个数量,而不是向量,它的值为两向量的模与两向量夹角的余弦的乘积;(2)零向量与任一向量的数量积为0,即a ²0=0;(3)符号“²”在向量运算中不是乘号,既不能省略,也不能用“³”代替; (4)当0≤θ<π2时cos θ>0,从而a²b >0;当π2<θ≤π时,cos θ<0,从而a²b <0.与学生共同探究并证明数量积的运算律.已知a,b,c和实数λ,则向量的数量积满足下列运算律:①a²b=b²a(交换律);②(λa)²b=λ(a²b)=a²(λb)(数乘结合律);③(a+b)²c=a²c+b²c(分配律).特别是:(1)当a≠0时,由a²b=0不能推出b一定是零向量.这是因为任一与a垂直的非零向量b,都有a²b=0.(2)已知实数a、b、c(b≠0),则ab=bc a=c,但对向量的数量积,该推理不正确,即a²b=b²c不能推出a=c.由图3很容易看出,虽然a²b=b²c,但a≠c.图3(3)对于实数a、b、c有(a²b)c=a(b²c),但对于向量a、b、c,(a²b)c=a(b²c)不成立.这是因为(a²b)c表示一个与c共线的向量,而a(b²c)表示一个与a共线的向量,而c与a不一定共线,所以(a²b)c=a(b²c)不成立.讨论结果:由向量数量积的定义可知,当a与b同向时,a²b=|a||b|;当a与b反向时,a²b=-|a||b|.特别地,a²a=|a|2或|a|=a²a.应用示例思路1例1见课本本节例1.例2已知|a|=3,|b|=4,且a 与b 不共线.当k 为何值时,向量a +k b 与a -k b 互相垂直?活动:教师引导学生利用数量积的性质来求两向量垂直需满足的条件,教师可让学生独立完成,可找几个学生到黑板上去演练.解:a +k b 与a -k b 互相垂直的条件是(a +k b )²(a -k b )=0, 即a 2-k 2b 2=0.∵a 2=32=9,b 2=42=16, ∴9-16k 2=0. ∴k=±34.也就是说,当k =±34时,a +k b 与a -k b 互相垂直.点评:本题主要考查向量的数量积性质中垂直的条件.思路2例1已知四边形ABCD 中,AB →=a ,BC →=b ,CD →=c ,DA →=d ,且a²b =c²d =b²c =d²a ,试问四边形ABCD 的形状如何?活动:教师引导学生总结如何判断四边形的形状.利用向量的关系来判断四边形的形状,就是借助两个向量的共线或者垂直来判断四边形是平行四边形或是矩形.教师先让学生明确四边形各边的位置关系与长度关系,这可以借助向量的有关运算来完成.解:∵AB →+BC →+CD →+DA →=0,即a +b +c +d =0, ∴a +b =-(c +d ).由上可得(a +b )2=(c +d )2,即a 2+2a²b +b 2=c 2+2c²d +d 2. 又∵a²b =c²d ,故a 2+b 2=c 2+d 2. 同理,可得a 2+d 2=b 2+c 2. 由上两式可得a 2=c 2,且b 2=d 2.即|a|=|c|,且|b|=|d |,也即AB =CD ,且BC =DA. ∴四边形ABCD 是平行四边形. 故AB →=-CD →,即a =-c .又a²b =b²c =-a²b ,即a²b =0, ∴a ⊥b .即AB →⊥BC →.综上所述,四边形ABCD 是矩形.点评:本题考查的是向量数量积的性质应用,利用向量的数量积解决有关垂直问题,然后结合四边形的特点进而判断四边形的形状.例2已知a ,b 是两个非零向量,且|a |=|b |,|b |=|a +b |,求向量b 与a -b 的夹角.解:∵|b|=|a +b|,|b|=|a|,∴b 2=(a +b )2. ∴|b|2=|a|2+2a²b +|b|2. ∴a²b =-12|b|2.而b²(a -b )=b²a -b 2=-12|b|2-|b|2=-32|b |2,①由(a -b )2=a 2-2a²b +b 2=|b|2-2³(-12)|b|2+|b|2=3|b|2, 而|a -b|2=(a -b )2=3|b|2, ∴|a -b|=3|b|.②设a 与a -b 的夹角为θ,则cos θ=b² a-b|b||a -b|,代入①②,得cos θ=-32|b|2|b|³3|b|=-32.又∵θ∈[0,π], ∴θ=5π6.点评:本题考查的是利用平面向量的数量积解决有关夹角的问题,解完后教师及时引导学生对本解法进行反思、总结、体会.知能训练判断正误,并简要说明理由.①a ²0=0;②0²a =0;③0-AB →=BA →;④|a²b|=|a||b |;⑤若a ≠0,则对任一非零b 有a²b ≠0;⑥a²b =0,则a 与b 中至少有一个为0;⑦对任意向量a ,b ,c 都有(a²b )c=a (b²c );⑧a 与b 是两个单位向量,则a 2=b 2.解:上述8个命题中只有③⑧正确.对于①,两个向量的数量积是一个实数,应有0²a =0; 对于②,应有0²a =0;对于④,由数量积定义有|a²b|=|a||b ||cos θ|≤|a||b |,这里θ是a 与b 的夹角,只有θ=0或θ=π时,才有|a ²b|=|a||b |;对于⑤,若非零向量a 、b 垂直,有a²b =0; 对于⑥,由a²b =0可知a ⊥b ,可以都非零; 对于⑦,若a 与c 共线,记a =λc , 则a²b =(λc )²b =λ(c²b )=λ(b²c ), ∴(a²b )c =λ(b²c )c =(b²c )λc =(b²c )a . 若a 与c 不共线,则(a²b )c ≠(b²c )a .课堂小结1.先由学生回顾本节学习的数学知识,数量积的定义、运算,数量积的重要性质,数量积的运算律.2.教师与学生总结本节学习的数学方法:归纳类比、定义法、数形结合等.在领悟数学思想方法的同时,鼓励学生多角度、发散性的思考问题,并鼓励学生进行一题多解.作业课本习题2.4 1、2、3、4、5.设计感想1.本节的重点是平面向量数量积的概念,以及平面向量数量积的运算律,难点是平面向量数量积的应用.利用平面向量的数量积可以解决一些垂直问题,或者解决有关夹角问题.我们发现向量的引入使高中物理学科中的矢量理论有了数学依据,两门学科相互呼应,既可以促进高中学生对两门学科知识更好地理解和吸收,也有助于理科学生高中学习后期整个知识结构体系的整合.其实,“向量”和“矢量”是在数学和物理两门学科对同一量的两种不同称呼而已.在物理学中,矢量是相对于有大小而没有方向的“标量”的另一类重要物理量.几乎全部的高中物理学理论都是通过这两类量来阐释的.矢量广泛地应用于力学(如力,速度,加速度等)和电学(如电流方向,电场强度等)理论之中,在高中新教材中引入向量的数量积后,物理中的功和压强等就自然地形成.对向量进行系统深入的学习和研究,对学生在物理课上学习和理解矢量和标量的知识无疑将提供一个数学根据和许多运算便利.同样,学生在物理课上碰到的与矢量有关的物理实际又会使他们对向量有更深入的了解,并激发他们学习向量知识的兴趣和热情.如在力学中,对力、速度等的分解和合成,使用的就是向量的加减理论,数学和物理的完美结合,起到异曲同工之作用.2.本节的重要性是显而易见的,但本节有几个常见思维误区:不能正确理解向量夹角的定义,对于两个向量夹角的定义是指同一点出发的两个向量所构成的较小的非负角,因此向量夹角定义理解不清而造成解题错误是一些常见的误区.同时利用向量的数量积不但可以解决两向量垂直问题,而且还可以解决两向量共线问题,要深刻理解两向量共线、垂直的充要条件,应用的时候才能得心应手.备课资料一、向量的向量积在物理学中,由于讨论像力矩以及物体绕轴旋转时的角速度与线速度之间的关系等这类问题的需要,就必须引进两向量乘法的另一运算——向量的向量积.定义如下:两个向量a与b的向量积是一个新的向量c:(1)c的模等于以a及b两个向量为边所作成的平行四边形的面积;(2)c垂直于平行四边形所在的平面;(3)其指向使a、b、c三向量成右手系——设想一个人站在c处观看a与b时,a按逆时针方向旋转一个小于180°的角而达到b.向量a 与b 的向量积记作a ³b.设a 与b 两个向量的夹角为θ,则|a ³b|=|a||b |sin θ.(1) (2)图4在上面的定义中已默认了a 、b 为非零向量,若这两个向量中至少有一个是零向量,则a ³b =0.向量的向量积服从以下运算律:(1)a ³b =-b ³a ;(2)a ³(b +c )=a ³b +a ³c ;(3)(m a )³b =m(a ³b ). 二、备用习题1.已知a ,b ,c 是非零向量,则下列四个命题中正确的个数为( ) ①|a²b|=|a||b| a ∥b ②a 与b 反向 a²b =-|a||b| ③a ⊥b |a +b|=|a -b| ④|a|=|b| |a²c|=|b²c | A .1 B .2 C .3 D .4 2.有下列四个命题:①在△ABC 中,若AB →²BC →>0,则△ABC 是锐角三角形; ②在△ABC 中,若AB →²BC →>0,则△ABC 为钝角三角形; ③△ABC 为直角三角形 AB →²BC →=0; ④△ABC 为斜三角形 AB →²BC →≠0. 其中为真命题的是( )A .①B .②C .③ D.④3.设|a |=8,e 为单位向量,a 与e 的夹角为60°,则a 在e 方向上的投影为( )A .4 3B .4C .4 2 D.324.设a ,b ,c 是任意的非零平面向量,且它们相互不共线,有下列四个命题: ①(a²b )c -(c²a )b =0; ②|a|-|b|<|a -b |;③(b²c )a -(c²a )b 不与c 垂直; ④(3a +2b )²(3a -2b )=9|a|2-4|b |2. 其中正确的是( )A .①② B.②③ C .③④ D.②④5.在△ABC 中,设AB →=b ,AC →=c ,则 |b||c| 2- b²c 2等于( ) A .0 B.12S △ABCC .S △ABCD .2S △ABC6.设i 、j 是平面直角坐标系中x 轴、y 轴方向上的单位向量,且a =(m +1)i -3j ,b =i +(m -1)j ,如果(a +b )⊥(a -b ),则实数m =________.7.若向量a ,b ,c 满足a +b +c =0,且|a |=3,|b |=1,|c |=4,则a²b +b²c +c²a =________.8.设|a |=3,|b |=4,a 与b 的夹角为150°,求: (1)(a -3b )²(2a +b ); (2)|3a -4b |.9.已知|a |=2,|b |=3,a 与b 的夹角为45°,且向量λa +b 与a +λb 的夹角为锐角,求实数λ的取值范围.10.已知|a |=2,|b |=1,a 与b 的夹角为π3,求向量m =2a +b 与向量n =a -4b 的夹角的余弦值.参考答案:1.C 2.B 3.B 4.D 5.D 6.-2 7.-13 8.(1)-30+303;(2)337+144 3.9.{λ|λ<-11-856或λ>-11+856且λ≠1}.10.解:由向量的数量积的定义得a²b =2³1³cos π3=1. ∵m =2a +b ,∴m 2=4a 2+b 2+4a²b =4³4+1+4³1=21, ∴|m |=21. 又∵n =a -4b ,∴n 2=a 2+16b 2-8a²b =4+16-8=12. ∴|n |=2 3.设m 与n 的夹角为θ, 则m²n =|m||n |cos θ.①又m²n =2a 2-7a²b -4b 2=2³4-7-4=-3,把m²n =-3,|m|=21,|n|=23代入①式,得-3=21³23cos θ, ∴cos θ=-714, 即向量m 与向量n 的夹角的余弦值为-714.(设计者:仇玉法)第2课时导入新课思路1.平面向量的表示方法有几何法和坐标法,向量的表示形式不同,其运算的表示方式也会改变.向量的坐标表示,为我们解决有关向量的加、减、数乘运算带来了极大的方便.上一节,我们学习了平面向量的数量积,那么向量的坐标表示,对平面向量的数量积的表示方式又会带来哪些变化呢?由此直接进入主题.思路2.在平面直角坐标系中,平面向量可以用有序实数对来表示,两个平面向量共线的条件也可以用坐标运算的形式刻画出来,那么学习了平面向量的数量积之后,它能否用坐标来表示?若能,如何通过坐标来实现呢?平面向量的数量积还会是一个有序实数对吗?同时,平面向量的模、夹角又该如何用坐标来表示呢?通过回顾两个向量的数量积的定义和向量的坐标表示,在此基础上引导学生推导、探索平面向量数量积的坐标表示.推进新课新知探究1.平面向量的数量积的坐标表示和运算,向量垂直的坐标表示.2.由向量的坐标计算其数量积并由坐标形式求两个向量的夹角.3.运用向量垂直的坐标表示的条件解决一些综合问题.活动:平面向量的数量积这个实数如何用坐标表示,是培养学生数形结合这种重要思想方法的很好内容,在教学中抓住数形结合这条主线,不但推出了两个向量的数量积等于它们对应坐标的乘积的和,推出平面内两点间的距离公式,并应用平面向量的数量积的坐标表示解决问题,这样不但能够提高学生的解题能力,而且培养学生会运用数形结合这种重要思想方法.本节课开始时应向学生指出:对平面向量的数量积的研究不能仅仅停留在几何角度,还要寻求其坐标表示;在引入新知识之前应复习前面的有关知识,如平面向量,两个向量的和与差,实数与向量的积的坐标表示,以及平面向量的基本定理.应将平面向量数量积的两种形式结合起来,交待等式a²b=|a||b|cosθ=x1x2+y1y2,其中a=(x1,y1),b=(x2,y2).这个等式体现了数与形的结合,揭示了数与形的内在联系.教学中还应注意设计综合性问题,加强与前段知识的联系.若两个向量为a=(x1,y1),b=(x2,y2),如何用a,b的坐标来表示它们的数量积a²b?设i,j分别是x轴和y轴上的单位向量,则i²i=1,j²j=1,i²j=j²i=0.∵a=x1i+y1j,b=x2i+y2j,∴a²b=(x1i+y1j)²(x2i+y2j)=x1x2i2+x1y2i²j+x2y1i²j+y1y2j2.又∵i²i=1,j²j=1,i²j=j²i=0,∴a²b=x1x2+y1y2.教师给出结论性的总结,由此可归纳如下:(1)平面向量数量积的坐标表示两个向量的数量积等于它们对应坐标的乘积的和,即a=(x1,y1),b=(x2,y2),则a²b=x1x2+y1y2.(2)向量模的坐标表示若a=(x,y),则|a|2=x2+y2,或|a|=x2+y2.如果表示向量a的有向线段的起点和终点的坐标分别为(x1,y1)、(x2,y2),那么a=(x2-x1,y2-y1),|a|= x2-x1 2+ y2-y1 2.(3)两向量垂直的坐标表示设a=(x1,y1),b=(x2,y2),则a⊥b x1x2+y1y2=0.(4)两向量夹角的坐标表示设a、b都是非零向量,a=(x1,y1),b=(x2,y2),θ是a与b的夹角,根据向量数量积的定义及坐标表示可得:cosθ=a²b|a||b|=x1x2+y1y2x21+y21²x22+y22.特别地,若a⊥b,则x1x2+y1y2=0;反之,若x1x2+y1y2=0,则a⊥b. 应用示例例1课本本节例2.例2课本本节例3.例3课本本节例4.例4已知|a |=3,b =(2,3),试分别解答下面两个问题: (1)若a ⊥b ,求a ;(2)若a ∥b ,求a .活动:对平面中的两向量a =(x 1,y 1)与b =(x 2,y 2),向量垂直的坐标表示x 1x 2+y 1y 2=0与向量共线的坐标表示x 1y 2-x 2y 1=0很容易混淆,要让学生在应用中深刻领悟其本质属性,两向量垂直是a²b =0,而共线是方向相同或相反.教师可多加强反例练习,多给出这两种类型的同式变形训练,以此巩固并能熟练地掌握和运用.解:(1)设a =(x ,y),由|a |=3且a ⊥b ,得⎩⎪⎨⎪⎧x 2+y 2=|a |2=9,2x +3y =0,解得⎩⎪⎨⎪⎧x =-91313,y =61313或⎩⎪⎨⎪⎧x =91313,y =-61313,∴a =(-91313,61313)或a =(91313,-61313).(2)设a =(x ,y),由|a |=3且a ∥b ,得⎩⎪⎨⎪⎧x 2+y 2=|a |2=9,3x -2y =0,解得⎩⎪⎨⎪⎧x =61313,y =91313或⎩⎪⎨⎪⎧x =-61313,y =-91313,∴a =(61313,91313)或a =(-61313,-91313).点评:本题主要考查学生对公式的掌握情况,学生能熟练运用两向量的坐标运算来判断垂直或者共线,也能熟练地进行公式的逆用,利用已知关系来求向量的坐标.知能训练课本练习1~8.课堂小结1.在知识层面上,先引导学生归纳平面向量数量积的坐标表示,向量的模,两向量的夹角,向量垂直的条件.其次引导学生总结数量积的坐标运算规律,夹角和距离公式、两向量垂直的坐标表示.2.在思想方法上,教师与学生一起回顾探索过程中用到的思维方法和数学思想方法,定义法,待定系数法等.作业课本习题2.4 8、9、10.设计感想1.由于本节课是对平面向量的进一步探究与应用,是对平面向量几何意义的综合研究提高,因此教案设计流程是探究、发现、应用、提高,这符合新课程理念,符合新课标要求.我们知道平面向量的数量积是本章最重要的内容,也是高考中的重点,既有选择题、填空题,也有解答题(大多与立体几何、解析几何一起综合考查),故学习时要熟练掌握基本概念和性质及其综合运用.而且数量积的坐标表示又是向量运算的一个重要内容,用坐标表示直角坐标平面内点的位置,是解析几何的一个基本特征,从而以坐标为桥梁可以建立向量与解析几何的内在联系.以三角函数表示点的坐标,又可以沟通向量与三角函数的相互关系,由此就产生出一类向量与解析几何及三角函数交汇的综合性问题.2.本节课学习的重点是两个向量数量积的坐标表示;两个向量垂直的坐标表示以及利用向量数量积的坐标表示解决有关的几何问题.本节学习的难点是建立向量与坐标之间的关系.平面向量数量积的坐标表示使得向量数量积的应用更为方便,也拓宽了向量应用的途径,通过学习本节的内容,要更加加深对向量数量积概念的理解.同时善于运用坐标形式运算解决数量问题,尤其是有关向量的夹角、长度、垂直等,往往可以使问题简单化.灵活使用坐标形式,综合处理向量的线性运算、数量积、平行等,综合地解决向量综合题,体现数形结合的思想.在本节的学习中可以通过对实际问题的抽象来培养学生分析问题、解决问题和应用知识解决问题的意识与能力.备课资料一、|a²b|≤|a||b|的应用若a=(x1,y1),b=(x2,y2),则平面向量的数量积的性质|a²b|≤|a||b|的坐标表示为x1x2+y1y2≤x21+y21x22+y22 (x1x2+y1y2)2≤(x21+y21)(x22+y22).不等式(x1x2+y1y2)2≤(x21+y21)(x22+y22)有着非常广泛的应用,由此还可以推广到一般(柯西不等式):(a1b1+a2b2+…+a n b n)2≤(a1+a2+…+a n)(b1+b2+…+b n).例1(1)已知实数x,y满足x+y-4=0,则x2+y2的最小值是________;(2)已知实数x,y满足(x+2)2+y2=1,则2x-y的最大值是________.解析:(1)令m=(x,y),n=(1,1).∵|m²n|≤|m||n|,∴|x+y|≤x2+y2²2,即2(x2+y2)≥(x+y)2=16.∴x2+y2≥8.故x2+y2的最小值是8.(2)令m=(x+2,y),n=(2,-1),2x-y=t.由|m ²n |≤|m ||n |,得|2(x +2)-y|≤ x+2 2+y 2²5=5,即|t +4|≤5, 解得-4-5≤t≤5-4,故所求的最大值是5-4. 答案:(1)8 (2)5-4例2已知a ,b∈R ,θ∈(0,π2),试比较a 2cos 2θ+b 2sin 2θ与(a +b)2的大小.解:构造向量m =(a cos θ,bsin θ),n =(cos θ,sin θ),由|m ²n |≤|m ||n |得(a cos θcos θ+b sin θsin θ)2≤(a 2cos 2θ+b 2sin 2θ)(cos 2θ+sin 2θ), ∴(a+b)2≤a 2cos 2θ+b 2sin 2θ. 同类变式:已知a ,b∈R ,m ,n∈R ,且mn≠0,m 2n 2>a 2m 2+b 2n 2,令M =m 2+n 2,N =a +b ,比较M 、N 的大小.解:构造向量p =(a n ,bm ),q =(n ,m),由|p ²q |≤|p ||q |得(a n ³n+b m ³m)2≤(a 2n 2+b 2m 2)(m 2+n 2)=a 2m 2+b 2n 2n 2m2(m 2+n 2)<m 2+n 2,∴M>N. 例3设a ,b∈R ,A ={(x ,y)|x =n ,y =na +b ,n∈Z },B ={(x ,y)|x =m ,y =3m 2+15,m∈Z },C ={(x ,y)|x 2+y 2≤144}是直角坐标平面xOy 内的点集,讨论是否存在a 和b ,使得A∩B≠∅与(a ,b)∈C 能同时成立.解:此问题等价于探求a 、b 是否存在的问题,它满足⎩⎪⎨⎪⎧na +b =3n 2+15,①a 2+b 2≤144.②设存在a和b 满足①②两式,构造向量m =(a ,b),n =(n,1).由|m ²n |2≤|m |2|n |2得(na +b)2≤(n 2+1)(a 2+b 2), ∴(3n 2+15)2≤144(n 2+1) ⇒n 4-6n 2+9≤0.解得n =±3,这与n∈Z 矛盾,故不存在a 和b 满足条件. 二、备用习题1.若a =(2,-3),b =(x,2x),且a ²b =43,则x 等于( )A .3 B.13 C .-13D .-32.设a =(1,2),b =(1,m),若a 与b 的夹角为钝角,则m 的取值范围是( ) A .m>12 B .m<12C .m>-12D .m<-123.若a =(cos α,sin α),b =(cos β,sin β),则( ) A .a ⊥b B .a ∥bC .(a +b )⊥(a -b )D .(a +b )∥(a -b ) 4.与a =(u ,v)垂直的单位向量是( ) A .(-vu 2+v 2,uu 2+v 2) B .(v u 2+v 2,-uu 2+v 2) C .(v u 2+v 2,uu 2+v2) D .(-v u 2+v 2,u u 2+v 2)或(v u 2+v 2,-uu 2+v2) 5.已知a ,b 都是非零向量,且a +3b 与7a -5b 垂直,a -4b 与7a -2b 垂直,求a 与b 的夹角.6.已知△ABC 的三个顶点为A(1,1),B(3,1),C(4,5),求△ABC 的面积. 参考答案:1.C 2.D 3.C 4.D5.解:由已知(a +3b )⊥(7a -5b ) ⇔ (a +3b )²(7a -5b )=0 ⇔7a 2+16a ²b -15b2=0,①又(a -4b )⊥(7a -2b ) ⇔ (a -4b )²(7a -2b )=0 ⇔7a 2-30a ²b +8b 2=0,②①-②得46a ²b =23b 2,即a ²b =b 22=|b |22.③将③代入①式可得7|a |2+8|b |2-15|b |2=0,即|a |2=|b |2,有|a |=|b |, ∴若记a 与b 的夹角为θ,则cos θ=a ²b |a ||b |=|b |22|b ||b |=12.又θ∈[0°,180°],∴θ=60°,即a 与b 的夹角为60°.6.分析:S △ABC =12|AB →||AC →|sin∠BAC,而|AB →|,|AC →|易求,要求sin∠BAC 可先求出cos∠BAC.解:∵AB →=(2,0),AC →=(3,4),|AB →|=2,|AC →|=5, ∴cos∠BAC=AB →²AC →|AB →||AC →|=2³3+0³42³5=35.∴sin∠BAC=45.∴S △ABC =12|AB →||AC →|sin∠BAC=12³2³5³45=4.三、新教材新教法的二十四个“化”字诀新课导入新颖化,揭示概念美丽化;纵横相联过程化,探索讨论热烈化;探究例题多变化,引导思路发散化;学生活动主体化,一石激浪点拨化;大胆猜想多样化,论证应用规律化;变式训练探究化,课堂教学艺术化;学法指导个性化,对待学生情感化;作业抛砖引玉化,选题质量层次化;学生学习研究化,知识方法思想化;抓住闪光激励化,教学相长平等化;教学意识超前化,与时俱进媒体化;灵活创新智慧化,学生素质国际化.(设计者:仇玉法) 附:2.4 向量的数量积第1课时作者:蒋国庆,江苏省泰兴市第四高级中学教师,本教学设计获江苏省教学设计大赛一等奖.整体设计在《普通高中课程标准实验教科书²数学4(必修)》中,2.4平面向量的数量积约用3课时完成.本文从教材分析、目标分析、教学过程、设计说明等几个方面系统阐述第1课时的教学设计.教材分析1.教材的地位和作用向量在物理学中的应用非常广泛,在解析几何中应用更为直接,用向量方法特别便于研究涉及空间里直线与平面的各种问题.平面向量的数量积是向量的基本运算之一,在处理有关长度、角度和垂直问题等方面有很好的应用.“平面向量的数量积”是《平面向量》中的基础知识与重点内容.2.教学重点与难点本节课的重点是理解平面向量的数量积的概念及运算律,这也是本节课的难点.目标分析通过本节课的教学,预计达到下面三个目标:1.知识目标:理解平面向量的数量积的概念;能用公式和运算律进行计算.2.能力目标:培养学生的理性思维能力、创造性思维能力、逻辑思维能力和思维的批判性.3.情感目标:鼓励学生探索发现规律,激发学生学习数学的兴趣.学法分析向量的数量积的结果是一个数量,而不是一个向量.像这样的运算结果与运算对象不在同一“范围”内的运算,学生首次接触,理解上有一定的困难,本文的教学设计准备通过预设的系列问题,发动学生进行合作讨论,调动学生参与到探索中来,让他们总结规律,从而充分经历,体验“发现定义”的过程.教学过程本节课共分四大环节:理解定义、总结性质、学习运算律、巩固训练.1.理解定义教学设想:首先引导学生复习已学过的向量运算,并与实数的加法、减法及实数的乘法进行比较,让学生大胆思维,猜想有无这样的向量运算,结果是一个数量而不是一个向量?在数学上,以前肯定没学过.引导学生进一步联想,在物理上见过两个矢量运算的结果是一个标量的例子吗?有部分学生联想到力对物体作用产生的位移所做的功,力F是一个向量,位移s是一个向量,而功W是一个标量,这时又让学生思考相应的物理公式W=|F||s|cosθ,这样就为向量数量积概念的引入做了一个积极的铺垫.通过学生联想类比物理学中的“功”,找到向量数量积的原型;通过讨论求功运算的特点,进而抽象出向量数量积的定义.这一过程培养了学生的发散性思维能力及创造性思维能力.复习思考:运算结果向量的加法―→向量向量的减法―→向量实数与向量的乘法―→向量两个向量的乘法―→????(1)物理意义下的“功”:一个物体在力F的作用下发生了位移s,那么力F所做的功应当怎样计算?W=|F||s|cosθ.。
第 9 课时:§2.4 向量的数量积(一)【三维目标】:一、知识与技能1.通过物理中“功”等实例,理解平面向量数量积的含义及其物理、几何意义; 2.体会平面向量的数量积与向量投影的关系; 3.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的共线及垂直的充要条件3.掌握数量积的运算性质,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;4.体会类比的数学思想和方法,进一步培养学生抽象概括、推理论证的能力。
二、过程与方法教材利用同学们熟悉的物理知识(“做功”)得到向量的数量积的含义及其物理意义、几何意义;从问题的探究和解决中感受什么是向量的数量积;为了帮助学生理解和巩固相应的知识,教材设置了例题,通过讲解例题,培养学生逻辑思维能力.三、情感、态度与价值观 通过本节内容的学习,使同学们认识到向量的数量积与物理学的做功有着非常紧密的联系;让学生进一步领悟数形结合的思想;同时以较熟悉的物理背景去理解向量的数量积,有助于激发学生学习数学的兴趣、积极性和勇于创新的精神. 【教学重点与难点】:重点:向量数量积的含义及其物理意义、几何意义; 难点:向量数量积的含义、数量积的运算性质; 【学法与教学用具】:1. 学法:(1)自主性学习+探究式学习法:(2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距. 2. 教学用具:多媒体、实物投影仪. 【授课类型】:新授课 【课时安排】:1课时 【教学思路】: 一、创设情景,揭示课题【提出问题】:向量的运算有向量的加法、减法、数乘,那么向量与向量能否“相乘” 呢? 二、研探新知1.平面向量数量积的物理背景及其含义物理学中,物体所做的功的计算方法:||||→→=S F W (其中θ是→F 与→S 的夹角)2.向量夹角已知两个向量a 和b ,作−→−OA =a ,−→−OB =b ,则AOB θ∠=(0180θ≤≤)叫做向量a 与b的夹角。
总课题平面向量总课时第25课时分课题向量的数量积(1)分课时第 1 课时教学目标理解平面向量数量积的概念及其几何意义;知道两个向量数量积的性质;了解平面向量数量积的概念及其性质的简单应用。
重点难点平面向量数量积的概念的理解;平面向量数量积的性质的应用。
引入新课1、已经知道两个非零向量a与b,它们的夹角是θ,我们把数量叫做向量a与向量b的数量积,记作a·b。
即a·b= 。
a·0= 。
2、两个非零向量a,b夹角θ的范围为。
3、(1)当a,b同向时,θ= ,此时a·b= 。
(2)当a,b反向时,θ= ,此时a·b= 。
(3)当a⊥b时,θ= ,此时a·b= 。
4、a·a= = = 。
5、设向量a,b,c和实数λ,则(1)(λa)·b=a·()=λ()=λa·b(2)a·b= ;(3)(a+b)·c= 。
例题剖析例1、已知向量a与向量b的夹角为θ, |a|=2 , |b|=3 , 分别在下列条件下求a·b。
(1)θ=135°(2)a//b(3)a⊥b变1:若a·b=3-,求θ。
变2:若θ=120°,求(4a+b)(3b-2a)和|a+b|的值。
变3:若(4a +b )(3b -2a )=-5,求θ。
变4:若|a +b |19=,求θ。
巩固练习1、 判断下列各题正确与否,并说明理由。
(1)若=a 0,则对任意向量b ,有a ·b =0; ______________________________ (2)若≠a 0,则对任意向量b ,有a ·b ≠0; ______________________________ (3)若≠a 0,a ·b =0,则b =0;______________________________ (4)若a ·b =0,则a ,b 中至少有一个为零; ______________________________ (5)若≠a 0,a ·b =a ·c ,则b =c ; ______________________________ (6)对任意向量a ,有=2a 2||a ;______________________________(7)对任意向量a ,b ,c ,有(a ·b )·c =a ·(b ·c );___________________ (8)非零向量a ,b ,若|a +b |=|a -b |,则a ⊥b ;___________________________ (9)|a ·b |≤|a ||b |。
2.4 向量的数量积(1)一、课题:向量的数量积(1)二、教学目标:1.理解平面向量数量积的概念;2.掌握两向量夹角的概念及其取值范围[0,]π;3.掌握两向量共线及垂直的充要条件;4.掌握向量数量积的性质。
三、教学重、难点:向量数量积及其重要性质。
四、教学过程:(一)引入:物理课中,物体所做的功的计算方法:||||cos W F s θ=u r r (其中θ是F u r 与s r 的夹角).(二)新课讲解:1.向量的夹角:已知两个向量a r 和b r (如图2),作OA a =u u u r r ,OB b =u u u r r ,则 AOB θ∠=(0180θ≤≤o o )叫做向量a r 与b r 的夹角。
当0θ=o 时,a r 与b r 同向; 当180θ=o 时,a r 与b r 反向; 当90θ=o 时,a r 与b r 的夹角是90o ,我们说a r 与b r 垂直,记作a r ⊥b r .2.向量数量积的定义: 已知两个非零向量a r 和b r ,它们的夹角为θ,则数量||||cos a b θ⋅⋅r r 叫做a r 与b r 的数量积(或内积),记作a b ⋅r r ,即||||cos a b a b θ⋅=⋅⋅r r r r .说明:①两个向量的数量积是一个数量,这个数量的大小与两个向量的长度及其夹角有关;②实数与向量的积与向量数量积的本质区别:两个向量的数量积是一个数量;实 数与向量的积是一个向量;③规定,零向量与任一向量的数量积是0.3.数量积的几何意义:(1)投影的概念: 如图,OA a =u u u r r ,,过点B 作1BB 垂直于直线OA ,垂足为1B ,则1||cos OB b θ=r .||cos b θr 叫做向量b r 在a r 方向上的投影,当θ为锐角时,它是正值;当θ为钝角时,它 是一负值;当90θ=o 时,它是0;当0θ=o 时,它是||b r ;当180θ=o 时,它是||b -r . (2)a b ⋅r r 的几何意义:数量积a b ⋅r r 等于a r 的长度||a r 与b r 在a r 的方向上的投影||cos b θr)111的乘积。
江苏省泰兴中学高一数学教学案(59)必修4_02 向量的数量积(1)班级 姓名目标要求1. 掌握平面向量的数量积及其几何意义;了解两个向量数量积的性质;2. 掌握数量积的运算律.重点难点平面向量的数量积的概念与性质.教学过程:一、问题情境:二、数学建构:1. 向量的夹角:2. 向量数量积的定义:3. 数量积的重要性质:4. 数量积的运算律:三、典例剖析例1、已知向量a r 与向量b r 的夹角为θ,||2,||3a b ==r r ,分别在下列条件下求b a ⋅:(1)0135θ=; (2)//a b r r ; (3)a b ⊥r r例2、已知ABC ∆中,,=,b AC =当0=⋅,,0<⋅b a 0,a b ⋅>r r 时,ABC ∆各是什么样的三角形?例3、已知||5,||12a b ==r r ,当且仅当m 为何值时,向量a mb +r r 与a mb -r r 互相垂直?例4、已知||7,||4,||9a b a b ==+=r r r r , (1)求||a b -r r ;(2)求a b r r 与的夹角的余弦值;(3)求a b +r r 与a b -r r 的夹角的余弦值.学习反思1、平面向量数量积的定义 ;2、夹角公式: ;3、平面向量数量积满足的运算律: 课堂练习1,12=a ,9=b 254-=⋅,则与的夹角θ为2、已知||4,||6,a b a b ==r r r r 与的夹角为︒60,则(2)(3)a b a b -+r r r r g= . 3、若向量,,a b c r r r 满足0,|3||1||4a b c a b c ++====r r r r r r r 且|,,,则a b b c c a ++r r r r r r g g g = . 4、已知,,a b c r r r 是三个非零向量,则下列结论正确的是_____________.(1)若||||,//a b a b a b =r r r r r r g则; (2)若a c b c a b ==r r r r r r g g ,则; (3)||||||a ba cbc ==r r r r r r g g |,则|; (4)若|||a b a b a b +=-⊥r r r r r r |,则. 江苏省泰兴中学高一数学作业(59)班级 姓名 得分1、||3,||4a b ==r r ,向量3344a b a b +-r r r r 与的夹角为______________.2、已知向量a b r r 与的夹角为0120,||3,||13,||a a b b =+==r r r r 则 .3、在ABC ∆中,若0,AB BC ⋅>u u u r u u u r 则ABC ∆是 三角形.4、已知||2,||3,a b a b ==r r r r 与的夹角为0120,则||a b +=r r .5、设向量,a b r r 满足||||1,|32|1,|3|a b a b a b ==-=+r r r r r r 则=6、在ABC ∆中,AB AC =4,且8=⋅,则这个三角形的形状为____________.7、已知非零向量AB AC u u u r u u u r 与满足102||||||||AB AC AB AC BC AB AC AB AC +==u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r g g ()且,则ABC ∆的形状为__________________.8、已知12,e e u r u u r 是夹角为60o 的两个单位向量,121232,23a e e b e e =-=-r r r r r(1) 求⋅; (2)求证:()()a b a b +⊥-r r r r9、设,a b r r 是两个非零向量,如果(3)(75)a b a b +⊥-r r r r ,且(4)(72)a b a b -⊥-r r r r , 求a b r r 与的夹角.10、设ABC ∆中,,,,AB c BC a CA b a b b c c a =====u u u r r u u u r r u u u r r r r r r r r g g g 且,判断ABC ∆的形状.。
2.4 向量的数量积第1课时 向量的数量积学习目标 重点难点1.能记住向量的夹角、向量垂直、向量投影等概念.2.能说出平面向量的数量积的含义及几何意义. 3.能记住平面向量的数量积与投影的关系. 4.会运用数量积的运算性质和运算律解决涉及长度、夹角、平行、垂直的几何问题.重点:平面向量数量积的含义及其几何意义. 难点:运用数量积解决长度、夹角平行、垂直的几何问题.1.向量的数量积(1)向量的数量积:已知两个非零向量a 和b ,它们的夹角是θ,我们把数量|a ||b |cos θ叫做向量a 和b 的数量积(或内积)记作a ·b ,即a ·b =|a ||b |cos θ.规定零向量与任一向量的数量积为0.(2)两个向量的夹角:对于两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ叫做向量a 与b 的夹角.其范围是0°≤θ≤180°,当θ=0°时,a 与b 同向,a ·b =|a ||b |;当θ=180°时,a 与b 反向,a ·b =-|a ||b |;当θ=90°时,称向量a 与b 垂直,记作a ⊥b .预习交流1(1)已知向量a ,b 满足a ·b =0,|a |=1,|b |=2,则|2a -b |等于__________. (2)已知|a |=5,|b |=4,a 与b 的夹角θ=120°,则a ·b =__________. (3)已知|a |=5,|b |=4,a ·b =-102,则a 与b 的夹角θ=__________.提示:(1)|2a -b |=2a -b 2=4a 2-4a ·b +b 2=8=2 2. (2)a ·b =|a ||b |cos θ=5×4cos 120°=-10.(3)由公式得cos θ=a ·b |a ||b |=-1025×4=-22,所以θ=135°.2.向量数量积的性质及其运算律(1)向量数量积的性质:①a ·a 可简写为a 2,所以a ·a =a 2=|a |2或|a |=a ·a ;②a⊥b ⇔a ·b =0;③a 与b 的夹角为θ,则cos θ=a ·b|a ||b |;④|a ·b |≤|a ||b |.(2)向量数量积的运算律:已知向量a ,b ,c 和实数λ. ①a ·b =b ·a ;②(λa )·b =a ·(λb )=λ(a ·b )=λa ·b ; ③(a +b )·c =a ·c +b ·c . 预习交流2对于向量a ,b ,c ,等式(a ·b )·c =a ·(b ·c )一定成立吗?提示:不一定成立,因为若(a ·b )·c ≠0,其方向与c 相同或相反,而a ·(b ·c )≠0时其方向与a 相同或相反,而a 与c 方向不一定相同,故该等式不一定成立.3.向量数量积的几何意义(1)向量b 在a 方向上的投影:设a ,b 是两个非零向量,|b |cos θ叫做向量b 在a 方向上的投影,它是数量.当θ为锐角时,投影为正值.当θ为钝角时,投影为负值;当θ=90°时,投影为0.(2)数量积a ·b 的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 方向上的投影|b |cosθ的乘积.预习交流3下列说法正确的是__________. ①a ·b =0⇒a =0或b =0;②a ∥b ⇒a 在b 上的投影为|a |;③a ⊥b ⇒a ·b =(a ·b )2;④a ·c =b ·c ⇒a =b . 提示:③一、平面向量的数量积及几何意义已知|a |=5,|b |=4,a 与b 的夹角θ=120°. (1)求a ·b ;(2)求a 在b 上的投影.思路分析:已知向量a ,b 的模及其夹角,求a ·b 及a 在b 上的投影,解答本题只需依据数量积的定义及其几何意义求解便可.解:(1)∵|a |=5,|b |=4,a 与b 的夹角θ=120°,∴a ·b =|a ||b |cos θ=5×4×cos 120°=5×4×⎝ ⎛⎭⎪⎫-12=-10. (2)由数量积的几何意义可知,a 在b 上的投影为|a |cos θ=5×cos 120°=5×⎝ ⎛⎭⎪⎫-12=-52.1.已知|a |=3,|b |=5,且其夹角θ=45°,则向量a 在向量b 上的投影为__________.答案:322解析:向量a 在向量b 上的投影为|a |cos θ,应用公式时要分清|a |与|b |,不能套错公式,由已知|a |=3,|b |=5,cos θ=cos 45°=22,则向量a 在向量b 上的投影为|a |cosθ=3×22=322. 2.已知a ,b ,c 是三个非零向量,则下列命题中真命题的个数为__________. ①|a ·b |=|a |·|b |⇔a ∥b ;②a ,b 反向⇔a ·b =-|a |·|b |; ③a ⊥b ⇔|a +b |=|a -b |; ④|a |=|b |⇔|a ·c |=|b ·c |. 答案:3解析:①∵a ·b =|a ||b |cos θ,∴由|a ·b |=|a ||b |及a ,b 为非零向量可得|cos θ|=1,∴θ=0或π.∴a ∥b ,且以上各步均可逆,故命题①是真命题.②若a ,b 反向,则a ,b 的夹角为π,∴a ·b =|a ||b |cos π=-|a ||b |,且以上各步均可逆,故命题②是真命题.③当a ⊥b 时,将向量a ,b 的起点确定在同一点,以向量a ,b 为邻边作平行四边形,则该平行四边形必为矩形,于是它的两对角线长相等,即有|a +b |=|a -b |.反过来,若|a +b |=|a -b |,则以a ,b 为邻边的四边形为矩形,故有a ⊥b ,因此命题③是真命题.④当|a |=|b |,但a 与c 的夹角和b 与c 的夹角不等时,就有|a ·c |≠|b ·c |,反过来由|a ·c |=|b ·c |也推不出|a |=|b |,故命题④是假命题.1.数量积的符号同夹角的关系:(1)若a ·b >0⇔θ为锐角或零角;(2)若a ·b =0⇔θ=π2或a 与b 至少有一个为0;(3)若a ·b <0⇔θ为钝角或平角. 2.平面向量数量积的求法:(1)若已知向量的模及其夹角,则直接利用公式 a ·b =|a ||b |cos θ.(2)若已知一向量的模及另一向量在该向量上的投影,可利用数量积的几何意义求a ·b .二、平面向量数量积的运算已知|a |=4,|b |=5,且a 与b 夹角为60°,求值:(1)a 2-b 2;(2)(2a +3b )·(3a -2b ).思路分析:充分利用条件及数量积的定义性质即可求解.解:(1)a 2-b 2=|a |2-|b |2=42-52=-9;(2)(2a +3b )·(3a -2b )=6a 2+5a ·b -6b 2=6|a |2+5|a ||b |cos 60°-6|b |2=6×42+5×4×5×12-6×52=-4.1.已知正△ABC 的边长为2,设BC →=a ,CA →=b ,AB →=c ,求a ·b +b ·c +c ·a .解:如图,a 与b ,b 与c ,a 与c 夹角均为120°,∴原式=|a ||b |cos 120°+|b ||c |cos 120°+|a ||c |cos 120°=2×2×⎝ ⎛⎭⎪⎫-12×3=-6.2.已知|a |=6,|b |=4,a 与b 的夹角为60°,求(a +2b )·(a -3b ). 解:(a +2b )·(a -3b )=a ·a -a ·b -6b ·b=|a |2-a ·b -6|b |2=|a |2-|a ||b |cos θ-6|b |2=62-6×4×cos 60°-6×42=-72.1.利用定义求向量的数量积时,要注意a 与b 的夹角大小.若|a ||b |是一个定值k ,则当这两个向量的夹角从0°变化到180°时,两向量的数量积从k 减到-k ,其图象是从0到π的半个周期内的余弦函数图象.2.求平面向量的数量积的一般步骤:(1)运用数量积的运算律展开、化简;(2)确定向量的模和夹角;(3)根据定义求出数量积.三、求向量的夹角问题设n 和m 是两个单位向量,其夹角是60°,求向量a =2m +n 与b =2n -3m 的夹角. 思路分析:n 和m 是两个单位向量且夹角已知,可求其数量积,又向量a ,b 均有向量n 和m 线性表示,待求向量a ,b 的夹角,求解时可先利用|a |=|2m +n |,|b |=|2n -3m |求模,再利用a ·b =(2m +n )·(2n -3m )求数量积,最后代入cos α=a ·b|a ||b |求α.解:|m |=1,|n |=1,由夹角为60°,得m ·n =12,则有|a |=|2m +n |=2m +n 2=4m 2+4m ·n +n 2=7,|b |=|2n -3m |=2n -3m 2=4n 2-12n ·m +9m 2=7.∴a ·b =(2m +n )·(2n -3m )=m ·n -6m 2+2n 2=-72.∴cos θ=a ·b |a ||b |=-727×7=-12.又θ∈[0°,180°],∴a ,b 夹角为120°.1.向量m 和n 满足|m |=1,|n |=2,且m ⊥(m -n ),求m 与n 的夹角. 解:∵|m |=1,|n |= 2. 又m ⊥(m -n ),∴m ·(m -n )=m 2-m ·n =0. 设m 与n 的夹角为θ,则cos θ=m ·n |m ||n |=m 2|m ||n |=|m ||n |=22.又θ∈[0°,180°],∴θ=45°.2.已知a ,b 是两个非零向量,同时满足|a |=|b |=|a -b |,求a 与a +b 的夹角.解:根据|a |=|b |,有|a |2=|b |2.又由|b |=|a -b |,得|b |2=|a |2-2a ·b +|b |2,∴a ·b =12|a |2.∴|a +b |2=|a |2+2a ·b +|b |2=3|a |2. ∴|a +b |=3|a |.设a 与a +b 的夹角为θ,则cos θ=a ·a +b |a ||a +b |=|a |2+12|a |2|a |3|a |=32.∴θ=30°.1.求向量a ,b 夹角的流程图求|a |,|b |→计算a ·b →计算cos θ=a ·b|a ||b |→结合θ∈[0,π],求解θ2.由于|a |,|b |及a ·b 都是实数,因此在涉及有关|a |,|b |及a ·b 的相应等式中,可用方程的思想求解(或表示)未知量.1.若|m |=4,|n |=6,m 与n 的夹角为135°,则m ·n =__________. 答案:-12 2解析:m ·n =|m ||n |cos 135°=4×6×cos 135°=-12 2.2.已知|b |=3,a 在b 方向上的投影是23,则a ·b 为__________.答案:2解析:∵a 在b 方向的投影为|a |cos θ,∴a ·b =|b |·|a |cos θ=3×23=2.3.已知a 与b 是相反向量,且|a |=2,则a ·b =__________.答案:-4解析:∵a 与b 互为相反向量, ∴|a |=|b |且两向量夹角为180°. ∴a ·b =2×2×cos 180°=-4.4.已知向量a ,b 满足|a |=1,|b |=4,且a ·b =2,则a 与b 的夹角为__________.答案:π3解析:cos θ=a ·b |a ||b |=21×4=12,又∵0≤θ≤π,∴θ=π3.5.已知|a |=3,|b |=6,当(1)a ∥b ,(2)a ⊥b ,(3)a 与b 的夹角是60°时,分别求a ·b . 解:(1)当a ∥b 时,若a 与b 同向,则它们的夹角θ=0°, ∴a ·b =|a ||b |cos 0°=3×6×1=18; 若a 与b 反向,则它们的夹角θ=180°,∴a ·b =|a ||b |cos 180°=3×6×(-1)=-18; (2)当a ⊥b 时,它们的夹角θ=90°, ∴a ·b =0;(3)当a 与b 的夹角是60°时,有a ·b =|a ||b |cos 60°=3×6×12=9.。
第1课时向量数量积的概念及运算律问题:一个物体在力F的作用下位移为s,则力F所做功W=|F||s|cos θ,θ为F和位移s的夹角,试想功W是力F和位移s的乘积吗?提示:不是.1.数量积的定义已知两个非零向量a与b,它们的夹角为θ,则把数量|a||b|·cos θ叫做a与b的数量积(或内积),记作a·b,即a·b=|a||b|cos θ.2.规定零向量与任一向量的数量积为0.如图,△ABC为等边三角形.问题1:向量AB与向量AC的夹角的大小是多少?提示:60°.问题2:向量AB与向量BC的夹角的大小是多少?提示:120°.两非零向量的夹角(1)定义:对于两非零向量a和b,作OA=a,OB=b,则∠AOB=θ叫做向量a与b 的夹角.(2)范围:0≤θ≤180°.(3)当θ=0°时,a与b同向.当θ=180°时,a与b反向.当θ=90°时,则称a与b垂直,记作a⊥b.已知向量a和b都是非零向量,θ为a与b的夹角.问题1:若θ=90°,求a·b;若a·b=0,求θ.提示:若θ=90°,则a·b=|a|·|b|cos 90°=0;若a·b=0,则|a|·|b|cos θ=0,∴cos θ=0.又∵0°≤θ≤180°,∴θ=90°.问题2:若θ=0°,求a·b;若θ=180°,求a·b.提示:若θ=0°,则a·b=|a|·|b|cos 0°=|a|·|b|;若θ=180°,则a·b=|a|·|b|cos 180°=-|a|·|b|.1.两个向量的数量积(1)当a与b同向时,a·b=|a||b|;(2)当a与b反向时,a·b=-|a||b|;(3)a·a=|a|2或|a|=a·a.2.数量积的运算律(1)a·b=b·a;(2)(λa)·b=a(λb)=λ(a·b)=λa·b;(3)(a+b)·c=a·c+b·c.1.两个向量的数量积是一个数量,而不是向量,其大小与两个向量的长度及其夹角都有关,符号由夹角的余弦值的符号决定.2.向量数量积的几何意义,是一个向量的长度乘以另一向量在该向量方向上的投影值.这个投影值可正可负也可以为零,向量的数量积的结果是一个实数.3.数量积的运算只适合交换律,加乘分配律及数乘结合律,但不适合乘法结合律,即(a·b)·c≠a·(b·c),这是因为a·b,b·c都是实数,(a·b)·c与向量c方向相同或相反.a·(b·c)与向量a方向相同或相反,而a与c不一定共线,就是a与c共线,(a·b)·c与a·(b·c)也不一定相等.[例1] 已知正方形ABCD 的边长为2,分别求:(1)AB ·CD ;(2)AB ·AD ;(3)DA ·AC . [思路点拨] 求数量积时,利用定义要注意两个向量的夹角大小和实际图形联系起来. [精解详析] (1)∵AB ,CD 的夹角为π,∴AB ·CD =|AB ||CD |cos π=2×2×(-1)=-4. (2)∵AB ,AD 的夹角为π2,∴AB ·AD =|AB ||AD |cos π2=2×2×0=0.(或∵AB ,AD 的夹角为π2,∴AB ⊥AD ,故AB ·AD =0)(3)∵DA ,AC 的夹角为3π4,∴DA ·AC =|DA ||AC |cos3π4=2×22×⎝⎛⎭⎫-22=-4. [一点通] 求平面向量的数量积时,常用到以下结论: (1)a 2=|a |2;(2)(x a +y b )(m c +n d )=xm a ·c +xn a ·d +ym b ·c +yn b ·d ,其中x ,y ,m ,n ∈R ,类似于多项式的乘法法则;(3)(a +b )2=a 2+2a ·b +b 2;(4)(a +b +c )2=a 2+b 2+c 2+2a ·b +2b ·c +2a ·c .1.若|a |=4,|b |=6,a 与b 的夹角为135°,则a ·(-b )=________. 解析:a ·(-b )=-a ·b =-|a ||b |cos 135° =-4×6×cos 135°=12 2. 答案:12 22.设正三角形ABC 的边长为2,AB =c ,BC =a ,CA =b ,则a ·b +b ·c +c ·a =________.解析:a ·b +b ·c +c ·a =2·2cos 120°+2·2·cos 120°+2·2cos 120°=-3.答案:-33.在△ABC 中,M 是BC 的中点,AM =3,BC =10,求AB ·AC 的值. 解:∵2AM =AB +AC ,BC =AC -AB , ∴(2AM )2=(AB +AC )2,BC 2=(AC -AB )2, ∴4AB ·AC =4AM 2-BC 2=-64, ∴AB ·AC =-16,[例2] 已知向量OA =a ,OB =b ,∠AOB =60°,且|a |=|b |=4.求|a +b |,|a -b |,|3a +b |.[思路点拨] 根据已知条件将向量的模利用|a |=a ·a 转化为数量积的运算求解. [精解详析] ∵a ·b =|a |·|b |cos ∠AOB =4×4×12=8,∴|a +b |=(a +b )2=a 2+2a ·b +b 2 =16+16+16=43, |a -b |=(a -b )2=a 2-2a ·b +b 2 =16-16+16=4,|3a +b |=(3a +b )2=9a 2+6a ·b +b 2 =9×16+48+16=413.[一点通] 关系式a 2=|a |2可使向量的长度与向量数量积互相转化,利用数量积求解长度问题是数量积的重要应用,要掌握此类问题的处理方法,特别注意不要忘记开方.4.已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=________.解析:依题意,可知|2a -b |2=4|a |2-4a ·b +|b |2=4-4|a ||b |·cos 45°+|b |2=4-22|b |+|b |2=10,即|b |2-22|b |-6=0,∴|b |=22+322=32(负值舍去). 答案:3 25.已知向量a 、b 满足|a |=2,|b |=3,|a +b |=4,则a -b |=________. 解析:由|a +b |=4, 得|a +b |2=42∴a 2+2a ·b +b 2=16.①∵|a |=2,|b |=3,∴a 2=|a |2=4,b 2=|b |2=9, 代入①式得4+2a ·b +9=16, 即2a ·b =3.(a -b )2=a 2-2a ·b +b 2=4-3+9=10, ∴|a -b |=10. 答案:106.已知|a |=2,|b |=4,a ,b 的夹角为π3,以a ,b 为邻边作平行四边形,求平行四边形的两条对角线中较短一条的长度.解:∵平行四边形的两条对角线中较短一条的长度为|a -b |, ∴|a -b |=(a -b )2=a 2-2a ·b +b 2 =4-2×2×4×cos π3+16=2 3.[例3] 已知a ,b 是非零向量,且(a -2b )⊥a ,b ⊥(b -2a ),求a 与b 的夹角. [思路点拨] 根据向量的数量积公式变形为cos θ=a ·b|a ||b |,从而可求θ.[精解详析] ∵(a -2b )⊥a ,b ⊥(b -2a ),∴⎩⎪⎨⎪⎧(a -2b )·a =0,b ·(b -2a )=0, ∴⎩⎪⎨⎪⎧|a |2=2a ·b ,|b |2=2a ·b ,∴|a |=|b |. 设a 与b 的夹角为θ, 则cos θ=a ·b |a ||b |=a ·b |a |2=12|a |2|a |2=12.又∵θ∈[0,π],∴θ=π3.[一点通] 向量的数量积公式a ·b =|a ||b |cos θ不仅可以用来求数量积,也可以用来求模与夹角,即cos θ=a ·b |a ||b |.在根据已知三角函数值求角时,要注意角的范围的确定.此外,要注意若两非零向量a ,b 的夹角为锐角⇔a ·b >0且a ·b ≠|a ||b |;两非零向量a ,b 的夹角为钝角⇔a ·b <0且a ·b ≠-|a ||b |.7.已知|a |=1,|b |=6,a ·(b -a )=2,则向量a 与向量b 的夹角为________.解析:由条件得a ·b -|a |2=2,设a 与b 的夹角为α,则a ·b =2+|a |2=3=|a ||b |cos α=1×6×cos α.所以cos α=12,所以α=π3.答案:π38.已知非零向量a ,b ,满足a ⊥b ,且a +2b 与a -2b 的夹角为120°,则|a ||b |=________.解析:(a +2b )·(a -2b )=a 2-4b 2,∵a ⊥b , ∴|a +2b |=a 2+4b 2,|a -2b |=a 2+4b 2. ∴cos 120°=(a +2b )·(a -2b )|a +2b ||a -2b |=a 2-4b 2(a 2+4b 2)2=a 2-4b 2a 2+4b 2=-12.∴a 2b 2=43.∴|a ||b |=233. 答案:2339.已知单位向量e 1,e 2的夹角为60°,求向量a =e 1+e 2,b =e 2-2e 1的夹角. 解:设a ,b 的夹角为θ,∵单位向量e 1,e 2的夹角为60°, ∴e 1·e 2=|e 1||e 2|cos 60°=12.∴a ·b =(e 1+e 2)·(e 2-2e 1)=e 1·e 2+e 22-2e 21-2e 1·e 2 =e 22-2e 21-e 1·e 2=1-2-12=-32, |a |=a 2=(e 1+e 2)2=e 21+e 22+2e 1·e 2 =1+1+1=3, |b |=b 2=(e 2-2e 1)2=e 22-4e 1·e 2+4e 21= = 3.∴cos θ=a ·b |a ||b |=-323·3=-12.∵θ∈[0,π],∴θ=2π3.1.向量数量积的性质及作用设a 和b 是非零向量,a 与b 的夹角为θ.(1)a ⊥b ⇔a ·b =0,此性质可用来证明向量垂直或由向量垂直推出等量关系.(2)当a 与b 同向时,a ·b =|a ||b |,当a 与b 反向时,a ·b =-|a ||b |,即当a 与b 共线时,|a ·b |=|a ||b |,此性质可用来证明向量共线.(3)a ·a =a 2=|a |2或|a |=a 2,此性质可用来求向量的模,可以实现实数运算与向量运算的相互转化.(4)cos θ=a ·b |a ||b |,此性质可求a 与b 的夹角.2.求向量夹角的一般步骤 (1)求两向量的模; (2)计算两向量的数量积; (3)计算夹角的余弦值;(4)结合夹角的范围[0,π]确定所求的夹角.课下能力提升(二十)一、填空题1.若|a |=2,|b |=12,a 与b 的夹角为60°,则a ·b 等于________.解析:a ·b =|a ||b |cos θ=2×12×12=12.答案:122.已知△ABC 是等腰直角三角形,C =90°,AB =22,则AB ·BC 等于________. 解析:由题意知|BC |=22×22=2. ∴AB ·BC =|AB |·|BC |cos 135°=22×2×⎝⎛⎭⎫-22=-4. 答案:-43.设n 和m 是两个单位向量,其夹角是60°,则向量a =2m +n 与b =2n -3m 的夹角为________.解析:设a ,b 的夹角为θ.因为|m |=1,|n |=1,m ,n 夹角为60°,所以m ·n =12.所以|a |=(2m +n )2=4m 2+4m ·n +n 2=7, |b |=(2n -3m )2=4n 2-12m ·n +9m 2=7, a ·b =(2m +n )·(2n -3m )=m ·n -6m 2+2n 2=-72.所以cos θ=a ·b |a ||b |=-12.又因为0°≤θ≤180°,所以θ=120°,即a ,b 的夹角为120°. 答案:120°4.已知向量a ,b 满足(a +2b )·(a -b )=-6,且|a |=1,|b |=2,则a 与b 的夹角为________. 解析:设a 与b 的夹角为θ, 由于(a +2b )·(a -b )=-6, 且|a |=1,|b |=2, 所以a 2+a ·b -2b 2=-6, 即12+1×2cos θ-2×22=-6, 化简得cos θ=12,又∵θ∈[0°,180°], ∴θ=60°. 答案:60°5.在边长为1的正三角形ABC 中,设BC =2BD ,CA =3CE ,则AD ·BE =________.解析:如图所示,∵BC =2BD , ∴D 是BC 的中点. ∴AD =12(AB +AC ).∵CA =3CE ,∴BE =BA +AE =-AB +23AC .∴AD ·BE =12(AB +AC )·⎝⎛⎭⎫-AB +23 AC=12⎝⎛⎭⎫-AB 2-13 AB ·AC +23 AC 2 =12⎝⎛⎭⎫-1-13×1×1×cos 60°+23×1 =-14.答案:-14二、解答题6.已知|a |=4,|b |=5,当(1)a ∥b ;(2)a ⊥b ;(3)a 与b 的夹角为60°;(4)a 与b 的夹角为150°时.分别求a 与b 的数量积.解:令a 与b 的夹角为θ.(1)因为a ∥b ,则当a 与b 同向时,θ=0°, a ·b =|a ||b |cos 0°=20; 当a 与b 反向时,θ=180°, a ·b =|a ||b |cos 180°=-20.(2)当a ⊥b 时,θ=90°,a ·b =|a ||b |cos 90°=0. (3)当θ=60°时,a ·b =|a ||b |cos 60°=4×5×12=10.7.已知|a |=1,a ·b =12,(a -b )·(a +b )=12.(1)求a 与b 的夹角为θ; (2)求|a +b |.解:(1)∵(a -b )·(a +b )=a 2-b 2=12,|a |=1,∴b 2=a 2-12=1-12=12,∴|b |=22.∴cos θ=a ·b|a ||b |=121×22=22,又θ∈[0,π], ∴θ=π4.故a 与b 的夹角为π4.(2)|a +b |=(a +b )2=a 2+2a ·b +b 2=102. 8.已知|a |=5,|b |=12,当且仅当m 为何值时,向量a +m b 与a -m b 互相垂直? 解:若向量a +m b 与a -m b 互相垂直, 则有(a +m b )·(a -m b )=0. ∴a 2-m 2b 2=0.∵|a |=5,|b |=12,∴a 2=25,b 2=144.∴25-144m 2=0.∴m =±512.∴当且仅当m =±512时,向量a +m b 与a -m b 互相垂直.第2课时 平面向量数量积的坐标表示已知两个向量a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2).问题1:你认为a ·b =(x 1x 2,y 1y 2)对吗?为什么?提示:不对.因为两个向量的数量积a ·b 是一个实数,而不是一个向量. 问题2:如何用坐标表示a ·b 呢? 提示:a ·b =x 1x 2+y 1y 2.平面向量数量积的坐标表示若两个向量a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.由前面的学习,我们知道,|a |=a ·a ;cos θ=a ·b|a |·|b |(θ为非零向量a ,b 的夹角);a ⊥b ⇔a ·b =0.(其中a ,b 为非零向量)问题1:你能用坐标求|a |,cos θ的值吗? 提示:能.问题2:你能用坐标表示两向量垂直的条件吗? 提示:能.1.向量的模若a=(x,y),则|a|=x2+y2. 2.向量的夹角设两个非零向量a=(x1,y1),b=(x2,y2),它们的夹角为θ,则cos θ=x1x2+y1y2x21+y21x22+y22.3.两向量垂直的条件两非零向量a=(x1,y1),b=(x2,y2),若a⊥b,则x1x2+y1y2=0.反之,若x1x2+y1y2=0,则a⊥b.1.两个向量的数量积等于它们对应坐标的乘积的和,该公式可简记为:“对应相乘来求和.”2.两个向量垂直的等价条件是它们的相应坐标乘积的和为0.公式x1x2+y1y2=0是判定两个非零向量垂直的非常好用的条件.[例1](1)已知向量a=(-1,2),b=(3,2),求a·b和a·(a-b).(2)若a=(2,-3),b=(x,2x),且a·b=4,求x的值.[思路点拨]直接利用平面向量数量积的坐标表示求解即可.[精解详析](1)a·b=(-1,2)·(3,2)=(-1)×3+2×2=1,a·(a-b)=(-1,2)·[(-1,2)-(3,2)]=(-1,2)·(-4,0)=4.(2)∵a·b=(2,-3)·(x,2x)=2x-6x=4,∴x=-1.[一点通]进行平面向量数量积的运算,前提是牢记有关的运算法则和运算性质.解题时通常有两种途径:一是先将各向量用坐标表示,直接进行数量积运算;二是先利用数量积的运算律将原式展开,再依据已知计算.1.a=(1,3),b=(-2,-1),则(3a+2b)·(2a+5b)的值为________.解析:∵a=(1,3),b=(-2,-1),∴3a +2b =(3,9)+(-4,-2)=(-1,7), 2a +5b =(2,6)+(-10,-5)=(-8,1),∴(3a +2b )·(2a +5b )=(-1,7)·(-8,1)=8+7=15. 答案:152.已知a =(3,-1),b =(1,2),若x ·a =9,x ·b =-4,则向量x 的坐标为__________.解析:设x =(t ,s ),由⎩⎪⎨⎪⎧ x ·a =9,x ·b =-4得⎩⎪⎨⎪⎧3t -s =9,t +2s =-4,解得⎩⎪⎨⎪⎧t =2,s =-3.∴x =(2,-3).答案:(2,-3)3.已知向量a 与b 同向,b =(1,2),a ·b =10,求: (1)向量a 的坐标;(2)若c =(2,-1),求(a ·c )·b . 解:(1)∵a 与b 同向,且b =(1,2), ∴a =λb =(λ,2λ)(λ>0).又∵a ·b =10,∴λ+4λ=10,∴λ=2,∴a =(2,4). (2)∵a ·c =2×2+(-1)×4=0, ∴(a ·c )·b =0·b =0.[例2] 已知A (16,12)、B (-5,15),O 为坐标原点,求∠OAB 的大小.[思路点拨] 求∠OAB 的大小转化为求向量AO 与AB 的夹角的大小,所以需要求AO 与AB 二者的坐标,进而求得模的大小和数量积,代入夹角公式求解即可.[精解详析] 由已知得到:AO =-OA =-(16,12)=(-16,-12),AB =OB -OA =(-5,15)-(16,12)=(-21,3),∴|AO |=(-16)2+(-12)2=20, |AB |=(-21)2+32=152,AO ·AB =(-16,-12)·(-21,3)=(-16)×(-21)+(-12)×3=300,cos ∠OAB =AO ·AB | AO ||AB |=30020×152=22,∵0°≤∠OAB ≤180°,∴∠OAB =45°.[一点通] 根据向量的坐标表示求a 与b 的夹角时,需要先求出a ·b 及|a ||b |,再由夹角的余弦值确定θ.其中,当a ·b >0时,a 与b 的夹角θ∈[0,π2);当a ·b <0时,a 与b 的夹角θ∈(π2,π];当a ·b =0,a 与b 的夹角为直角.4.已知a =(3,0),b =(-5,5),则a 与b 的夹角为________. 解析:a ·b =-15,|a |=3,|b |=52, ∴cos θ=a ·b |a ||b |=-153×52=-22,又∵θ∈[0,π],∴θ=3π4.答案:3π45.已知a =(-2,2),b =(1,y ),若a 与b 的夹角α为钝角,求y 的取值范围. 解:由a ·b <0得-2×1+2y <0,∴y <1,又设a =λb ,λ<0,则(-2,2)=λ(1,y )=(λ,λy ), ∴λ=-2且λy =2,∴y =-1, ∴y ∈(-∞,-1)∪(-1,1).[例3] 已知三点A (2,1),B (3,2),D (-1,4). (1)求证:AB ⊥AD ;(2)要使四边形ABCD 为矩形,求点C 的坐标并求矩形ABCD 的对角线的长度. [思路点拨] (1)求出AB ,AD 的坐标,计算得到二者数量积为0即可;(2)由(1)知四边形ABCD 为矩形,只需AB =DC ,利用相等向量坐标对应相等建立方程求出点C 的坐标,最后利用长度公式求对角线长度.[精解详析] (1)证明:∵A (2,1),B (3,2),D (-1,4), ∴AB =(1,1),AD =(-3,3). 则AB ·AD =1×(-3)+1×3=0, ∴AB ⊥AD ,即AB ⊥AD .(2)∵AB ⊥AD ,四边形ABCD 为矩形,∴AB =DC . 设C 点的坐标为(x ,y ),则DC =(x +1,y -4),从而有⎩⎪⎨⎪⎧ x +1=1,y -4=1,即⎩⎪⎨⎪⎧x =0,y =5,∴C 点的坐标为(0,5).∵BD =(-4,2),∴|BD |=25, 即矩形ABCD 的对角线的长度为2 5. [一点通](1)向量的数量积是否为零,是判断相应的两条线段或直线是否垂直的重要方法. (2)已知向量垂直求参数问题,即由向量的数量积为0建立关于参数的方程,求解即可.6.已知a =(3,4),b =(2,-1),如果向量a +λb 与-b 垂直,则λ的值为________. 解析:a +λb =(3,4)+λ(2,-1)=(3+2λ,4-λ), -b =(-2,1).∵(a +λb )⊥(-b ),∴-2(3+2λ)+(4-λ)=0. ∴λ=-25.答案:-257.设向量a =(1,2m ),b =(m +1,1),c =(2,m ).若(a +c )⊥b ,则|a|=________. 解析:a +c =(3,3m ),由(a +c )⊥b ,可得(a +c )·b =0,即3(m +1)+3m =0,解得m =-12,则a =(1,-1), 故|a |= 2. 答案: 28.已知在△ABC 中,A (2,4),B (-1,-2),C (4,3),BC 边上的高为AD . (1)求证:AB ⊥AC ;(2)求点D 和向量AD 的坐标; (3)设∠ABC =θ,求cos θ.解:(1)证明:AB =(-1,-2)-(2,4)=(-3,-6),AC =(4,3)-(2,4)=(2,-1).∵AB ·AC =-3×2+(-1)×(-6)=0, ∴AB ⊥AC .(2)设D 点的坐标为(x ,y ),则AD =(x -2,y -4),BC =(5,5),∵AD ⊥BC ,∴AD ·BC =5(x -2)+5(y -4)=0.① 又BD =(x +1,y +2),而BD 与BC 共线,∴5(x +1)-5(y +2)=0.② 联立①②,解得x =72,y =52,故D 点坐标为⎝⎛⎭⎫72,52,∴AD =⎝⎛⎭⎫72-2,52-4=⎝⎛⎭⎫32,-32. (3)cos θ=BA ·BC | BA ||BC |=3×5+6×532+62·52+52=31010.1.两向量平行、垂直的坐标表示的区别(1)已知非零向量a =(x 1,y 1),b =(x 2,y 2),则向量a 与b 垂直⇔a ·b =0⇔x 1x 2+y 1y 2=0;向量a 与b 平行⇔存在λ∈R ,使b =λa ⇔x 1y 2-x 2y 1=0.(2)向量垂直的坐标表示x 1x 2+y 1y 2=0与向量共线的坐标表示x 1y 2-x 2y 1=0很容易混淆,应仔细比较并熟记,当难以区分时,要从意义上鉴别,垂直是a ·b =0,而共线是方向相同或相反.2.向量的坐标运算的应用利用向量的坐标运算有助于解决平面几何中的长度问题、角度大小以及直线的平行与垂直等位置关系的判断.其求解过程就是首先将平面图形放置到坐标系中,正确地写出有关点的坐标,然后利用向量的模长公式、夹角公式以及向量共线、垂直的条件进行求解,实现数与形的结合.课下能力提升(二十一)一、填空题1.已知a =(2,3),b =(-2,4),c =(-1,2),则a ·(b +c )=________. 解析:∵b =(-2,4),c =(-1,2), ∴b +c =(-2,4)+(-1,2)=(-3,6).又∵a =(2,3),∴a ·(b +c )=(2,3)·(-3,6)=2×(-3)+3×6 =-6+18=12. 答案:122.已知a =(2,4),b =(1,3),则|3a -2b |=________. 解析:a =(2,4),b =(1,3), 则3a -2b =(6,12)-(2,6)=(4,6). ∴|3a -2b |=42+62=52=213. 答案:2133.已知O 是坐标原点,A ,B 是坐标平面上的两点,且向量OA =(-1,2),OB =(3,m ).若△AOB 是直角三角形,则m =________.解析:在Rt △AOB 中,AB =(4,m -2), 若∠OAB 为直角时,OA ·AB =0,可得m =4; 若∠AOB 为直角时,OA ·OB =0,可得m =32; 若∠OBA 为直角时,无解. 答案:32或44.若向量a =(1,2),b =(1,-1),则2a +b 与a -b 的夹角等于________. 解析:由a =(1,2),b =(1,-1)得2a +b =(3,3), a -b =(0,3),设2a +b 与a -b 的夹角为θ, 则cos θ=(2a +b )·(a -b )|2a +b |·|a -b |=932·3=22.∵0≤θ≤π,∴θ=π4.答案:π45.设a =(4,-3),b =(2,1),若a +t b 与b 的夹角为45°,则实数t 的值为________. 解析:a +t b =(4,-3)+t (2,1)=(4+2t ,t -3), (a +t b )·b =(4+2t )×2+(t -3)×1=5t +5. |a +t b |=(4+2t )2+(t -3)2=5(t +1)2+20. 由(a +t b )·b =|a +t b ||b |cos 45°, 得5t +5=522·(t +1)2+4,即t 2+2t -3=0.∴t =-3或t =1,经检验t =-3不合题意,舍去,∴t =1. 答案:1 二、解答题6.已知a =(4,3),b =(-1,2),m =a -λb ,n =2a +b ,按下列条件求实数λ的值: (1)m ⊥n ;(2)m ∥n ;(3)|m |=5.解:m =a -λb =(4+λ,3-2λ),n =2a +b =(7,8), ∴(1)m ⊥n ⇒(4+λ)×7+(3-2λ)×8=0⇒λ=529;(2)m ∥n ⇒(4+λ)×8-(3-2λ)×7=0⇒λ=-12;(3)|m |=5⇒(4+λ)2+(3-2λ)2=5⇒5λ2-4λ=0 ⇒λ=0或45.7.已知m =(1,1),向量n 与m 的夹角为3π4,且m ·n =-1,求向量n .解:设n =(x ,y ).由m ·n =-1得x +y =-1.(1) 因为向量n 与m 的夹角为3π4,有m ·n =|m ||n |cos3π4=-1, 所以|n |=1,即x 2+y 2=1.(2)由(1)(2)得x =-1,y =0,或x =0,y =-1, 所以n =(-1,0),或n =(0,-1).8.已知OP =(2,1),OA =(1,7),OB =(5,1),设C 是直线OP 上的一点(其中O 为坐标原点).(1)求使CA ·CB 取得最小值时的OC ; (2)对于(1)中求出的点C ,求cos ∠ACB . 解:(1)因为点C 是直线OP 上一点,所以向量OC 与OP 共线,设OC =t OP ,则OC =(2t ,t ).CA =OA -OC =(1-2t,7-t ), CB =OB -OC =(5-2t,1-t ). CA ·CB =(1-2t )(5-2t )+(7-t )(1-t ) =5t 2-20t +12=5(t -2)2-8.当t =2时,CA ·CB 取得最小值,此时OC =(4,2).(2)当OC=(4,2)时,CA=(-3,5),CB=(1,-1),所以|CA|=34,|CB|=2,CA·CB=-8.所以cos∠ACB=CA·CB| CA||CB|=-41717.。
江苏省泰兴中学高一数学教学案(60)必修4_02 向量的数量积(2)班级 姓名目标要求1.掌握数量积的坐标表示,会进行平面向量数量积的运算;2. 能运用向量数量积的坐标表示来实现形与数之间的转化.重点难点重点:平面向量数量积的坐标表示,以及由此推得的长度、角度、垂直关系的坐标表示; 难点:用坐标法解决长度、角度、垂直问题.典例剖析例1已知(2,1),(3,2),)(2)a b a b a b =-=---r r r r r rg求(3例2、(1))4,2(),1,3(),2,1(-=-==,则()a b c r r r g=________,()a b c r r rg =_______ (2) 已知y x ⊥==-=),,2(),,2(),4,3(,//,则=_______,=________ , 与的夹角等于____ .(3)已知(3,4)a =-r,则与a 垂直的单位向量的坐标是______________(4)若向量)4,3(),,2(==b x a ,且向量b a ,的夹角为锐角,则x 的取值范围是 .例3、在ABC ∆中,设23AB =u u u r (,),(1,)AC k =u u u r,且ABC ∆是直角三角形,求k 的值.例4、已知(cos ,sin ),(cos ,sin )a b ααββ==r r ,且||3|ka b a kb +=-r r r u u r,其中0k >.(1)用k 表示b a ⋅;(2)求b a ⋅的最小值,并求此时,a b r r 的夹角的大小.学习反思数量积 向量长度夹角公式垂直定义形式坐标形式课堂练习1、已知ABC ∆的三个顶点坐标分别为)4,1(),4,3(),2,5(--C B A ,则这个三角形的形状是____________________.2、若)2,1(),3,4(-==b a ,则b a ,的夹角的余弦值为_____3、已知6,4a b ∣∣=∣∣=r r ,且两向量的夹角为3π, 则3a b →→∣-∣= .4、已知)1,1(),1,0(==,且)(λ+⊥,则λ= .5、已知正ABC V 的边长为2, 且,,BC a CA b AB c →→→→→→===,则a b c a →→→→+=g g .江苏省泰兴中学高一数学作业(60)班级 姓名 得分1、给定两个向量)1,2(),4,3(-==,且)()(x -⊥+,则实数x 等于 .2、设,,a b c r r r是任意的非零向量,且相互不共线,有下列命题:(1)()()0a b c c a b -=r r r r r r gg ; (2)||||||a b a b -<-r r r r ; (3)()()b c a c a b -r r r r r r gg 与c r 垂直; (4)22(34)(34)9||16||a b a b a b +-=-r r r r r r g 其中真命题是 .3、已知(3,5),,||2a b a b =⊥=r r r r且,则b r 的坐标为 .4、若向量,,a b c r r r 满足0a b c →++=r r r , 且,,a b c ∣∣=3∣∣=2∣∣=4,r r r 则a b b c c a →→→→→→++=g g g . 5、设向量(,3),(2,1)a x b ==-r r,若a b r r 与的夹角为钝角,求x 的取值范围.6、已知||1,||3,(3,1)a b a b ==+=r r r r ,求: (1)||a b -r r; (2)a b +r r 与a b -r r 的夹角.7、已知2a b →→∣∣=∣∣≠0,且关于x 的方程20x a x a b →→→+∣∣+=g 有实根,求a r 与b r的夹角θ的取值范围.8、已知向量(1,2),(3,2)a b ==-r r(1) 求||a b +r r 和||a b -r r ;(2) 当k 为何值时, 向量ka b +r r 与3a b -r r垂直; (3) 当k 为何值时, 向量ka b +r r 与3a b -r r平行.9、已知133,1),(2a b =-=r r ,且存在实数k 和t ,使得2(3)x a t b =+-r r r ,y ka tb =-+u r r r ,且x y ⊥r u r ,试求2k t t+的最小值。
2.4 向量的数量积(1)一、课题:向量的数量积(1)二、教学目标:1.理解平面向量数量积的概念; 2.掌握两向量夹角的概念及其取值范围[0,]π; 3.掌握两向量共线及垂直的充要条件; 4.掌握向量数量积的性质。
三、教学重、难点:向量数量积及其重要性质。
四、教学过程: (一)引入:物理课中,物体所做的功的计算方法: ||||cos W F s θ=(其中θ是F 与s 的夹角).(二)新课讲解: 1.向量的夹角: 已知两个向量a 和b (如图2),作OA a =,OB b =,则AOB θ∠=(0180θ≤≤)叫做向量a 与b 的夹角。
当0θ=时,a 与b 同向;当180θ=时,a 与b反向;当90θ=时,a 与b 的夹角是90,我们说a 与b 垂直,记作a ⊥b .2.向量数量积的定义:已知两个非零向量a 和b ,它们的夹角为θ,则数量||||cos a b θ⋅⋅叫做a 与b 的数量积(或内积),记作a b ⋅,即||||cos a b a b θ⋅=⋅⋅.说明:①两个向量的数量积是一个数量,这个数量的大小与两个向量的长度及其夹角有关;②实数与向量的积与向量数量积的本质区别:两个向量的数量积是一个数量;实 数与向量的积是一个向量; ③规定,零向量与任一向量的数量积是0. 3.数量积的几何意义: (1)投影的概念:如图,OA a =,,过点B 作1BB 垂直于直线OA ,垂足为1B ,则1||cos OB b θ=.||cos b θ叫做向量b 在a 方向上的投影,当θ为锐角时,它是正值;当θ为钝角时,它是一负值;当90θ=时,它是0;当0θ=时,它是||b ;当180θ=时,它是||b -. (2)a b ⋅的几何意义:数量积a b ⋅等于a 的长度||a 与b 在a 的方向上的投影||cos b θ的乘积。
【练习】:①已知||5a =,||4b =,a 与b 的夹角120θ=,则a b ⋅=10-;Aa b)Bb 1B O1 1()B②已知||4b =,a 在b 上的投影是1||2b ,则a b ⋅= 8 ;③已知||5a =,||4b =,32a b ⋅=-a 与b 的夹角θ=135.(3)数量积的性质:设a 、b 都是非零向量,θ是a 与b 的夹角,则 ①cos ||||a ba b θ⋅=;②当a 与b 同向时,||||a b a b ⋅=;当a 与b 反向时,||||a b a b ⋅=-; 特别地:2||a a a ⋅=或||a a a =⋅;③||||||a b a b ⋅≤; ④a b ⊥0a b ⇔⋅=;若e 是与b 方向相同的单位向量,则 ⑤||cos e a a e a θ⋅=⋅=. 4.例题分析:例1 已知正ABC ∆的边长为2,设BC a =,CA b =,AB c =,求a b b c c a ⋅+⋅+⋅. 解:如图,a 与b 、b 与c 、a 与c 夹角为120,∴原式||||cos120||||cos120||||cos120a b b c a c =⋅⋅+⋅⋅+⋅⋅122()362=⨯⨯-⨯=-.例2 已知||3a =,||3b =,||23c =,且0a b c ++=,求a b b c c a ⋅+⋅+⋅.解:作AB c =,BC a =, ∵0a b c ++=, ∴CA b =,∵||||||||||||a b c a b -<<+且222||||||c a b =+, ∴ABC ∆中,90C =, ∴tan 3A =,∴30A ∠=,60B ∠=, 所以,3323cos1209312a b b c c a ⋅+⋅+⋅=⨯+⨯=--=-.五、课后练习:补充:1.若非零向量a 与b 满足||||a b a b +=-,则a b ⋅= 0 . 六、课堂小结:1.向量数量积的概念; 2.向量数量积的几何意义; 3.向量数量积的性质。
1、b a b a -==,则b 与b a +的夹角为 。
2、若()m a ,1= ,2<a ,则m 的取值范围为 。
3、(),8,2-=+b a ()16,8-=-b a ,a 与b 的夹角为θ,则a = 。
b = ,=•b a ,=θcos 。
4、1==b a ,323=-b a ,则=+b a 3 。
5、()2,1=a ,()3,2-=b ,则b a k +与b k a-垂直,则=k 。
6、4=a ,5=b ,()()b a b a 23+⊥-,则a 与b 的夹角的余弦值是 。
例题剖析 例1、已知()4,6-=a ,()2,0=b ,b m ac +=,求满足下列条件的m 的范围: (1)10=c (2)()c b a ⊥- (3)()b a +2∥c例2、已知()m A ,1,()1,3-B ,()4,3-=AC 。
(1)若2=m 时,求AC AB +2的模; (2)求BAC ∠cos ;(3)△ABC 为锐角三角形,求m 的范围。
巩固练习 1、已知q p ,是夹角为︒60的两个单位向量,q p b q p a 32,23-=-=, (1)求b a • (2)求证:()()b a b a -⊥+2、已知直角坐标平面内,()()()3,1,1,4,8,1=-=-=OC OB OA ,求证:△ABC 为等腰直角三角形。
课堂小结熟练掌握向量数量积的相关知识。
课后训练班级:高一( )班 姓名__________一、基础题1、已知()m A ,2-,()4,m B ,若BA 与Ox 轴的正方向的夹角的正切值为21-,则=m2、2=a ,1=b ,a 与b 的夹角为︒60,则a 与b a2+的夹角为 。
3、4=a ,1=b ,62=-b a ,a 与b 的夹角为θ,则=θcos 。
4、()4,2=a ,()1,1=b ,()b a b λ+⊥ ,则=λ 。
5、b 是与()13,13+-=a 的夹角为︒45的单位向量,则=b 。
第 10 课时:§2.4 向量的数量积(二)
【三维目标】:
一、知识与技能
1.掌握平面向量数量积运算规律,能利用数量积的5个重要性质及数量积运算规律解决有关问题.
2. 掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题
二、过程与方法
1.通过师生互动,学生自主探究、交流与合作培养学生探求新知及合作能力;
2.通过讲解例题,培养学生逻辑思维能力;
3.让学生充分经历,体验数量积的运算律以及解题的规律。
三、情感、态度与价值观
1.让学生进一步领悟数形结合的思想;
理解向量的数量积,进一步激发学生学习数学的兴趣、积极性和勇于创新的精神.
【教学重点与难点】:
重点:运算律的理解和平面向量数量积的应用
难点:平面向量的数量积运算律的理解
【学法与教学用具】:
1. 学法:(1)自主性学习+探究式学习法:
(2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距.
2. 教学用具:多媒体、实物投影仪.
【授课类型】:新授课
【课时安排】:1课时
【教学思路】:
一、创设情景,揭示课题
【复习提问】:
1.(1)两个非零向量夹角的概念;
(2)平面向量数量积(内积)的定义; (3)“投影”的概念; (4)向量数量积的几何意义; (5)两个向量的数量积的性质。
2.判断下列各题正确与否:
①若0a =,则对任一向量b ,有0a b ⋅=; ( √ ) ②若0a ≠,则对任一非零向量b ,有0a b ⋅≠; ( × ) ③若0a ≠,0a b ⋅=,则0b =; ( × ) ④若0a b ⋅=,则,a b 至少有一个为零向量; ( × ) ⑤若a b a c ⋅=⋅,则b c =当且仅当0a ≠时成立; ( × ) ⑥对任意向量a ,有2
2||a a =. ( √ ) 二、研探新知
1.数量积的运算律(证明的过程可根据学生的实际水平决定) (1)交换律:a b b a ⋅=⋅
证明:设,a b 夹角为θ,则||||cos a b a b θ⋅=⋅⋅,||||cos b a b a θ⋅=⋅⋅,∴a b b a ⋅=⋅. (2)数乘结合律:()()()a b a b a b λλλ⋅=⋅=⋅ 证明:若0=λ,此式显然成立.
若0λ>,()||||cos a b a b λλθ⋅=, ()||||cos a b a b λλθ⋅=,
()||||cos a b a b λλθ⋅=,∴()()()a b a b a b λλλ⋅=⋅=⋅
若0λ<,()||||cos()||||(cos )||||cos a b a b a b a b λλπθλθλθ⋅=-=--=,
()||||cos a b a b λλθ⋅=,
()||||cos()||||(cos )||||cos a b a b a b a b λλπθλθλθ⋅=-=--=.
∴()()()a b a b a b λλλ⋅=⋅=⋅
综上可知()()()a b a b a b λλλ⋅=⋅=⋅成立.
(3)分配律:()a b c a c b c +⋅=⋅+⋅.
在平面内取一点O ,作−→
−OA =a , −→
−AB =b ,−→
−OC =c ,
∵a b +(即−→
−OB )在c 方向上的投影等于,a b 在c
方向上的投影和,即:12||cos ||cos ||cos a b a b θθθ+=+
∴12||||cos ||||cos ||||cos c a b c a c b θθθ+=+,∴()c a b c a c b ⋅+=⋅+⋅
即:()a b c a c b c +⋅=⋅+⋅.
【说明】:(1)一般地,(a b ⋅)·c ≠a ·(b ·c )
(2)a ·c =b ·c ,c ≠0
a =b
(3)有如下常用性质:a 2
=|a |2
,(a +b )2
=a 2
+2a b ⋅+b 2
(a +b )·(c +d )=a ·c +a ·d +b ·c +b ·d , 2 向量的数量积不满足结合律
分析:若有(a b ⋅)c =a (b ·c ),设a 、b 夹角为σ,b 、c 夹角为β,则(a b ⋅)c =|a |·|b |cos α·c ,a ·(b ·c )=a ·|b ||c |cos β,∴若a =c ,α=β,则|a |=|c |,进而有:(a b ⋅)c =a ·(b •c ),这是一种特殊情形,一般情况下不成立。
举反例如下:
已知|a |=1,|b |=1,|c |=2,a 与b 夹角是60°,b 与c 夹角是45°, (a b ⋅)·c =(|a |·|b |cos60°)·c =
2
1
c , a ·(b ·c )=(|b |·|c |cos45°)a =a
而
2
1
c ≠a ,故(a b ⋅)·c ≠a ·(b ·c ) 三、质疑答辩,排难解惑,发展思维
例1 已知,a b 都是非零向量,且3a b +与75a b -垂直,4a b -与72a b -垂直,求a 与b 的夹角
θ θ1
θ
a
b
A
B
A
B
C
c
解:由题意可得:(3)(75)0a b a b +⋅-=⇒22
716150a a b b +⋅-=①
(4)(72)0a b a b -⋅-=⇒22
73080a a b b -⋅+=②
两式相减得:22a b b ⋅⋅=, 代入①或②得:22
a b =,设,a b 的夹角为θ,
则2
1
||2|
|||cos 2
2
=
=
⋅=
→
→→
→→
→b b
b a b
a θ,∴60θ=,即a 与
b 的夹角为60. 例2求证:平行四边形两条对角线平方和等于四条边的平方和。
【举一反三】
1 用向量方法证明:菱形对角线互相垂直。
证:设−→−AB =−→−DC = a , −→−AD =−→
−BC = b ∵ABCD 为菱形 ∴|a | = |b | ∴−→−AC •−→−BD = (b +a )(b -a ) = b 2
-a 2
= |b |2
- |a |2
= 0 ∴−→−AC
⊥−→
−BD ,即菱形对角线互相垂直。
2. 如图,,,AD BE CF 是ABC ∆的三条高,
求证:,,AD BE CF 相交于一点。
变式:用向量证明三角形的三条角平分线相交于一点。
例3 四边形ABCD 中,−→
−AB =a ,−→
−BC =b ,−→
−CD =c ,
−→
−DA =d ,且a ·b =b ·c =c ·d =d ·a ,试问四边形ABCD 是什么图形?
例 4 设a 与b 是夹角为60°,且|a |>|b |,是否存在满足条件的a ,b ,使
|a +b |=2|a -b |?请说明理由。
四、巩固深化,反馈矫正
1.已知|a |=1,|b |=2,(1)a -b 与a 垂直,则a b ⋅的夹角是______; (2)若a //b ,
a b ⋅___=; (3)若a 、b 的夹角为
3
π
,则|a +b |____=; 2.已知|a |=2,|b |=1,a 与b 之间的夹角为3
π
,那么向量a -4b 的模为_____;
A B
C
D
E
F
H
|a -4b |·|a -b |____=
1e 、2e 是两个单位向量,其夹角为060,求向量a =21e +2e 与b =22e -31e 的夹角; a 、b ,(1)求使|a t +b |最小时的值,并求此时b 与a t +b 的夹角。
(2)当a tb +()t R ∈的模取最小值时,①求t 的值;②求证:b 与a tb +垂直。
解:(2)①2222
||||||2a tb a t b t a b +=++⋅⋅,∴当22
22||a b a b
t b b
⋅⋅=-
=-时, ||a tb +最小;
②∵2
2
()0a b b a tb a b b b
⋅⋅+=⋅-
⋅=,∴b 与a tb +垂直。
五、归纳整理,整体认识
通过本节学习,要求大家掌握平面向量数量积的运算规律,掌握两个向量共线、垂直的几何判断,能利用数量积的5个重要性质解决相关问题
. 六、承上启下,留下悬念
1.向量,a b 的模分别为2,1,,a b 的夹角为30b -的模;
2.设,a b 是两个不相等的非零向量,且||||||a b a b ==-,求a 与a b +的夹角。
3.设28,816a b i j a b i j +=--=-+,,i j 是相互垂直的单位向量,求a b ⋅. 4.预习向量数量积的坐标表示。
七、板书设计(略) 八、课后记:。