高二数学上册9月月考检测试卷1
- 格式:doc
- 大小:496.00 KB
- 文档页数:8
铁人中学2021-2021学年高二数学上学期(xuéqī)第一次月考试题〔9月〕试题试题说明:1、本试题满分是150分,答题时间是120分钟。
2、请将答案填写上在答题卡上,在在考试完毕之后以后只交答题卡。
第一卷〔选择题满分是60分〕一、选择题〔本大题一一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.)1.椭圆的离心率为〔〕A. B. C. D.的离心率为,点在上,那么椭圆的短轴长为〔〕A.1B.C.2D.3.椭圆的左、右焦点分别为,过的直线交椭圆于两点,交轴于点,假设是线段的三等分点,那么椭圆的离心率为〔〕A. B. C. D.4.双曲线的中心在坐标原点,一个焦点为,点P在双曲线上,且线段的中点坐标为,那么此双曲线的方程是〔〕A. B. C. D.5.是椭圆C的两个焦点,P是C上的一点,假设,,那么C的离心率为〔〕A. B. C. D.6.设分别是椭圆的左、右焦点,为椭圆上任一点,点的坐标为,那么的最大值为〔〕A.13B.14C.15D.167.设是椭圆的两焦点,P 为椭圆上的点,假设,那么的面积为〔〕A.8B.C.4D.8.方程表示双曲线,且双曲线两焦点间的间隔为4,那么的取值范围是〔〕A. B. C. D.,过点的直线交椭圆C 所得的弦的中点坐标为,那么该椭圆的离心率为〔〕A. B.32C. D.10.椭圆(tuǒyuán)上的点到直线间隔最近的点的坐标为〔〕A. B. C. D.11.椭圆的短轴长为2,上顶点为,左顶点为分别是的左、右焦点,且的面积为,点P为C 上的任意一点,那么的取值范围为〔〕A. B. C. D.12.双曲线的左、右顶点分别为,点为双曲线C的左焦点,过点F作垂直于轴的直线分别在第二、第三象限交双曲线C于两点,连接交轴于点,连接交于点,假设,那么双曲线C的离心率为〔〕A.3B. 4C. 5D. 6第II卷非选择题局部〔选择题满分是90分〕二、填空题〔本大题一一共4小题,每一小题5分,一共20分.)13.椭圆2212516x y+=的两个焦点分别为,斜率不为0的直线过点,且交椭圆于两点,那么的周长为_________.的左、右焦点分别是12,F F,点是椭圆上一点,,直线交椭圆于另一点,且,那么椭圆的离心率是_________.和点分别为椭圆的中心点和左焦点,点为椭圆上的任意一点,那么的最小值为_________.2222:1(0)x yC a ba b+=>>的左、右焦点分别为12,F F,点P是椭圆C上一点,且在第一象限,点是点P时,椭圆C的离心率的取值范围是_________.三、解答题〔本大题一一共6小题,一共70分.)17.(此题10分)椭圆的中心在坐标原点O,长轴长为,离心率,过右焦点F 的直线l交椭圆于,P Q两点:〔1〕求椭圆的方程;〔2〕当直线l的斜率为1时,求的面积.18.(此题12分)两定点,点P是曲线E上任意一点,且满足条件.〔1〕求曲线E 的轨迹方程; 〔2〕假设直线与曲线E 交于,A B 两点,求的范围.19.(此题12分)中心(zhōngxīn)在原点的双曲线的渐近线方程是,且双曲线过点〔1〕求双曲线的方程;〔2〕过双曲线右焦点F 作倾斜角为的直线交双曲线于,A B 两点,求.20.(此题12分) 椭圆的左、右顶点分别为,A B ,点P 在椭圆上且异于,A B 两点, O 为坐标原点. 〔1〕假设直线与的斜率之积为,求椭圆的离心率; 〔2〕假设,证明直线的斜率满足.21.(此题12分)椭圆经过点〔1〕求椭圆E 的方程; 〔2〕经过点的直线与椭圆E 交于不同两点,P Q (均异于点A ),那么直线AP 与的斜率之和是否为定值?假如是恳求出该定值,假如不是请说明理由.22.(此题12分)椭圆()222210x y a b a b+=>>的左焦点为F ,过点F 的直线交椭圆于,A B 两点.的最大值是M ,的最小值是,满足.〔1〕求该椭圆的离心率;〔2〕设线段的中点为,AB 的垂直平分线与x 轴和y 轴分别交于两点,O的面积为,的面积为,求的取值范围.铁人中学2021级高二上学期第一次月考数学答案一、选择题 1.答案:A 解析:即,故,故,所以.2.答案:C 解析:因为,,所以,所以,选C .3.答案:D 解析:由可知,点的坐标为,,易知点坐标, 将其代入椭圆方程得,所以离心率为,应选 D.4.答案:B 解析:由双曲线的焦点可知,线段的中点坐标为,所以.设右焦点为,那么有,且轴,点P 在双曲线的右支上,所以,所以,所以,,所以双曲线的方程为,应选B.5.答案(dá àn):D 解析:由题设知,所以.由椭圆的定义得,即,所以,故椭圆C 的离心率.6.答案:C7.答案:C 解析:由椭圆,可知,可得,即,设,由椭圆的定义可知:,∵,得,由勾股定理可知:,∴,那么解得:,∴.∴的面积.8.答案:A双曲线的焦点在x 轴上,所以,解得,因为方程表示双曲线,所以,解得,所以n 的取值范围是,9.答案:B:B11.答案:D 解析:由的,故.∵的面积为,∴,∴.又∵,∴,∴.又,∴, ∴.∴的取值范围为.12.答案:C解析:根据题意,作出如下图的双曲线的草图,由题意得,将代入双曲线的方程,可得,那么.由,得,那么有,那么,而,那么有,即,所以,那么,故双曲线的离心率为5.二、填空题13.解析:由题意得,周长:14.答案:解析:设,由,得,由,得,所以,又,即,化简得,即,根据,得,又,所以,所以椭圆的离心率.15.解析(jiě xī):点为椭圆上的任意一点,设,依题意得左焦点,∴,∴..∵,∴,∴,∴,∴,即.故的最小值为6.16.解析:点P与点Q 关于原点对称,且四边形是矩形,为直角三角形〔为直角〕.设,那么,,,.点P 在第一象限,.三、解答题17.解析:试题分析:(Ⅰ)由,椭圆方程可设为∵长轴长为,心率,∴,所求椭圆方程为: .(Ⅱ)因为直线过椭圆右焦点,且斜率为,所以直线的方程为.设,由得,解得.∴.18答案:解:①由双曲线的定义可知, 曲线E是以,为焦点的双曲线的左支, 且,a=1, ∴b= =1 故曲线E的方程为:x 2﹣y 2=1(x<0 )②设A(x 1,y 1),B(x 2,y 2), 由题意建立方程组消去y,得(1﹣k 2)x 2+2kx﹣2=0 直线与双曲线左支交于两点A,B,有解得:19.解析:试题解析:(1)设双曲线方程为:,点代入得:,所以(suǒyǐ)所求双曲线方程为〔2〕直线的方程为:,由得:,.20.解析: (1)解:设点P的坐标为.由题意,有①由,得, 由,可得,代入①并整理得由于,故.于是,所以椭圆的离心率(2)证明:(方法一) 依题意,直线OP的方程为,设点P的坐标为. 由条件得消去并整理得②由, 及, 得. 整理得.而,于是,代入②, 整理得由,故,因此. 所以. (方法二) 依题意,直线OP的方程为,设点P的坐标为. 由P在椭圆上,有因为, ,所以,即③由, ,得整理得.于是,代入③, 整理得解得, 所以.21.答案:〔1〕由题意知,,综合,解得,所以,椭圆的方程为.〔2〕由题设知,直线的方程为,代入,得,由,设,,那么,,从而直线与的斜率之和.22. 试题解析:(1) 设,那么根据椭圆性质得而,所以有,即,,因此椭圆的离心率为.(2) 由(1)可知,,椭圆的方程为.根据条件直线的斜率一定存在且不为零,设直线的方程为,并设那么由消去并整理得从而有,.因为,所以,.由与相似,所以.内容总结(1)铁人中学2021-2021学年高二数学上学期第一次月考试题〔9月〕试题试题说明:1、本试题满分是150分,答题时间是120分钟。
2022-2023学年河南省洛阳市新安县第一高级中学高二上学期9月月考数学试题一、单选题1.直线tan120x =︒的倾斜角是( ) A .60° B .90°C .120°D .不存在【答案】B【分析】根据直线的方程,利用斜率和倾斜角的关系求解.【详解】解:因为直线tan120x =︒= 所以直线的倾斜角是90°, 故选:B2.平面α的斜线l 与它在这个平面上射影l'的方向向量分别为()1,0,1a =,()0,1,1b =,则斜线l 与平面α所成的角为( ) A .30° B .45°C .60°D .90°【答案】C【分析】由题意结合线面角的概念可得a 与b 所成的角(或其补角)即为l 与α所成的角,由cos ,||||a ba b a b ⋅<>=⋅即可得解. 【详解】由题意a 与b 所成的角(或其补角)即为l 与α所成的角, 因为11cos ,,,[0,]2||||2a b a b a b a b π⋅<>===<>∈⋅⨯, 所以,60a b <>=,所以斜线l 与平面α所成的角为60°. 故选:C.【点睛】本题考查了利用空间向量求线面角,考查了运算求解能力,属于基础题. 3.如图,空间四边形OABC 中,点M 在线段OA 上,且2OM MA =,N 为BC 的中点,MN xOA yOB zOC =++,则x ,y ,z 的值分别为( )A .12,23-,12B .23-,12,12C .12,12,23-D .23,23,12-【答案】B【分析】利用空间向量的基本定理求解.【详解】因为12()23MN ON OM OB OC OA =-=+-,211322a b c =-++,所以23x =-,12y =,12z =.故选:B.4.下列条件使M 与A 、B 、C 一定共面的是( ) A .2OM OA OB OC =-+ B .0OM OA OB OC +++= C .121532OM OA OB OC =++D .0MA MB MC ++=【答案】D【分析】利用共面向量定理判断.【详解】A 选项:MA MB MC OA OM OB OM OC OM ++=-+-+-,30OA OB OC OM =++-≠,∴M ,A ,B ,C 四点不共面;B 选项:由0OM OA OB OC +++=,得()OM OA OB OC =-++,系数和不为1, ∴M ,A ,B ,C 四点不共面;C 选项:1211532++≠,∴M ,A ,B ,C 四点不共面;D 选项:0MA MB MC OA OM OB OM OC OM ++=-+-+-=, 即()13OM OA OB OC =++, 所以能使M 与A 、B 、C 一定共面.故选:D.5.直线l 1与l 2为两条不重合的直线,则下列命题: ①若l 1∥l 2,则斜率k 1=k 2; ②若斜率k 1=k 2,则l 1∥l 2; ③若倾斜角12αα=,则l 1∥l 2; ④若l 1∥l 2,则倾斜角α1=α2. 其中正确命题的个数是( ) A .1 B .2C .3D .4【答案】C【分析】①若l 1∥l 2,则分当斜率存在时、当斜率不存在时两种情况,判断命题①错误;②若斜率k 1=k 2,则l 1∥l 2,判断命题②正确;③若倾斜角12αα=,则l 1∥l 2,判断命题③正确;④若l 1∥l 2,则倾斜角12αα=,判断命题④正确即可得到答案.【详解】解:直线l 1与l 2为两条不重合的直线:①若l 1∥l 2,当斜率存在时,则斜率k 1=k 2,当斜率不存在时,两条直线都垂直与x 轴,所以命题①错误;②若斜率k 1=k 2,则l 1∥l 2,所以命题②正确; ③若倾斜角12αα=,则l 1∥l 2,所以命题③正确;④若l 1∥l 2,则倾斜角12αα=,所以命题④正确,所以正确的命题个数共3个. 故选:C.【点睛】本题考查两条直线的位置关系,是基础题.6.经过点()3,0B ,且与直线250x y +-=垂直的直线方程为( ) A .230x y -+= B .260x y +-= C .230x y --= D .230x y +-=【答案】C【分析】由于所求直线与直线250x y +-=垂直,从而可求出所求直线的斜率,再利用点斜式可求出直线方程【详解】因为直线250x y +-=的斜率为2-, 所以与直线250x y +-=垂直的直线的斜率为12,因为所求直线经过点()3,0B ,所以所求直线方程为1(3)2y x =-,即230x y --=,故选:C7.“1a =-”是“直线240x ay ++=与直线(1)20a x y -++=平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C【分析】根据两直线平行可知:12120A B B A +=求出a ,代入验证,再由充分条件、必要条件的定义即可求解.【详解】解:当两直线平行,∴12(1)0a a ⨯--=,解得2a =或1a =-, 当2a =,两直线重合,舍去; 当1a =-时,两直线平行.所以“1a =-”是“直线240x ay ++=与直线(1)20a x y -++=平行”的充要条件. 故选:C8.下列说法正确的是( )A .斜率和倾斜角具有一一对应的关系B .直线的截距式方程适合于不过原点的所有直线C .经过点()1,1且在x 轴和y 轴上截距都相等的直线方程为20x y +-=D .()()()()121121y y x x x x y y --=--表示经过()11,P x y ,()22,Q x y 的直线方程 【答案】D【分析】根据倾斜角和斜率的定义,以及两点式和截距式的定义,逐个选项进行判断即可. 【详解】对于A ,倾斜角为90时,没有对应斜率,故A 错误;对于B ,直线的截距式方程适合于不过原点,不垂直于x 轴,不垂直于y 轴的所有直线,故B 错误; 对于C ,经过点()1,1且在x 轴和y 轴上截距都相等的直线,还包括y x =这条直线,故C 错误; 对于D ,根据两点式的定义,选项D 明显正确; 故选:D9.若直线l :20(0,0)ax by a b -+=>>过点(1,2)-,当21a b+取最小值时直线l 的斜率为A .2B .12C D .【答案】A【分析】将点带入直线可得212a b+=,利用均值不等式“1”的活用即可求解. 【详解】因为直线l 过点()1,2-,所以220a b --+=,即212a b+=,所以21212141()(4)(44222a b b a a b a b a b ++=+=++≥+= 当且仅当4b aa b=,即2a b =时取等号 所以斜率2ab=,故选 A 【点睛】本题考查均值不等式的应用,考查计算化简的能力,属基础题.10.已知{},,a b c 是空间的一个单位正交基底,向量23p a b c =++,{},,a b a b c +-是空间的另一个基底,向量p 在基底{},,a b a b c +-下的坐标为( ) A .31,,322⎛⎫- ⎪⎝⎭B .31,,322⎛⎫- ⎪⎝⎭C .13,,322⎛⎫- ⎪⎝⎭D .13,,322⎛⎫- ⎪⎝⎭【答案】A【分析】设()()p x a b y a b zc =++-+,根据空间向量基本定理建立关于,,x y z 的方程,解之即可得解.【详解】解:设()()p x a b y a b zc =++-+()()23c a b y a x c x y b z =++-+=++,所以123x y x y z +=⎧⎪-=⎨⎪=⎩,解得32123x y z ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,所以向量p 在基底{},,a b a b c +-下的坐标为31,,322⎛⎫- ⎪⎝⎭.故选:A.11.如图,在正方体1111ABCD A B C D -中,点P 在线段1B C 上运动,则下列结论不正确的是( )A .直线1BD ⊥平面11AC DB .三棱锥11P ACD -的体积为定值C .异面直线AP 与1AD 所成角的取值范围是,42ππ⎡⎤⎢⎥⎣⎦D .直线1C P 与平面11AC D 所成角的正弦值的最大值为63【答案】C【分析】对于A ,根据线面垂直的判定定理,结合正方体的性质以及线面垂直的性质定理,可得答案;对于B ,根据三棱锥的体积公式,证明底面11AC D 上的高为定值,利用线面平行判定以及性质定理,可得答案;对于C ,根据异面直线夹角的定义,作图,结合等边三角形的性质,可得答案;对于D ,由题意,建立空间直角坐标系,求得直线的方向向量以及平面的法向量,根据公式,结合二次函数的性质,可得答案. 【详解】对于A ,连接11B D ,记1111AC B D E =,如下图:在正方体1111ABCD A B C D -中,1BB ⊥平面1111D C B A ,11A C ⊂平面1111D C B A ,111BB AC ∴⊥,在正方形1111D C B A 中,1111AC B D ⊥,1111BB B D B ⋂=,111,B D BB ⊂平面11BB D ,∴11A C ⊥平面11BB D ,1BD ⊂平面11BB D ,111AC BD ∴⊥,同理可得:11DC BD ⊥,1111AC DC C ⋂=,111,A C DC ⊂平面11AC D ,1BD ∴⊥平面11AC D ,故A 正确;对于B ,在正方体1111ABCD A B C D -中,11//CB DA ,1DA ⊂平面11AC D ,1CB ⊄平面11AC D ,1//CB ∴平面11AC D ,则1P CB ∀∈,P 到平面11AC D 的距离相同,即三棱锥11P AC D -中底面11AC D 上的高为一个定值,故B 正确; 对于C ,连接1AB ,AC ,AP ,作图如下:在正方体1111ABCD A B C D -中,易知1ACB 为等边三角形,则1π3APC AB C ∠≥∠=, 11//DA CB ,APC ∴∠为异面直线1DA 与AP 所成角或者补角,则异面直线1DA 与AP 所成角的取值范围ππ,32⎡⎤⎢⎥⎣⎦,故C 错误; 对于D ,在正方体1111ABCD A B C D -中,以D 为原点,分别以1,,DA DC DD 所在直线为,,x y z 轴,建立空间直角坐标系,如下图:设该正方体的边长为2,则()0,0,0D ,()10,0,2D ,()2,2,0B ,()0,2,0C ,()12,2,2B ,()10,2,2C ,设()1,01CP CB λλ=≤≤,且(),,P x y z ,则()12,0,2CB =,(),2,CP x y z =-,即2202x y z λλλ=⎧⎪-=⋅⎨⎪=⎩,可得()2,2,2P λλ,则()12,0,22C P λλ=-,由A 可知1BD ⊥平面11AC D ,则平面11AC D 的一个法向量为()12,2,2BD =--, 设直线CP 与平面11AC D 所成角为θ,则12221404444sin 88412432211143222BD CP BD CPλλθλλλλλ⋅-++-====⋅-+⋅⋅-+⎛⎫⋅-+⎪⎝⎭, 由[]0,1λ∈,则当12λ=时,sin θ取得最大值为63,故D 正确. 故选:C.12.如图,在三棱锥-P ABC 中,5AB AC PB PC ====,4PA =,6BC =,点M 在平面PBC 内,且15AM =,设异面直线AM 与BC 所成的角为α,则cos α的最大值为( )A 2B 3C .25D 5【答案】D【分析】设线段BC 的中点为D ,连接AD ,过点P 在平面PAD 内作PO AD ⊥,垂足为点O ,证明出PO ⊥平面ABC ,然后以点O 为坐标原点,CB 、AD 、OP 分别为x 、y 、z 轴的正方向建立空间直角坐标系,设BM mBP nBC =+,其中0m ≥,0n ≥且1m n +≤,求出363m n +-的最大值,利用空间向量法可求得cos α的最大值.【详解】设线段BC 的中点为D ,连接AD ,5AB AC ==,D 为BC 的中点,则AD BC ⊥,6BC =,则3BD CD ==,224AD AB BD ∴=-=,同理可得4PD =,PD BC ⊥,PDAD D =,BC ∴⊥平面PAD ,过点P 在平面PAD 内作PO AD ⊥,垂足为点O ,因为4PA PD AD ===,所以,PAD 为等边三角形,故O 为AD 的中点,BC ⊥平面PAD ,PO ⊂平面PAD ,则BC PO ⊥,PO AD ⊥,AD BC D =,PO ∴⊥平面ABC ,以点O 为坐标原点,CB 、AD 、OP 分别为x 、y 、z 轴的正方向建立如下图所示的空间直角坐标系O xyz -,因为PAD 是边长为4的等边三角形,O 为AD 的中点,则sin 6023OP PA == 则()0,2,0A -、()3,2,0B 、()3,2,0C -、(0,0,23P , 由于点M 在平面PBC 内,可设(()()3,2,236,0,036,2,23BM mBP nBC m n m n m m =+=--+-=---, 其中0m ≥,0n ≥且1m n +≤,从而()()()3,4,036,2,23336,42,23AM AB BM m n m m m n m m =+=+---=---, 因为15AM =()()222336421215m n m m --+-+=, 所以,()()22233616161423m n m m m --=-+-=--+, 故当12m =时,216161m m -+-有最大值3,即()23633m n +-≤, 故33633m n -+-363m n +-3 所以,()6336635cos cos ,615615AM BC m n AM BC AM BCα⋅--=<>==≤=⋅. 故选:D.【点睛】方法点睛:求空间角的常用方法:(1)定义法:由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应的三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量的夹角(两直线的方向向量、直线的方向向量与平面的法向量、两平面的法向量)的余弦值,即可求得结果.二、填空题13.若()1,1,0a =,()1,0,2b =-,则与a b +反方向的单位向量是______.【答案】0,⎛ ⎝⎭【分析】由与a b +反方向的单位向量为||a ba b +-+代入可得结果. 【详解】∵(1,1,0)a =,(1,0,2)b =-∴(0,1,2)a b +=,2||01a b +=+=∴a b +反方向的单位向量为(0,1,2)(0,||a b a b +-=-=+故答案为:(0,. 14.有一光线从点()3,5A -射到x 轴以后,再反射到点()2,15B ,则这条光线的入射光线所在直线的方程为______. 【答案】4+70x y +=【分析】根据对称性可知:点()2,15B 关于x 轴对称的点在入射光线所在的直线上,求出点()2,15B 关于x 轴对称的点的坐标即可求解.【详解】因为点()2,15B 关于x 轴对称的点的坐标为()2,15B '-,由直线的对称性可知:这条光线的入射光线经过点()3,5A -和()2,15B '-, 所以条光线的入射光线所在直线的方程为51515(2)32y x ++=---, 也即4+70x y +=, 故答案为:4+70x y +=.15.若直线10ax y +-=与连接()()2,3,3,2A B -的线段总有公共点,则a 的取值范围是______.【答案】(]1,1,3⎡⎫-∞-⋃+∞⎪⎢⎣⎭【分析】画出图形,由图可得,要使直线与线段AB 总有公共点,需满足PA a k -≥或PB a k -≤,从而可求得答案【详解】得直线10ax y +-=的斜率为a -,且过定点()0,1P ,则由图可得,要使直线与线段AB 总有公共点,需满足PA a k -≥或PB a k -≤, 11,3PA PB k k ==-,1a -≥或13a -≤-,1a ∴≤-或13a ≥. 故答案为:(]1,1,3⎡⎫-∞-⋃+∞⎪⎢⎣⎭16.点P 是棱长为1的正方体ABCD ﹣A 1B 1C 1D 1的底面A 1B 1C 1D 1上一点,则1PA PC ⋅的取值范围是__.【答案】[﹣12,0]【分析】建立空间直角坐标系,设出点P 的坐标为(x ,y ,z ),则由题意可得0≤x ≤1,0≤y ≤1,z =1,计算PA •1PC =x 2﹣x ,利用二次函数的性质求得它的值域即可.【详解】解:以点D 为原点,以DA 所在的直线为x 轴,以DC 所在的直线为y 轴,以DD 1所在的直线为z 轴,建立空间直角坐标系,如图所示; 则点A (1,0,0),C 1(0,1,1),设点P 的坐标为(x ,y ,z ),由题意可得 0≤x ≤1,0≤y ≤1,z =1; ∴PA =(1﹣x ,﹣y ,﹣1),1PC =(﹣x ,1﹣y ,0),∴PA •1PC =-x (1﹣x )﹣y (1﹣y )+0=x 2﹣x +y 2﹣y 22111222x y ⎛⎫⎛⎫=-+-- ⎪ ⎪⎝⎭⎝⎭,由二次函数的性质可得,当x =y 12=时,PA •1PC 取得最小值为12-;当x =0或1,且y =0或1时,PA •1PC 取得最大值为0, 则PA •1PC 的取值范围是[12-,0].故答案为:[12-,0].【点睛】本题主要考查了向量在几何中的应用与向量的数量积运算问题,是综合性题目.三、解答题17.如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB a =,AD b =,c AP =.(1)试用,,a b c 表示向量BM ; (2)求BM 的长.【答案】(1)111222b ac -+6【分析】利用空间向量基本定理用基底表示BM ;(2)在第一问的基础上运用空间向量数量积运算法则进行运算.【详解】(1)()1122BM BC CM AD CP AD CB BA AP =+=+=+++111111222222AD AD AB AP b a c =--+=-+ (2)22222111111111222444222BM b a c b a c a b c b a c ⎛⎫=-+=++-⋅+⋅-⋅ ⎪⎝⎭11111131021214422222=++-+⨯⨯⨯-⨯⨯⨯=,所以62BM =BM18.已知ABC 的三个顶点(,)A m n 、(2,1)B 、(2,3)C -. (1)求BC 边所在直线的方程;(2)BC 边上中线AD 的方程为2360x y -+=,BC 边上高线AE 过原点,求点A 的坐标. 【答案】(1)240x y +-=(2)3,32A ⎛⎫ ⎪⎝⎭【分析】(1)利用两点式求得BC 边所在直线方程;(2)由题意可得2360-+=m n ,求出BC 边上高线AE 的方程,将点(,)A m n 代入AE 的方程,解关于,m n 的方程组即可求解.【详解】(1)由()2,1B 、()2,3C -可得311222BC k -==---, 所以BC 边所在直线方程为()1122y x -=--,即240x y +-=. (2)因为BC 边上中线AD 的方程为2360x y -+=, 所以点(,)A m n 在直线2360x y -+=上,可得2360-+=m n , 因为12BC k =-,所以BC 边上高线AE 的斜率2AE k =,因为BC 边上高线AE 过原点,所以AE 的方程为2y x =,可得2n m =, 由23602m n n m -+=⎧⎨=⎩可得:323m n ⎧=⎪⎨⎪=⎩,所以点A 的坐标为3,32⎛⎫⎪⎝⎭.19.如图,在四棱柱1111ABCD A B C D -中,1AA ⊥平面ABCD ,底面ABCD 满足AD ∥BC ,且12AB AD AA BD DC =====,(Ⅰ)求证:AB ⊥平面11ADD A ;(Ⅱ)求直线AB 与平面11B CD 所成角的正弦值. 【答案】(Ⅰ) 证明见解析;(Ⅱ)66【解析】(Ⅰ)证明1AA AB ⊥,根据222AB AD BD +=得到AB AD ⊥,得到证明.(Ⅱ) 如图所示,分别以1,,AB AD AA 为,,x y z 轴建立空间直角坐标系,平面11B CD 的法向量()1,1,2n =,()2,0,0AB =,计算向量夹角得到答案.【详解】(Ⅰ) 1AA ⊥平面ABCD ,AB ⊂平面ABCD ,故1AA AB ⊥.2AB AD ==,22BD =,故222AB AD BD +=,故AB AD ⊥.1AD AA A ⋂=,故AB ⊥平面11ADD A .(Ⅱ)如图所示:分别以1,,AB AD AA 为,,x y z 轴建立空间直角坐标系,则()0,0,0A ,()2,0,0B ,()12,0,2B ,()2,4,0C ,()10,2,2D .设平面11B CD 的法向量(),,n x y z =,则11100n B C n B D ⎧⋅=⎪⎨⋅=⎪⎩,即420220y z x y -=⎧⎨-+=⎩,取1x =得到()1,1,2n =,()2,0,0AB =,设直线AB 与平面11B CD 所成角为θ 故26sin cos ,626n AB n AB n ABθ⋅====⋅. 【点睛】本题考查了线面垂直,线面夹角,意在考查学生的空间想象能力和计算能力. 20.已知直线l :5530ax y a --+=.(1)求证:不论a 为何值,直线l 总经过第一象限; (2)若直线l 的横截距和纵截距绝对值相等,求a 的值. 【答案】(1)证明见解析 (2)1a =±或3【分析】(1)将直线l 的方程化为点斜式,求出直线所过定点,即可证明结论成立;(2)直线l 的横截距和纵截距绝对值相等,分三种情况讨论:①横截距和纵截距为0,②横截距和纵截距相反,③横截距和纵截距相等,分别求出此时a 的值即可. 【详解】(1)解:直线l 的方程可整理为:3155y a x ⎛⎫-=- ⎪⎝⎭, 则l 的斜率为a ,且过定点13,55A ⎛⎫⎪⎝⎭,∵13,55A ⎛⎫⎪⎝⎭在第一象限,所以不论a 取何值,直线l 总经过第一象限. (2)解:由(1)知,直线过定点1355A ⎛⎫⎪⎝⎭,,当直线过原点时,此时,3a =;当直线截距相反且不过原点时,1k =,此时1a =; 当直线截距相等且不过原点时,1k =-,此时1a =-; 综上所述,1a =±或3.21.如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求点B 到平面P AM 的距离. 【答案】(1)2 (2)77【分析】(1)建立空间直角坐标系,设2BC a =,写出各点坐标,利用0PB AM ⋅=列出方程,求出22a =,从而得到BC 的长; (2)求出平面P AM 的法向量,利用点到平面的距离公式进行求解.【详解】(1)∵PD ⊥平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a , 则()2,1,1PB a =-,(),1,0AM a =-,∵PB AM ⊥,则2210PB AM a ⋅=-+=,解得2a = 故22BC a ==;(2)设平面PAM 的法向量为()111,,m x y z =,则2AM ⎛⎫= ⎪ ⎪⎝⎭,()2,0,1AP =-, 由111120220m AM x y m AP x z ⎧⋅=-+=⎪⎨⎪⋅=-+=⎩,取12x =,可得()2,1,2m =,()0,1,0AB =,∴点B 到平面P AM 的距离177AB m d m⋅===22.如图①,在等腰梯形ABCD 中,//AB CD ,222AB AD CD ===.将ADC △沿AC 折起,使得AD BC ⊥,如图②.(1)求证:平面ADC ⊥平面ABC .(2)在线段BD 上是否存在点E ,使得二面角E AC D --的平面角的大小为π4?若存在,指出点E的位置;若不存在,请说明理由.【答案】(1)证明见解析;(2)存在,点E 在线段BD 上靠近点D 的三等分点处.【分析】(1)先证明AC BC ⊥,再由线面垂直的判定定理证明BC ⊥平面ADC ,由面面垂直的判定定理即可证明;(2)以C 为原点,以CA ,CB 所在的直线分别为x 轴、y 轴,建立空间直角坐标系,写出相关点的坐标,然后用坐标法求解即可【详解】(1)在等腰梯形ABCD 中,//AB CD ,222AB AD CD ===, ∴由平面几何知识易得π3ABC ∠=, ∴在ACB △中,222π21221cos 33AC =+-⨯⨯⨯=. 又222AC BC AB +=,∴AC BC ⊥. 在题图②中,∵AD BC ⊥,ADAC A =,∴BC ⊥平面ADC .又BC ⊂平面ABC ,∴平面ADC ⊥平面ABC .(2)在线段BD 上存在点E ,使得二面角E AC D --的平面角的大小为π4. 以C 为原点,以CA ,CB 所在的直线分别为x 轴、y 轴,建立空间直角坐标系,如图.由平面ADC ⊥平面ABC ,ADC △是顶角为2π3的等腰三角形,知z 轴与ADC △底边上的中线平行,又由(1)易得3AC =∴()0,0,0C ,()3,0,0A,()0,1,0B ,312D ⎫⎪⎪⎝⎭,∴()3,0,0CA =,112,23BD ⎛⎫⎪ ⎪⎝=⎭-. 令()01BE tBD t =≤≤,则,,12t E t ⎫⎝-⎪⎪⎭, ∴3,1,22t CE t =-⎛⎫⎪ ⎪⎝⎭. 设平面ACE 的一个法向量为(),,m x y z =,则00CA m CE m ⎧⋅=⎨⋅=⎩,即()0102t t y z =+-+=, ∴()0210x t y tz =⎧⎨-+=⎩,令y t =,则()21z t =-,∴()()0,,21m t t =-. 由(1)知,平面ADC 的一个法向量为()0,1,0n =.要使二面角E AC D --的平面角的大小为π4,则2πcos 4m n m n t ⋅=== 解得23t =或2t =(舍去). ∴在线段BD 上存在点E ,使得二面角E AC D --的平面角的大小为π4,此时点E 在线段BD 上靠近点D 的三等分点处.。
北京市2024~2025学年度第一学期9月高二数学试卷(答案在最后)2024.09本试卷共4页,120分.考试时长90分钟考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将答题卡交回.一、选择题:本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.1.复数11i +在复平面上对应的点的坐标是A.(1,1)B.(1,1)- C.(1,1)-- D.(1,1)-【答案】D 【解析】【详解】试题分析:111i i+=-,所以对应的点的坐标为(1,1)-.考点:复数的运算.2.已知角α的终边经过点()2,1P -,则cos α=()A.5B.5-C.5D.【答案】C 【解析】【分析】根据条件,利用三角函数的定义,即可求出结果.【详解】因为角α的终边经过点()2,1P -,所以cos 5α==,故选:C.3.如图,八面体的每个面都是正三角形,并且4个顶点A ,B ,C ,D 在同一平面内,若四边形ABCD 是边长为2的正方形,则这个八面体的表面积为()A.8B.16C.3D.163【答案】C 【解析】【分析】先计算出每个面的面积,再乘以8即为表面积;【详解】每个面的面积为23234⨯=,所以该图形的表面积为83.故选:C4.已知圆锥的母线长为5,底面圆的半径为3,则该圆锥的体积为()A.12πB.15πC.36πD.45π【答案】A 【解析】【分析】根据题意画出立体图像,根据已知条件求得圆锥的高,即可求得答案.【详解】设圆锥的高为h ,母线长为l ,底面半径为r 画出立体图像,如图:根据立体图形可得:2222534h l r =-=-=根据圆锥的体积计算公式:2211ππ343π312V r h ==⋅⋅=故选:A.5.在正方体1111ABCD A B C D -中,直线11A C 与直线1B C 所成角的大小为()A.30︒B.45︒C.60︒D.120︒【答案】C 【解析】【分析】作出辅助线,得到1ACB ∠或其补角为直线11A C 与直线1B C 所成角,根据1AB C △为等边三角形,故160ACB ∠=︒,得到答案.【详解】连接AC ,因为11AA CC =,11//AA CC ,所以四边形11AA C C 为平行四边形,则11//A C AC ,故1ACB ∠或其补角为直线11A C 与直线1B C 所成角,连接1AB ,则11AB AC B C ==,即1AB C △为等边三角形,故160ACB ∠=︒,直线11A C 与直线1B C 所成角大小为60︒.故选:C6.已知l ,m 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A.若m α⊥,αβ⊥,则//m βB.若l αβ⋂=,v/,则//m βC.若m α⊂,αβ⊥,则m β⊥D.若m α⊥,v/,则m β⊥【答案】D 【解析】【分析】根据线线,线面及面面位置关系判断各个选项即可.【详解】对于A:若,m ααβ⊥⊥,则可能m β⊂,A 错误;对于B:若,//l l m αβ⋂=,则可能m β⊂,B 错误;对于C:若,,m ααβ⊂⊥则m 可能不垂直β,C 错误;对于D:若,//m ααβ⊥,则m β⊥,D 正确.故选:D.7.已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】将两个条件相互推导,根据能否推导的结果判断充分必要条件.【详解】依题意,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件.故选:B【点睛】本小题主要考查充分、必要条件的判断,考查公理1和公理2的运用,属于中档题.8.在正方体1111ABCD A B C D -中,点E ,F 分别是AB ,1CC 的中点,则下列说法正确的是()A.1//A E 平面1BFDB.1A E ⊥平面ADFC.A ,E ,B ,F 四点共面D.直线EF 与底面ABCD 所成角的正切值为5【答案】B 【解析】【分析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用向量法能求出结果判断A ,B ;利用异面直线的判断方法判断C ;利用空间向量求线面夹角判断D .【详解】设正方体1111ABCD A B C D -中棱长为2,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,则()12,0,2A ,()2,1,0E ,()2,2,0B ,()0,2,1F ,()10,0,2D ,()0,0,0D ,对于A :()12,2,2BD =-- ,()2,0,1BF =-,设平面1BFD 的一个法向量 =s s ,则1222020n BD x y z n BF x z ⎧⋅=--+=⎪⎨⋅=-+=⎪⎩,令1x =,则2,1z y ==,可得()1,1,2n =,且()10,1,2A E =- ,则130A E n ⋅=-≠uuu r r,所以1A E 不平行于面1BFD ,故A 错误;对于B :D=2,0,0,()0,2,1DF = ,()10,1,2A E =-,则10A E DA ⋅=,10A E DF ⋅= ,即1A E DA ⊥,1A E DF ⊥,且DA DF D = ,,DA DF ⊂平面ADF ,所以1A E ⊥平面ADF ,故B 正确;对于C :因为1A E ⊂面11ABB A ,BF ⊄面11ABB A ,且1B A E ∉,所以直线1A E 与BF 为异面直线,故C 错误;对于D :因为()2,1,1EF =- ,且底面ABCD 的法向量()0,0,1m =,则6cos ,661EF m EF m EF m⋅==⨯⋅,设直线EF 与底面ABCD 所成角为π0,2θ⎛⎫∈ ⎪⎝⎭,则6sin 6θ=,可得230cos 1sin 6θθ=-=,sin 5tan cos 5θθθ==,所以直线EF 与底面ABCD所成角的正切值为5,故D 错误.故选:B .9.四面体ABCD 的一条棱长为x ,其余棱长均为2,记四面体ABCD 的表面积为()F x ,则函数()F x 的最大值为()A.6+B.4+C.D.【答案】B 【解析】【分析】如图,设AB 为x ,由题可得表达式,即可得答案.【详解】如图,设AB 为x ,因其他棱长为2,则44BCD ACD S S ==⨯= .取AB 中点为E ,则2xAE =,又由题可得DEAB ⊥,结合2AD =,由勾股定理,DE =,则12ABD ABC S S == 则()4F x x =<<,则()4F x =.当且仅当22444x x x =-⇒=时取等号.故选:B10.已知正方体1111ABCD A B C D -的棱长为2,点M ,N 分别是棱BC ,11C D 的中点,点P 在底面1111D C B A 内,点Q 在线段1A N上,若PM =,则PQ 长度的最小值为A.21- B.2C.3515- D.355【答案】C 【解析】【详解】解:如图,取B 1C 1中点O ,则MO ⊥面A 1B 1C 1D 1,即MO ⊥OP ,∵PM 5=,则OP =1,∴点P 在以O 为圆心,1以半径的位于平面A 1B 1C 1D 1内的半圆上.可得O 到A 1N 的距离减去半径即为PQ 长度的最小值,作OH ⊥A 1N 于H ,△A 1ON 的面积为2×21132111222-⨯⨯-⨯⨯=,∴11322A N OH ⨯=,可得OH 355=,∴PQ 长度的最小值为3515-.故答案为;C .点睛:这个题目考查了立体中面面垂直的性质的应用,线面垂直的应用,以及数形结合的应用,较好的考查了学生的空间想像力.一般处理立体的小题,都会将空间中的位置关系转化为平面关系,或者建系来处理.二、填空题:本大题共5小题,每小题5分,共25分.11.已知长方体的长、宽、高分别为3,2,1,则它的体对角线长为___________.【答案】14【解析】【分析】由长方体的性质计算.=故答案为.12.如图,已知矩形ABCD 中,4=AD ,3CD =,PA ⊥平面ABCD ,并且PA =则PC =______.【答案】6【解析】【分析】连接AC ,利用勾股定理求出AC ,由线面垂直的性质得到PA AC ⊥,由勾股定理求解PC 即可.【详解】连接AC ,在矩形ABCD 中,4=AD ,3CD =,则5AC ==,因为PA ⊥平面ABCD ,AC ⊂平面ABCD ,则PA AC ⊥,在Rt PAC △中,PA =6PC ===.故答案为:6.13.在正三棱柱111ABC A B C -中,12AB AA ==,则直线1AA 与1BC 所成角的大小为__________;点A 到平面11BB C C 的距离为________.【答案】①.π4②.【解析】【分析】分析可知直线1AA 与1BC 所成角为1B BC ∠(或其补角),即可得结果;做辅助线,可证AD ⊥平面11BB C C ,即可得点A 到平面11BB C C 的距离.【详解】因为1AA ∥1BB ,可知直线1AA 与1BC 所成角为1B BC ∠(或其补角),由题意可知:11BCC B 为正方形,则1π4B BC ∠=,所以直线1AA 与1BC 所成角的大小为π4;取BC 的中点D ,连接AD ,因为ABC V 为等边三角形,则AD BC ⊥,又因为1BB ⊥平面ABC ,AD ⊂平面ABC ,则1AD BB ⊥,且1BC BB B = ,1,BC BB ⊂平面11BB C C ,可得AD ⊥平面11BB C C ,所以点A 到平面11BB C C 的距离为AD =.故答案为:π414.在边长为4的正方形ABCD 内剪去四个全等的等腰三角形(如图1中阴影部分),的正四棱锥SEFGH (如图2),则正四棱锥SEFGH 的体积为________.【答案】43【解析】【分析】连结EG ,HF ,交点为O ,求出点E 到线段AB 的距离,利用勾股定理求出EB 和SO 的长度,最后利用棱锥体积公式求出体积即可.【详解】连结EG ,HF ,交点为O ,正方形EFGH 的对角线EG =2,EO =1,则点E 到线段AB 的距离为1,EB=.SO2,故正四棱锥SEFGH 的体积为13)2×2=43.故答案为:43【点睛】本题考查了棱锥体积公式,考查了数学运算能力,考查了空间想象能力.15.如图,正方体1111ABCD A B C D -的棱长为4,E 为BC 的中点,F 为线段1CC 上的动点,过点A ,E ,F的平面截该正方体所得截面记为S ,当3CF =时,截面S 与11A D ,11C D 分别交于M ,N ,则MN =_________.【答案】3【解析】【分析】由面面平行的性质可得截面与平面11ADD A 及平面1111D C B A 的交线,后由几何知识可得答案.【详解】由图,截面S 与平面11ADD A ,平面11BB C C 相交,因平面11ADD A //平面11BB C C ,则相应交线平行.则过A 作EF 的平行线,则平行线与11A D 交点即为M ,与1DD 延长线交于H .注意到AHD EFC ,则162EC FC HD AD HD ==⇒=,又14DD =,则12HD =.又注意到1MHD AHD ,则1111433HD MD MD HD AD ==⇒=.又截面S 与平面ABCD ,平面1111D C B A 相交,则同理过M 作AE 平行线,则平行线与11C D 交点即为N .注意到1AEB NMD ,则1113823EB AB ND MD ND ==⇒=.则根据勾股定理,3MN ==.故答案为:3.三、解答题:本大题共4小题,共45分.解答应写出文字说明,演算步骤或证明过程.16.已知正三棱锥P ABC -,请从条件①,条件②,条件③中选择两个条件作为已知,使得三棱锥存在,并求出此正三棱锥的体积.①底面边长为2 2.【答案】答案见解析【解析】【分析】根据题意分析可知:不能选②③.取ABC V 的中心O ,BC 的中点为M ,若选①②:求得3OP =,进而可得体积;若选①③:求得3OP =,进而可得体积.2<,可知②③不能同时成立,故不能选②③.取ABC V 的中心O ,BC 的中点为M ,连接,,PO PM AM ,则⊥PO 平面ABC ,,AM BC PM BC ⊥⊥,若选①②:则233OA AM ==,11222ABC S BC AM =⨯⨯=⨯= ,在Rt POA △中,则3OP ==,所以正三棱锥的体积为113333ABC V S OP =⋅==△;选①③:则133OM AM ==,2PM =,11222ABC S BC AM =⨯⨯=⨯= ,在Rt POM 中,则3OP ==,所以正三棱锥的体积为113333ABC V S OP =⋅== .17.如图,在棱长为2的正方体1111ABCD A B C D -中,点E ,F 分别是棱1BB ,1DD 的中点.求证:(1)BD ∥平面1C EF ;(2)⊥EF 平面11ACC A .【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)根据平面性质可得BD EF ∥,再根据线面平行的判定定理分析证明;(2)根据题意可得AC EF ⊥,1AA EF ⊥,结合线面垂直的判定定理分析证明.【小问1详解】因为E ,F 分别为1BB ,1DD 的中点,11BB DD =,11BB DD ∥,则BE DF ∥且BE DF =,可知四边形BDFE 为平行四边形,则BD EF ∥,且EF ⊂平面1C EF ,BD ⊄平面1C EF ,所以BD ∥平面1C EF .【小问2详解】因为四边形ABCD 为正方形,则BD AC ⊥,且EF BD ∥,则AC EF ⊥,又因为1AA ⊥平面ABCD ,BD ⊂平面ABCD ,则1AA BD ⊥.且EF BD ∥,则1AA EF ⊥,且1AC AA A =∩,1,AC AA ⊂平面11ACC A ,所以⊥EF 平面11ACC A .18.如图,四棱锥P ABCD -的底面是边长为2的菱形,且60ABC ∠=︒,侧面PAB 是正三角形,M 是PD 上一动点,N 是CD 的中点.(1)若PC ∥平面BMN ,求证:M 是PD 的中点;(2)若平面PAB ⊥平面ABCD ,求线段PC 的长;(3)是否存在点M 、使得PC BM ⊥?若存在,求出PM MD的值;若不存在,请说明理由.【答案】(1)证明见解析(2(3)存在,1【解析】【分析】(1)根据线面平行的性质可得MN PC ∥,再结合平行线的性质分析证明;(2)根据面面垂直的性质可得PF ⊥平面ABCD ,进而可得PF CF ⊥,即可得结果;(3)做辅助线,可证AB ⊥平面PCF ,PC ⊥平面ABE ,可得EM CD ,即可得结果.【小问1详解】若PC ∥平面BMN ,且PC ⊂平面PCD ,平面PCD 平面BMN MN =,可得MN PC ∥,在PCD △中,点N 是CD 中点,所以点M 是PD 中点.【小问2详解】如图,取AB 中点F ,连接PF ,CF .因为PAB 是正三角形,则PF AB ⊥,且平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =,PF⊂平面PAB ,可得PF ⊥平面ABCD ,由CF ⊂平面ABCD ,可得PF CF ⊥,在因为侧面PAB 是正三角形,则PF =因为底面ABCD 是菱形,且60ABC ∠=︒,可知ABC V 是等边三角形,则CF AB ⊥且CF =所以PC =【小问3详解】取PC 中点E ,连接BE ,AE .因为四棱锥P ABCD -的底面是菱形,侧面PAB 是正三角形,则PB AB BC ==,BE PC ⊥.由(2)可得PF AB ⊥,CF AB ⊥,且,PF CF ⊂平面PCF ,PF CF F = ,所以AB ⊥平面PCF ,由PC ⊂平面PCF ,可得AB PC ⊥.又因为AB BE B = ,AB 、BE 在平面ABE 内,所以PC ⊥平面ABE .过E 作EM CD 交PD 于点M .因为EM CD AB ∥∥,所以点M ∈平面ABEM .所以PC ⊥平面ABEM ,因为BM ⊂平面ABEM ,所以PC BM ⊥,因为E 为PC 的中点,EM CD ,所以PM MD =,即1PM MD=.19.已知定义在R 上的函数()f x ,()g x 满足以下三个条件:①()()()()()f x y f x f y g x g y -=-;②()()()()()g x y g x f y f x g y +=+;③存在集合{},a b (){}g x x ∈R .(1)判断函数()f x 的奇偶性,并说明现由;(2)求()0f ,()0g 的值;(3)判断命题p :“()g x 是周期函数”的真假,并说明理由.【答案】(1)()f x 为偶函数,理由见解析(2)()00g =,()01f =(3)假命题,理由见解析【解析】【分析】(1)根据题意结合偶函数的定义分析判断;(2)根据题意通过赋值令0x y ==,运算求解即可;(3)利用周期函数的定义,举反例说明即可.【小问1详解】由①可得,()()()()()()f y x f y f x g y g x f x y -=-=-,故()f x 为偶函数.【小问2详解】在②中令0x y ==可得,()()()()()()()00000200g g f f g g f =+=,可得()00g =或()102f =.在①中令y x =可得,()()()220f fx g x =-,若()102f =,则()()()2221100024f g f =-≤=矛盾,故()00g =,可得()()()()2220000f f g f =-=,即()00f =或1.若()00f =时,()()()()()(0)000g x g x g x f f x g =+=+=.此时(){}{}0g x x ∈=R 与③矛盾,故()01f =.【小问3详解】假命题,例如()e e 2x x f x -+=,()e e 2x xg x --=,则()()()()()e e e e e e e e 2222e e 2x x y y x x y y x y x yf x f yg x g y f x y ------+++--+-=⋅-⋅=-,即①成立;又因为()()()()()e e e e e e e e e 22222e x x y y x x y y x y x yg x f y f x g y g x y ----+---++--+=⋅+⋅=+,即②成立;又因为()00g =,()1e e 102g --=>,即③成立;但()g x 在R 上递增,可知()g x 不是周期函数.。
高二数学上册九月月考测试题数 学考试时间1,满分150分。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.)1.如果直线ax -y+2=0 和直线3x -y -b=0关于直线x -y=0对称, 则 ( )A .a=13 ,b=6B .a=13,b=-6 C .a=3,b=-2 D .a=3,b=6 2.0≠ab 是直线0=++c by ax 与两坐标轴都相交的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知两点)2,3(),3,2(---N M ,直线l 过点)1,1(P 且与线段MN 相交,则直线l 的斜率k 的取值范围是 ( )A .43≥k 或4-≤kB .434≤≤-kC .443≤≤kD .443≤≤-k 4.直线()cos 1y x R αα=+∈的倾斜角的取值范围是( )A .[0, 2π]B .[0, π]C .[-4π, 6π]D .[0, 4π]∪[43π,π] 5.已知直线 1l 和2l 夹角的平分线为y =x -,如果 1l 的方程是ax+by+c=0(ab>0) ,那么2l 的方程是( )A .bx+ay+c=0B .ax-by+c=0C .bx+ay-c=0D .bx-ay+c=06. 抛物线2x y -=上的点到直线0834=-+y x 的距离的最小值为( ) A.34 B.57 C.58 D.3 7.c b a R c b a c b a 22121log )21(,log 21,log 2,,,==⎪⎭⎫ ⎝⎛=∈+且设,则( ) A.c b a << B. a b c << C. b a c << D. c a b <<8.要得到cos(2)4y x π=-的图像,只需将函数sin 2y x =的图像( ) A. 向左平移8π个单位 B. 向右平移8π个单位 C. 向左平移4π个单位 D. 向右平移4π个单位9. ,0≠=且关于x 的方程02=⋅++x 有实根,则与的夹角的取值范围是( )A.⎥⎦⎤⎢⎣⎡6,0πB.⎥⎦⎤⎢⎣⎡ππ,3C. ⎥⎦⎤⎢⎣⎡32,3ππD. ⎥⎦⎤⎢⎣⎡ππ,6 10. 已知直线,022:,01:1=--=--y x l y x l 若2l 与1l 关于l 对称,则2l 方程是( )A.012=+-y xB. 012=--y xC.01=-+y xD. 012=-+y x11.已知),1(),1,1(a OB OA ==,其中a 为实数,O 为原点,当两个向量的夹角在)12,0(π变化时,a 的取值范围是( ) A. (0,1) B. )3,33( C. )3,1()1,33(⋃ D. )3,1( 12. 设y x ,满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,若目标函数)0,0(>>+=b a by ax z 的最大值为12,则ba 32+得最小值为( ) A.625 B.38 C.311 D.4第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共)13.不论m 为什么实数,直线5)12()1(-=-+-m y m x m 都通过一定点14.若三条直线02:,53:,7:321=++=-=+c y x l y x l y x l 不能围成三角形,则c 的值为 .15.过点111222(,),(,)P x y P x y 的直线交直线:3260l x y ++=于点Q ,则点Q 分有向线段12PP 的比为________16.设直线系M :cos (2)sin 1(02)x y θθθπ+-=≤≤,对于下列四个命题:(1)M 中所有直线均经过一个定点(2)存在定点P 不在M 中的任一条直线(3)对任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上(4)M 中的直线所围成的正三角形面积都相等其中真命题的序号为________三、解答题(本大题共6小题,共70分.)17.(10分)一条光线从M (5,3)射出后,被直线l :1x y +=反射,入射光线到l 的角为β,且tan β=2.求入射光线和反射光线的方程.18.(12分)已知A (2,0),B (0,2),C(cos ,sin αα)(0)απ<<.(1)若7OA OC +=O 为坐标原点),求OB OC 与的夹角; (2)若AC BC ⊥,求tan α的值.19.(12分)已知函数2()2cos cos 1()f x x x x x R =+-∈(1)求函数()f x 的周期、对称轴方程(2)求函数()f x 的单调区间12分)在△ABC 中,角A 、B 、C 所对的边是a 、b 、c ,且22212a cb ac +-=.(1)求2sin cos 22A CB ++的值; (2)若b=2,求△ABC 的面积的最大值.21.(12分)设函数()2f x ax =+,不等式()6f x <的解集为(1,2)-.试求不等式0()bx f x ≤ 的解集.22.(12分)直线y=2x 与抛物线y=-x 2-2x+m 相交于不同的两点A 、B ,求(1)实数m 的取值范围;(2)∣AB ∣的值(用含m 的代数式表示).贵州省崇文中学数 学 参 考 答 案一、选择题1---12 CADCA AAABB CA二、填空题13、()4,9-;14、10-; 15. 1122326326x y x y ++-++ 16. (2)(3) 三、解答题17.入射光线:3120x y --=;反射光线:3100x y --= 18.(1)6π; (2)4tan 3α+=- 19.()2sin(2)6f x x π=+ (1)T π=;对称轴方程:()26k x k Z ππ=+∈ (2)单调增区间为,()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;减区间为2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦1)14- ;(2)3 21. 4.1(1)021********,.2a b x x b x x b x x x =-⎧⎫=≠⎨⎬⎩⎭⎧⎫<≤<⎨⎬⎩⎭⎧⎫>≤>⎨⎬⎩⎭当时,不等式的解集为;()当时,不等式解集为;()当时,不等式解集为或 22.将y=2x 代入y=-x 2-2x+m 得,x 2+4x-m=0.∵直线与抛物线相交于不同的两点A 、B ,∴1640 4.m m =+>⇒>-(2)设1122(,),(,)A x y B x y ,则∣AB ∣==。
2022-2023学年广西玉林市北流市实验中学高二上学期9月月考数学试题一、单选题1.直线220x y -+=在x 轴上的截距是( ) A .1- B .1 C .2- D .2【答案】A【分析】根据截距的概念运算求解.【详解】令0y =,则2020x -+=,解得1x =- ∴直线220x y -+=在x 轴上的截距是1- 故选:A.2.过点(2,3)A 且平行于直线250x y +-=的直线的方程为( ) A .240x y -+= B .270x y +-= C .280x y +-= D .4250x y +-=【答案】B【分析】根据平行设直线方程为20x y C ++=,代入点计算得到答案.【详解】设直线方程为20x y C ++=,将点(2,3)A 代入直线方程得到430C ++=,解得7C =-.故直线方程为:270x y +-=. 故选:B.3.“2a =”是“直线1l :2430ax y ++=与直线2l :()2150x a y ---=垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【分析】求出两直线垂直的充要条件后再根据充分必要条件的定义判断. 【详解】若12l l ⊥,则()22410a a --=,解得2a =或12a =. 所以由2a =可以得到12l l ⊥,反之则不然,故“2a =”是“12 l l ⊥”的充分不必要条件. 故选:A.4.已知直线l 的方向向量(1,2,1)a =-,平面α的法向量(2,2,2)b =--,则直线l 与平面α的位置关系是( ) A .//l αB .l α⊥C .l α⊂D .以上选项都不对 【答案】D【分析】计算得到0a b ⋅=,得到a b ⊥,即直线l 与平面α的位置关系是l α∥或l α⊂,得到答案.【详解】(1,2,1)a =-,(2,2,2)b =--,则2420a b ⋅=-+=,故a b ⊥, 故直线l 与平面α的位置关系是l α∥或l α⊂. 故选:D.5.已知平面α,β的法向量分别为()2,3,a λ=和()4,,2b μ=-(其中,R λμ∈),若//αβ,则λμ+的值为( ) A .52-B .-5C .52D .5【答案】D【分析】根据平面平行得到//a b ,故()()2,3,4,,2k λμ=-,计算得到答案.【详解】//αβ,则//a b ,故()()2,3,4,,2k λμ=-,即2432kk kμλ=⎧⎪=⎨⎪=-⎩,解得61μλ=⎧⎨=-⎩. 故5λμ+=. 故选:D .【点睛】本题考查了法向量的平行问题,意在考查学生的计算能力. 6.直线3460x y +-=关于y 轴对称的直线方程是( ) A .3x -4y -6=0 B .4x -3y -6=0 C .3x -4y +6=0 D .4x -3y +6=0【答案】C【分析】求出直线3460x y +-=与y 轴的交点,并求出直线3460x y +-=的斜率,由此可得出所求直线的方程.【详解】直线3460x y +-=交y 轴于点30,2⎛⎫⎪⎝⎭,且直线3460x y +-=的斜率为34k =-, 故所求直线的斜率为34,故所求直线的方程为3324y x -=,即3460x y -+=. 故选:C.7.在空间中,已知()2,4,0AB =,()1,3,0BC =-,则ABC ∠的大小为( ) A .135︒B .90C .120 D .45【答案】A【分析】结合向量夹角公式计算出ABC ∠的大小. 【详解】()()2,4,0,1,3,0BA BC =--=-, 212102cos 241619102BA BC ABC BA BC⋅--∠====-+⋅+⋅,由于0180ABC ︒≤∠≤︒,所以135ABC ∠=︒. 故选:A8.在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为( )A .π2B .π3C .π4D .π6【答案】D【分析】平移直线1AD 至1BC ,将直线PB 与1AD 所成的角转化为PB 与1BC 所成的角,解三角形即可.【详解】如图,连接11,,BC PC PB ,因为1AD ∥1BC , 所以1PBC ∠或其补角为直线PB 与1AD 所成的角,因为1BB ⊥平面1111D C B A ,所以11BB PC ⊥,又111PC B D ⊥,1111BB B D B ⋂=, 所以1PC ⊥平面1PBB ,所以1PC PB ⊥, 设正方体棱长为2,则1111122,22BC PC D B === 1111sin 2PC PBC BC ∠==,所以16PBC π∠=. 故选:D二、多选题9.在以下命题中,不正确的命题有( ) A .a b a b -=+是,a b 共线的充要条件 B .若//a b ,则存在唯一的实数λ,使a b λ=C .对空间任意一点O 和不共线的三点A ,B ,C ,若223OP OA OB OC =+-,则P ,A ,B ,C 四点共面D .若{},,a b c 为空间的一个基底,则{},,a b b c c a +++构成空间的另一个基底 【答案】AB【分析】利用a b a b -≤+等号成立的条件可判断A ;利用0与任意向量共线可判断B ;利用共面定理可判断C ;利用基底的概念可判断D【详解】对于A :向量,a b 同向时,a b a b -≠+,故A 错误; 对于B :需要强调0b ≠,故B 错误;对于C :因为2231+-=,则由共面定理知P ,A ,B ,C 四点共面,故C 正确; 对于D :{},,a b c 为空间的一个基底,则,,a b c 不共面,故,,a b b c c a +++也不共面, 所以{},,a b b c c a +++构成空间的另一个基底,故D 正确; 故选:AB10.已知直线1:0l x ay a +-=和直线2:(23)20l ax a y a --+-=,则( )A .2l 始终过定点12(,)33B .若2l 在x 轴和y 轴上的截距相等,则1a =C .若12l l ⊥,则0a =或2D .若12l l //,则1a =或3-【答案】AC【分析】结合直线所过定点的求法、直线的截距、直线平行和垂直等知识对选项进行分析,由此确定正确选项.【详解】2:(23)20l ax a y a --+-=化为(21)320a x y y -++-=, 由210x y -+=且320y -=解得12,33x y ==,即直线2l 恒过定点12(,)33,故A 正确;若2l 在x 轴和y 轴上截距相等,则2l 过原点或其斜率为1-,则2a =或()1123aa a -=-⇒=--,故B 错误;若12l l ⊥,则1(32)0a a a ⨯+⨯-=解得0a =或2,故C 正确; 若12l l //,则先由1(32)a a a ⨯-=⨯解得1a =或3-, 再检验当1a =时12,l l 重合,故D 错误. 故选:AC11.下列各命题正确的是( )A .点()1,2,3-关于平面xOz 的对称点为()1,2,3B .点1,1,32⎛⎫- ⎪⎝⎭关于y 的对称点为1,1,32⎛⎫- ⎪⎝⎭C .点()2,1,3-到平面yOz 的距离为1D .设{},,i j k 是空间向量单位正交基底且以i ,j ,k 的方向为x ,y ,z 轴的正方向建立了一个空间直角坐标系,若324m i j k =-+,则()3,2,4m =- 【答案】ABD【分析】利用空间直角坐标系中的点的对称关系、距离、坐标分析判断 【详解】对于A ,点()1,2,3-关于平面xOz 的对称点为()1,2,3,所以A 正确, 对于B ,点1,1,32⎛⎫- ⎪⎝⎭关于y 的对称点为1,1,32⎛⎫- ⎪⎝⎭,所以B 正确,对于C ,点()2,1,3-到平面yOz 的距离为2,所以C 错误,对于D ,由于{},,i j k 是空间向量单位正交基底且以i ,j ,k 的方向为x ,y ,z 轴的正方向建立了一个空间直角坐标系,且324m i j k =-+,所以,所以D 正确,故选:ABD12.已知正方体1111ABCD A B C D -的棱长为1,下列四个结论中正确的是( )A .直线1BC 与直线1AD 所成的角为90B .直线1BC 与平面1ACDC .1BD ⊥平面1ACDD .点1B 到平面1ACD【答案】ABC【分析】如图建立空间直角坐标系,求出1B C 和1AD 的坐标,由110AD BC ⋅=可判断A ;证明10AC B D ⋅=,110AD B D ⋅=可得1AC B D ⊥,11AD B D ⊥,由线面垂直的判定定理可判断C ;计算11cos ,B D B C 的值可得线面角的正弦值,再由同角三角函数基本关系求出夹角的余弦值可判断B ;利用向量求出点1B 到平面1ACD 的距离可判断D ,进而可得正确选项.【详解】如图以D 为原点,分别以1,,DA DC DD 所在的直线为,,x y z 轴建立空间直角坐标系,则()0,0,0D ,()1,0,0A ()0,1,0C ,()10,0,1D ,()11,1,1B , 对于A :()11,0,1B C =--,()11,0,1AD =-,因为()()()111100110B AD C =⋅-⨯-+⨯+-⨯=,所以11AD BC ⊥,即11B C AD ⊥,直线1B C 与直线1AD 所成的角为90,故选项A 正确;对于C :因为 ()1,1,0AC =-,()11,0,1AD =-,()11,1,1B D =---,所以11100AC B D ⋅=-+=,111010AD B D ⋅=+-=,所以1AC B D ⊥,11AD B D ⊥, 因为1ACAD A =,所以1B D ⊥平面1ACD ,故选项C 正确;对于B :由选项C 知:1B D ⊥平面1ACD ,所以平面1ACD 的一个法向量()11,1,1B D =---,因为()11,0,1B C =--,所以111111cos ,3B D B C B D B C B DB C⋅===即直线1B C 与平面1ACD,所以直线1B C 与平面1ACD 所成角的余弦值为=B 正确; 对于D :因为()11,0,1B C =--,平面1ACD 的一个法向量()11,1,1B D =---,所以点1B 到平面1ACD 的距离为11123332B D B C d B D⋅===,故选项D 不正确 故选:ABC.三、填空题13.直线l 3320x y +-=的倾斜角是______ 【答案】56π【分析】将一般式方程整理为斜截式方程可得直线斜率,由斜率和倾斜角关系求得倾斜角.【详解】3320x y +-=得:323y x =+, 所以直线的斜率为[]30k θπ=∈,, ∴直线的倾斜角为56π. 故答案为:56π. 14.过原点且方向向量为()1,2a =-的直线方程为______. 【答案】20x y +=【分析】利用直线的方向向量可得直线的斜率,进而得出直线的方程. 【详解】解:过原点且方向向量为(1,2)a =-的直线的斜率为221-=-, 故方程为:2y x =-,即20x y +=. 故答案为:20x y +=.15.函数()2225618f x x x x x -+-+________.【答案】29【解析】根据题意,其几何意义为点(),0P x 到点()1,2A ,()3,3B 两点的距离之和,故y PA PB PC PB BC =+=+≥,再根据距离公式求解即可.【详解】解:因为()()()2222256181439f x x x x x x x =-++-+=-++-+,几何意义为点(),0P x 到点()1,2A ,()3,3B 两点的距离之和,()1,2A 关于x 轴的对称点()1,2C -,()()22313229y PA PB PC PB BC =+=+≥=-++=,当且仅当,,B P C 三点共线时y 的值最小为29BC = 故答案为:29【点睛】本题考查两点之间距离公式的妙用,涉及函数最值的求解,属基础题. 16.如图所示,正方体1111ABCD A B C D -的棱长为1,O 是底面1111D C B A 的中心,则O 到平面11ABC D 的距离为______.2【解析】以D 为原点,1,,DA DC DD 为,,x y z 轴建立空间直角坐标系,利用空间向量求点到平面的距离即可.【详解】以D 为原点,1,,DA DC DD 为,,x y z 轴建立如图所示的空间直角坐标系, 易得11,,122O ⎛⎫⎪⎝⎭,()()11,0,0,.0,0,1A D()()10,1,0,1,0,1AB AD ==-,设平面11ABC D 的法向量为(),,n x y z =, 1·0·0AB n y AD n x z ⎧==⎪⎨=-+=⎪⎩,令1x =,则()1,0,1n =,11,,122AO ⎛⎫=- ⎪⎝⎭,O ∴到平面11ABC D 的距离11·2242AO n d n -+===, 故答案为:24.【点睛】本题考查点到平面的距离的求法,常用的方法有等体积法,垂线法,空间向量方法,利用空间向量方法求解是比较方便的方法.四、解答题17.已知点(1,1)(2,4)、-A B . (1)求直线AB 的倾斜角(2)过点(1,0)P 的直线m 与过(1,1)(2,4)、-A B 两点的线段有公共点,求直线m 斜率的取值范围.【答案】(1)4πα=(2)[)14,2,-⎛⎤-∞⋃+∞ ⎥⎝⎦【分析】(1)利用两点式得到直线斜率,从而可得直线AB 的倾斜角; (2)求出直线PA 与直线PB 的斜率,从而可得结果. 【详解】(1)由已知得:直线AB 的斜率()41121k -==--tan 1,α∴=又[)0,,4παπα∈∴=(2)直线PA 的斜率101112-==---PA k 直线PB 的斜率40421-==-PB k 过点直线m 与过AB 、两点的线段有公共点,∴直线m 斜率的取值范围为[)14,2,-⎛⎤-∞⋃+∞ ⎥⎝⎦18.已知直线11:42m l y x =-+与直线22:55nl y x =+垂直,垂足为()1,H p ,求过点H ,且斜率为m pm n++的直线方程. 【答案】42y x =-+【分析】根据垂直关系得到10m =,结合垂足在直线上得到H (1,-2)及12n =-,从而可得直线方程.【详解】解:∵12l l ⊥∴2145m -⨯=-解得10m =,∴直线l 1的方程为5122y x =-+.又∵点()1,H p 在直线l 1上,∴511222p =-⨯+=-,即H (1,-2).又∵点H (1,-2)在直线l 2上,22155n-=⨯+.解得12n =-,∴所求直线的斜率为4m pm n+=-+,其方程为()241y x +=--,即42y x =-+ 19.已知点(3,5)A -和(2,15)B ,P 为直线10x y -+=上的动点. (1)求(3,5)A -关于直线10x y -+=的对称点0(A x ',0)y , (2)求PA PB +的最小值. 【答案】(1)(4,2)- 293【分析】(1)根据点,A A '的中点在直线10x y -+=上,直线AA '和直线10x y -+=垂直,列出方程,解方程即可得出答案;(2)PA PB PA PB A B ''+=+≥,当且仅当,,P A B '三点共线时,取等号,即可求出PA PB +的最小值为A B ',代入即可得出答案.【详解】(1)(3,5)A -关于直线10x y -+=的对称点设为0(A x ',0)y ,则0000351022513x y y x -++⎧-+=⎪⎪⎨-⎪=-+⎪⎩,解得04x =,02y =-, 所以A '的坐标为(4,2)-.(2)由(1)及已知得:PA PB PA PB A B ''+=+≥,当且仅当,,P A B '三点共线时,取等号, 则PA PB +的最小值为:||A B '20.已知(,4,1)a x =,(2,,1)b y =--,(3,2,)c z =-,//a b ,b c ⊥.(1)求实数x ,y ,z 的值;(2)求a c +与b c +夹角的余弦值.【答案】(1)x =2,y =-4,z =2;(2)219-. 【分析】(1)直接利用向量平行和向量垂直即可求出x ,y ,z 的值;(2)先求出()5,2,3,a c += ()1,6,1b c +=-利用向量的夹角公式即可求解.【详解】(1)因为(,4,1)a x =,(2,,1)b y =--,(3,2,)c z =-,//a b ,b c ⊥. 所以()()41,232021x y z y ==-⨯+⨯--=--, 解得:x =2,y =-4,z =2.(2)由(1)知:(2,4,1)a =,(2,4,1)b =---,(3,2,2)c =-,所以()5,2,3,a c += ()1,6,1b c +=-.设a c +与b c +夹角为θ[]()0,θπ∈,则2cos 19θ==-即a c +与b c +夹角的余弦值为219-. 21.如图,直四棱柱ABCD –A 1B 1C 1D1的底面是菱形,AA1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB1,A1D 的中点.(1)证明:MN ∥平面C1DE ;(2)求点C 到平面C1DE 的距离.【答案】(1)见解析;(2)41717. 【分析】(1)利用三角形中位线和11//A D B C 可证得//ME ND ,证得四边形MNDE 为平行四边形,进而证得//MN DE ,根据线面平行判定定理可证得结论;(2)根据题意求得三棱锥1C CDE -的体积,再求出1C DE ∆的面积,利用11C CDE C C DE V V --=求得点C 到平面1C DE 的距离,得到结果.【详解】(1)连接ME ,1B CM ,E 分别为1BB ,BC 中点 ME ∴为1B BC ∆的中位线1//ME B C ∴且112ME B C = 又N 为1A D 中点,且11//A D B C 1//ND B C ∴且112ND B C = //ME ND ∴ ∴四边形MNDE 为平行四边形//MN DE ∴,又MN ⊄平面1C DE ,DE ⊂平面1C DE//MN ∴平面1C DE(2)在菱形ABCD 中,E 为BC 中点,所以DE BC ⊥, 根据题意有3DE =,117C E =, 因为棱柱为直棱柱,所以有DE ⊥平面11BCC B ,所以1DE EC ⊥,所以113172DEC S ∆=⨯⨯, 设点C 到平面1C DE 的距离为d ,根据题意有11C CDE C C DE V V --=,则有11113171343232d ⨯⨯⨯⨯=⨯⨯⨯⨯, 解得44171717d ==, 所以点C 到平面1C DE 的距离为41717. 【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用等积法求点到平面的距离是文科生常考的内容. 22.如图,已知四棱锥P -ABCD 的底面为直角梯形,AB DC ∥,90DAB ∠=︒,PA ⊥底面ABCD ,且112PA AD DC AB ====,M 是棱PB 的中点.(1)证明:平面PAD ⊥平面PCD ;(2)求平面AMC 与平面BMC 的夹角的余弦值.【答案】(1)证明见解析(2)23【分析】(1)根据线面垂直的判定定理先证明DC ⊥平面P AD ,再根据面面垂直的判定定理证明平面PAD ⊥平面PCD ;(2)建立空间直角坐标系,求出相关各点的坐标,继而求得相关向量的坐标,再求出相关平面AMC 和平面BMC 的法向量,根据向量的夹角公式求得答案【详解】(1)∵PA ⊥底面ABCD ,DC ⊂底面ABCD ,∴PA DC ⊥,又由题设知AD DC ⊥,且直线P A 与AD 是平面P AD 内的两条相交直线, ∴DC ⊥平面P AD .又DC ⊂平面PCD ,∴平面PAD ⊥平面PCD .(2)∵PA AD ⊥,PA AB ⊥,AD AB ⊥,∴以A 为坐标原点,以AD 为x 轴,以AB 为y 轴,以AP 为z 轴, 建立如图所示的空间直角坐标系.则()0,0,0A ,()0,2,0B ,()1,1,0C ,()0,0,1P ,10,1,2M ⎛⎫ ⎪⎝⎭, 10,1,2AM ⎛⎫= ⎪⎝⎭,(1,1,0)AC =, 设平面AMC 的法向量为()1,,n x y z =,则由1100n AM n AC ⎧⋅=⎪⎨⋅=⎪⎩,得1020y z x y ⎧+=⎪⎨⎪+=⎩,得2z y x y =-⎧⎨=-⎩, 令1y =,得()11,1,2n =--为平面AMC 的一个法向量. 由10,1,2BM ⎛⎫=- ⎪⎝⎭,11,0,2MC ⎛⎫=- ⎪⎝⎭, 设平面BMC 的一个法向量为()2,,n a b c =,则2200n BM n MC ⎧⋅=⎪⎨⋅=⎪⎩,即102102b c a c ⎧-+=⎪⎪⎨⎪-=⎪⎩, 令1a = ,可得平面BMC 的一个法向量为()21,1,2n =. ∴1212122cos ,3n n n n n n ⋅==-,2 3.故所求平面AMC与平面BMC的夹角的余弦值为。
2024~2025(上)高二年级第一次月考数 学全卷满分150分,考试时间120分钟.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线的倾斜角为( )A.B .C .D .2.若与是两条不同的直线,则“”是“”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件3.已知直线l 的一个方向向量,且直线l 经过和两点,则( )A .B .C .1D .24.已知空间向量,,则在上的投影向量为( )A .B .C .D .5.下列关于空间向量的说法中错误的是( )A .平行于同一个平面的向量叫做共面向量B .空间任意三个向量都可以构成空间的一个基底C .直线可以由其上一点和它的方向向量确定D .任意两个空间向量都可以通过平移转化为同一平面内的向量6.在平行六面体中,点P 是线段BD 上的一点,且,设,,,则( )A .B .C .D .7.如图,直线交x 轴于点A ,将一块等腰直角三角形纸板的直角顶点置于原点O ,另两个顶点M 、N 恰好落在直线上.若点N 在第二象限内,则的值为( )20x +-=π6π4π35π61:10l x my --=2:(2)310l m x y --+=1m =-12//l l (3,2,1)m =-(,2,1)A a -(2,3,)B b -a b +=2-1-(2,3,1)a =(1,2,2)b =-- a b 2b 2b - 23b 23b- 1111ABCD A B C D -3PD PB =1A A a =11A B b = 11A D c = 1PC =1324a b c++ 113444a b c-+1344a b c-++ 131444a b c-+ 334y x =+334y x =+tan AON ∠A.B .C .D .8.在棱长为2的正方体中,EF 是正方体外接球的直径,点P 是正方体表面上的一点,则的取值范围是( )A .B .C .D .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.给出下列命题,其中正确的命题是()A .若空间向量,满足,则B .空间任意两个单位向量必相等C .在正方体中,必有D .空间向量10.已知两条平行直线和,则实数m 的值可能为( )A .0B .1C .2D .11.如图,在棱长为2的正方体中,E 为的中点,F 为的中点,如图所示建立空间直角坐标系,则下列说法正确的有()A .171615181111ABCD A B C D -1111ABCD A B C D -1111ABCD A B C D -PE PF ⋅[2,0]-[1,0]-[0,1][0,2]a b a b =a b= 1111ABCD A B C D -11BD B D =(1,1,0)a =1:10l x y -+=2:0l x y m -+=1-1111ABCD A B C D -1BB 11A D 1DB =B .向量与C .平面AEF 的一个法向量是D .点D 到平面AEF三、填空题:本题共3小题,每小题5分,共15分.12.直线,的斜率,是关于k 的方程的两根,若,则实数__________.13.在通用技术课程上,老师教大家利用现有工具研究动态问题.如图,老师事先给学生准备了一张坐标纸及一个三角板,三角板的三个顶点记为A 、B 、C ,,,.现移动边AC ,使得点A 、C 分别在x 轴、y 轴的正半轴上运动,则(点O 为坐标原点)的最大值为__________.14.已知空间向量,,则最大值为__________.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.(本小题满分13分)已知直线,,.(1)若这三条直线交于一点,求实数m 的值;(2)若三条直线能构成三角形,求实数m 满足的条件.16.(本小题满分15分)如图,在直三棱柱中,,,,,点d 是棱AB 的中点AE 1AC (4,1,2)-1l 2l 1k 2k 2280k k n ++=12l l ⊥n =||2AC =||AB =||4BC =OB (1,1,1)a =(0,,1)(01)b y y =≤≤ cos ,a b 1:10l x my ++=2:240l x y --=3:310l x y +-=111ABC A B C -AC BC ⊥1AC =2BC =13CC =(1)证明:平面;(2)求直线与平面所成角的正弦值.17.(本小题满分15分)已知直线.(1)m 为何值时,点到直线l 的距离最大,并求出最大值;(2)若直线l 分别与x 轴,y 轴的负半轴交于A ,B 两点,求(O 为坐标原点)面积的最小值及此时直线l 的方程.18.(本小题满分17分)如图,在棱长为3的正方体中,点E 是棱上的一点,且,点F 是棱上的一点,且.(1)求异面直线与CF 所成角的余弦值;(2)求直线BD 到平面CEF 的距离.19.(本小题满分17分)如图,在四棱锥中,四边形ABCD 是边长为3的正方形,平面ABCD ,,点E 是棱PB 的中点,点F 是棱PC 上的一点,且.(1)证明:平面平面PBC ;(2)求平面AEF 和平面AFC夹角的大小.1//AC 1B CD 1A B 1B CD :(21)(3)70l m x m y m +-++-=(3,4)Q AOB △1111ABCD A B C D -11A B 112A E EB =11A D 112A F FD =1AD P ABCD -PA⊥PC =2PF FC =AEC ⊥第一次月考·数学参考答案、提示及评分细则1.D ,其倾斜角为.故选D .2.C 若,则,解得或,则“”是“”的充分不必要条件,故选C .3.A 因为,所以,解得,,所以,故选A .4.D ,故在上的投影向量为.故选D .5.B 平行于平面的向量,可平移至一个平行于的平面,故为共面向量,A 正确;空间任意三个向量都共面时,则不能构成空间的基底,B 错误;直线的方向向量是直线任取一点,向其两个方向的任意方向作出一个向量即可得,故直线上一点和方向向量确定直线,C 正确;由向量的位置的任意性,将空间两个向量某一端点移至重合位置,它们即可构成一个平面,即可为同一平面的向量,D 正确.故选B .6.C .故选C .7.A 设直线与y 轴的交点为B ,过O 作于C ,过N 作于D .因为N 在直线上且在第二象限内,设,则,.又,,即,,所以.在中,由三角形的面积公式得,,所以.y x = ∴5π612//l l 1(3)(2)()m m ⨯-=--1m =-3m =1m =-12//l l (2,1,1)AB a b =--+ 211321a b --+==-12a =-32b =-2a b +=-2222(2,3,1)(1,2,2)26221(2)(2)93a b b⋅⋅----===-+-+-a b ()223a b b b b⋅⋅=-αα11111111111111111114PC A C A P A B A D A B BP A B A D A B A A B D =-=+--=+---()11111111111111111311344444A B A D A B A A A D A B A D A B A A a b c =+----=+-=-++OC AB ⊥ND OA ⊥334y x =+3,34N x x ⎛⎫+ ⎪⎝⎭3||34DN x =+||OD x =-(4,0)A -(0,3)B ||4OA =||3OB =||5AB =AOB △11||||||||22OB OA AB OC =12||5OC =在中,,,所以,即.在中,,即,解得,.因为点N 在第二象限内,所以,所以,,所以,故选A .8.A 记正方体的外接球的球心为O ,易得,且,所以,故选A .9.CD两个向量相等需要方向相同,模长相等,所以不能得到,A 错误;空间任意两个单位向量的模长均为1,但是方向不一定相同,故B 错误,正方体中,,的方向相同,长度相等,故,故C 正确;空间向量,故D 正确.故选CD .10.AC 直线和平行,则,解得且,故0和2符合要求.故选AC .11.BCD 对于A ,正方体中,,故A 错误;对于B ,,,故向量夹角余弦值为B 正确;Rt NOM △||||OM ON =45MNO ∠=︒12||5sin 45||||OC ON ON ︒==||ON =Rt NDO △222||||||ND DO ON +=22233()4x x ⎛⎫++-= ⎪⎝⎭18425x =-21225x =8425x =-12||25ND =84||25OD =||1tan ||7ND AON OD ∠==1111ABCD A B C D -OE ==PO ⎡∈⎣()()()()2223[2,0]PE PF PO OE PO OF PO OE PO OE PO OE PO ⋅=+⋅+=+⋅-=-=-∈- a b =a b = 1111ABCD A B C D -BD 11B D11BD B D = (1,1,0)a ==1:10l x y -+=2:0l x y m -+=1m ≠<13m -<<1m ≠1DB =(0,2,1)AE = 1(2,2,2)AC =- 11cos AE AC AE AC θ⋅==对于C ,,,,.故是平面AEF 的一个法向量,故C 正确;对于D ,,则点D 到平面AEF 的距离为D 正确.故选BCD .12. 因为,而且斜率存在,所以,又,是关于k 的方程的两根,,解得.13.由已知,,.如图,取AC 的中点E .因为为直角三角形,故.由于为直角三角形,故,显然,当且仅当O 、B 、E三点共线时等号成立,故的最大值为.14,当时,,由,所以,当且仅当,即时等号成立,故,(0,2,1)AE = (1,0,2)AF =-(0,2,1)(4,1,2)0⋅-=(1,0,2)(4,1,2)0-⋅-=(4,1,2)-(2,0,0)DA = DA n d n ⋅=== 2-12l l ⊥121k k ⋅=-1k 2k 2280k k n ++=1212nk k ⋅==-2n =-||2AC =||AB =||4BC =OAC △1||||12OE AC ==ABC △||BE ==||||||OB OE BE ≤+OB 1cos ,b a b a a b ⋅== 10y ≥>cos ,a b a b a b ⋅=====0y >12y y +≥1y y=1y =cos ,a b =≤=当时,,故的最大值为.15.解:(1)由解得代入的方程,得.(2)当三条直线相交于一点或其中两直线平行时,三条直线不能构成三角形.①联立解得代入,得;②当与平行时,,当与平行时,.综上所述,当且且时,三条直线能构成三角形.(且写成或扣1分).16.解:如图,以C 为坐标原点,CA ,CB ,所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,所以,,,,,,所以,,,设平面的一个法向量为,则即令,解得,,所以平面的一个法向量为.(1)证明:,因为,0y =cos ,a b =cos ,a b 240,310,x y x y --=⎧⎨+-=⎩1,2,x y =⎧⎨=-⎩1l 1m =240,310,x y x y --=⎧⎨+-=⎩1,2,x y =⎧⎨=-⎩10x my ++=1m =1:10l x my ++=2:240l x y --=12m =-1:10l x my ++=3:310l x y +-=13m =1m ≠13m ≠12m ≠-1CC (1,0,0)A (0,2,0)B (0,0,0)C 1(0,0,3)C 1(0,2,3)B 1(1,0,3)A 1,1,02D ⎛⎫ ⎪⎝⎭1,1,02CD ⎛⎫= ⎪⎝⎭1(0,2,3)CB =1B CD (,,)n x y z = 10,0,n CD n CB ⎧⋅=⎪⎨⋅=⎪⎩ 10,2230,x y y z ⎧+=⎪⎨⎪+=⎩1x =12y =-13z =1B CD 111,,23n ⎛⎫=- ⎪⎝⎭ 1(1,0,3)AC =- 10AC n ⋅=平面,所以平面;(2)解:因为,所以,所以直线与平面.17.解:(1)已知直线,整理得,由故直线l 过定点,点到直线l 的距离最大,可知点Q 与定点的连线的距离就是所求最大值,,的斜率为,可得,解得;(2)若直线l 分别与x 轴,y 轴的负半轴交于A ,B 两点,则可设直线l 的方程为,,则,,.(当且仅当时,取“=”),故面积的最小值为12,此时直线l 的方程为.18.解:(1)如图所示,以D 为坐标原点,DA ,DC ,所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,所以,,,,所以,,所以,所以异面直线与CF1AC ⊂/1B CD 1//AC 1B CD 1(1,2,3)A B =-- 111cos ,A B n A B n A B n⋅==1A B 1B CD :(21)(3)70l m x m y m +-++-=(21)370x y m x y -++--=210,2,3703,x y x x y y ⎧-+==-⎧⇒⎨⎨--==-⎩⎩(2,3)--(3,4)Q (2,3)P --=437325PQ k +==+ (21)(3)70m x m y m ∴+-++-=57-52173m m +-=+2219m =-3(2)y k x +=+0k <32,0A k ⎛⎫-⎪⎝⎭(0,23)B k -13131912|23|2(32)12(4)(1212)122222AOB S k k k kk k ⎡⎤⎛⎫⎛⎫=-⋅-=--=+-+-≥⨯+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦△32k =-AOB △32120x y ++=1DD (3,0,0)A 1(0,0,3)D (1,0,3)F (0,3,0)C 1(3,0,3)AD =- (1,3,3)CF =-111cos ,AD CF AD CF AD CF⋅===1AD(2)因为,,,所以,,所以,所以,又平面CEF ,平面CEF ,所以平面CEF ,所以点D 到平面CEF 的距离即为直线BD 到平面CEF 的距离.设平面CEF 的一个法向量为,则即令,解得,,所以平面CEF 的一个法向量为.因为,所以点D 到平面CEF 的距离,即直线BD 到平面CEF 的距离为19.(1)证明:如图,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,所以,,,设,则,解得,即.则,,,设平面AEC 的一个法向量为,则即令,解得,,所以平面AEC 的一个法向量为.因为,,设平面PBC 的一个法向量为,(0,0,0)D (3,2,3)E (3,3,0)B (2,2,0)FE = (3,3,0)DB =23FE DB =//FE DB DB ⊂/EF ⊂//DB (,,)n x y z = 0,0,n FE n CF ⎧⋅=⎪⎨⋅=⎪⎩220,330,x y x y z +=⎧⎨-+=⎩1x =1y =-43z =-41,1,3n ⎛⎫=-- ⎪⎝⎭ (0,3,0)DC =DC n d n ⋅==(0,0,0)A (3,0,0)B (3,3,0)C (0,0,)(0)P t t >PC ==3t =(0,0,3)P 33,0,22E ⎛⎫ ⎪⎝⎭33,0,22AE ⎛⎫= ⎪⎝⎭(3,3,0)AC = (,,)n x y z = 0,0,n AE n AC ⎧⋅=⎪⎨⋅=⎪⎩ 330,22330,x z x y ⎧+=⎪⎨⎪+=⎩1x =1y =-1z =-(1,1,1)n =--(0,3,0)BC = (3,0,3)BP =- ()111,,m x y z =所以即令,解得,,所以平面PBC 的一个法向量为,又,所以平面平面PBC ;(2)解:,所以.设平面EAF 的一个法向量为,所以即令,解得,,所以平面EAF 的一个法向量为.设平面CAF 的一个法向量为,则即令,解得,,所以平面CAF 的一个法向量为.因为,所以平面AEF 和平面AFC夹角的大小为.0,0,m BC m BP ⎧⋅=⎪⎨⋅=⎪⎩ 11130,330,y x z =⎧⎨-+=⎩11x =10y =11z =(1,0,1)m = 0m n ⋅=AEC ⊥11(3,3,3)(1,1,1)33CF CP ==⨯--=-- (2,2,1)AF AC CF =+= ()1222,,n x y z = 110,0,n AE n AF ⎧⋅=⎪⎨⋅=⎪⎩ 22222330,22220,x z x y z ⎧+=⎪⎨⎪++=⎩21x =212y =-21z =-111,,12n ⎛⎫=-- ⎪⎝⎭()2333,,n x y z =220,0,n AC n AF ⎧⋅=⎪⎨⋅=⎪⎩ 33333330,220,x y x y z +=⎧⎨++=⎩31x =31y =-30z =2(1,1,0)n =-121212cos ,n n n n n n ⋅=== π4。
北京市首都师范大学附属中学2024-2025学年高二上学期9月月考数学试题一、单选题1.已知i 1i z=-,则z = ( )A .0B .1C D .22.如图,在平行六面体1111ABCD A B C D -中,1AB AD AA --=u u u r u u u r u u u r( )A .1AC uuu rB .1AC u u u rC .1D B u u u u rD .1DB u u u u r3.已知()2,3,1A --,()6,5,3B -,则AB u u u r的坐标为( ) A .()8,8,4--B .()8,8,4-C .()8,8,4-D .()8,8,4--4.如图,已知正方体ABCD A B C D -''''的棱长为1,AA DB ''⋅=u u u r u u u u r( )A.1B C D .1-5.设1n u r ,2n u u r分别是平面α,β的法向量,其中()11,,2n y =-u r ,()2,2,1n x =-u u r ,若αβ∥,则x y +=( )A .92-B .72- C .3 D .726.已知直线1l 的方向向量为()0,0,1u =r,直线2l 的方向向量为()1v =-r ,则直线1l 与2l 所成角的度数为( )A .30︒B .60︒C .120︒D .150︒7.已知n r 为平面α的一个法向量,a r 为直线l 的一个方向向量,则“a n ⊥r r”是“//l α”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件8.已知点,,,O A B C 为空间不共面的四点,且向量a OA OB OC =++r u u u r u u u r u u u r ,向量b OA OB OC =+-r u u u r u u u r u u u r,则与,a b r r不能构成空间基底的向量是( )A .OA u u u rB .OB u u u rC .OC u u u rD .OA u u u r 或OB u u u r9.在空间直角坐标系Oxyz 中,点()2,1,1A 在坐标平面Oxz 内的射影为点B ,且关于y 轴的对称点为点C ,则B ,C 两点间的距离为( )AB .C .D 10.在棱长为1的正四面体(四个面都是正三角形)ABCD 中,M ,N 分别为BC ,AD 的中点,则AM 和CN 夹角的余弦值为( )A .23B C .13D .23-二、填空题11.已知向量()2,3,1a =-r ,则与a r共线的单位向量为.12.已知向量()2,0,1a =-r ,(),2,1b m =-r 且a b ⊥r r,则m =,a b +=r r .13.已知直线l 经过()1,0,1A ,()2,0,0B 两点,则点()2,1,4P 到直线l 的距离为.14.在空间直角坐标系Oxyz 中,已知()2,0,0AB =u u u r ,()0,2,0AC =u u u r ,()0,0,2AD =u u u r .则CD u u u r 与CB u u ur 的夹角的余弦值为;CD u u u r 在CB u u u r 的投影向量a =r . 15.以下关于空间向量的说法:①若非零向量a r ,b r ,c r满足//a b r r ,//b c r r ,则//a c r r②任意向量a r ,b r ,c r满足()()a b c a b c ⋅⋅=⋅⋅r r r r r r③若{},,OA OB OC u u u r u u u r u u u r 为空间向量的一组基底,且221333OD OA OB OC =+-u u u r u u u r u u u r u u u r,则A ,B ,C ,D四点共面④已知向量()1,1,a x =r ,()3,,9b x =-r ,若310x <,则,a b r r 为钝角其中正确命题的序号是.三、解答题16.如图,在正方体1111ABCD A B C D -中,2AB =,E 为线段11B C 的中点.(1)求证:11AA D E ⊥; (2)求平面1D BE 的法向量; (3)求点1A 到平面1D BE 的距离.17.如图,正三棱柱111ABC A B C -的底面边长为2,高为4,D 为1CC 的中点,E 为11A B 的中点.(1)求证:1//C E 平面1A BD ;(2)求直线BC 与平面1A BD 所成角的正弦值.18.如图,在平行六面体1111ABCD A B C D -中,4AB =,2AD =,1AA =60BAD ∠=︒,1145BAA DAA ∠=∠=︒,AC 与BD 相交于点O ,设AB a u u u r r=,AD b =u u u r r ,1AA c =u u u r r .(1)试用基底{},,a b c r r r表示向量1OA u u u r ;(2)求1OA 的长;(3)求直线1OA 与直线BC 所成角.19.如图,四棱锥S --ABCD P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面P AC ,求平面P AC 与平面ACD 的夹角大小;(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面P AC .若存在,求SE ∶EC 的值;若不存在,试说明理由.。
孝南区高级中学2021-2021学年高二数学上学期9月月考试题〔含解析〕一:选择题。
m 为何值,直线()()21250m x m y -+++=恒过定点A. ()1,2--B. ()1,2-C. ()1,2-D. ()1,2【答案】B 【解析】 【分析】根据直线方程别离参数,再由直线过定点的条件可得方程组,解方程组进而可得m 的值。
【详解】()()21250m x m y -+++=恒过定点,∴()()2250x y m x y ++-++=恒过定点,由20,250,x y x y +=⎧⎨-++=⎩解得1,2,x y =⎧⎨=-⎩即直线()()21250m x m y -+++=恒过定点()1,2-.【点睛】此题考察含有参数的直线过定点问题,过定点是解题关键。
2.,m n 是两条不同的直线,,αβ是两个不同的平面,那么以下命题正确的选项是 A. //,,αβmαnβ,那么//m nB. //,//m m n α,那么//n αC. ,//,m n m αβα⊥⊥,那么//n βD. ,//m m n α⊥,那么n α⊥ 【答案】D 【解析】 【分析】根据空间中直线与平面的位置关系的相关定理依次判断各个选项即可. 【详解】两平行平面内的直线的位置关系为:平行或者异面,可知A 错误;//m α且//m n ,此时//n α或者n ⊂α,可知B 错误;αβ⊥,//m n ,m α⊥,此时n β⊥或者n β⊂,可知C 错误;两平行线中一条垂直于一个平面,那么另一条必垂直于该平面,D 正确. 此题正确选项:D【点睛】此题考察空间中直线与平面、平面与平面位置关系的断定,考察学生对于定理的掌握程度,属于根底题.2220x y x +-=和圆2240x y y ++=的公切线条数为〔 〕A. 1B. 2C. 3D. 4【答案】B 【解析】 【分析】判断两圆的位置关系,根据两圆的位置关系判断两圆公切线的条数.【详解】圆2220x y x +-=的HY 方程为()2211x y -+=,圆心坐标为()1,0,半径长为1r =.圆2240x y y ++=的HY 方程为()2224x y ++=,圆心坐标为()0,2-,半径长为2R =.圆心距为d ==13<<,即R r d R r -<<+,所以,两圆相交,公切线的条数为2,应选:B.【点睛】此题考察两圆公切线的条数,本质上就是判断两圆的位置关系,公切线条数与两圆位置的关系如下:①两圆相离4⇔条公切线;②两圆外切3⇔条公切线;③两圆相交2⇔条公切线; ④两圆内切1⇔条公切线;⑤两圆内含⇔没有公切线.{}n a 满足1393n na a +=⨯,*n N ∈,且2469a a a ++=,那么35791log a a a =++A. 13- B. 3 C. 3- D.13【答案】C 【解析】 【分析】利用条件判断数列是等差数列,求出公差,利用等差数列的性质化简求解即可.【详解】因为123933n n n a a a ++=⨯=,所以12n n a a +=+,所以数列{}n a 是以2为公差的等差数列,所以579246246333999227a a a a d a d a d a a a d ++=+++++=+++=+⨯=,故35791log a a a =++ 31log 327=-.应选C .【点睛】此题考察数列的递推关系式,等差数列的判断以及等差数列的性质的应用,考察计算才能.5.如下图,平面CBD ⊥平面ABD ,且DA ⊥平面ABC ,那么ABC △的形状为〔 〕A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定 【答案】B 【解析】 【分析】通过证明BC ⊥平面DAB ,由此证得BC AB ⊥,从而得到三角形ABC 为直角三角形.【详解】过A 作AE DB ⊥于E ,那么AE ⊥平面DBC ,AE BC ∴⊥,又DA ⊥平面ABC ,DA BC ∴⊥,又DA AE A =,BC ∴⊥平面DAB ,BC AB ∴⊥,ABC ∴为直角三角形.应选B.【点睛】本小题主要考察线线垂直、线面垂直间的互相转换,考察三角形形状的判断,属于根底题.{}n a 的前n 项和为n S ,18a =,42a =且满足()*212n n n a a a n N ++=-∈,假设510S a λ=,那么λ的值是〔 〕 A. 13- B. 3- C. 12-D. 2-【答案】D 【解析】 【分析】由递推关系可证得数列{}n a 为等差数列,利用等差数列通项公式求得公差2d =-;利用等差数列通项公式和前n 项和公式分别求得10a 和5S ,代入求得结果.【详解】由()*212n n n a a a n N++=-∈得:211n n n n aa a a +++-=-∴数列{}n a 为等差数列,设其公差为d18a =,42a = 3286d ∴=-=-,解得:2d =- 101981810a a d ∴=+=-=-,515454020202S a d ⨯=+=-= 51020210S a λ∴===-- 此题正确选项:D【点睛】此题考察等差数列根本量的计算,涉及到利用递推关系式证明数列为等差数列、等差数列通项公式和前n 项和公式的应用.{}n a 的前n 项和n S 有最大值,且761aa <-,那么满足0n S >的最大正整数n 的值是〔 〕A. 6B. 7C. 11D. 12【答案】C 【解析】【分析】根据题干得到等差数列的项是先负后正,()671267060a a S a a +<⇒=+<,116110S a =>进而得到结果.【详解】等差数列{}n a 的前n 项和n S 有最大值,可知等差数列的项是先负后正,又因为761a a <-可知670,0,a a ><故得到()671267060a a S a a +<⇒=+<, 结合等差数列的和的性质得到116110S a =>,故得到结果为:11. 故答案为:C.【点睛】这个题目考察了等差数列的性质的应用,以及前n 项和的性质的应用,属于根底题.(2,3),(3,2)A B ---,直线l 方程为10kx y k -++-=,且直线l 与线段AB 相交,求直线l的斜率k 的取值范围为〔 〕A. 34k ≥或者 4k ≤- B. 34k ≥或者 14k ≤- C. 344k -≤≤D.344k ≤≤ 【答案】A 【解析】 【分析】先求出线段AB 的方程,得出()51332x y y =---≤≤-,在直线l 的方程中得到11y k x -=-,将513x y =--代入k 的表达式,利用不等式的性质求出k 的取值范围。
华科附中2022-2023学年上学期9月月考高二数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数z 满足(1i)i z −=,则下列说法正确的是( ) A. z 的虚部为1i 2B. z 的共轭复数为11i 22z =−+ C. z 对应的点在第二象限 D. 1z =【答案】C 【解析】【分析】根据已知条件及复数的除法法则,再利用复数的概念及共轭复数,结合复数的几何意义及复数的摸公式即可求解.【详解】由(1i)i z −=,得()()()i 1i i 1i11i 1i 1i 1i 222z ×+−+====−+−−×+, 对于A ,复数z 的虚部为12,故A 不正确;对于B ,复数z 共轭复数为11i 22z =−−,故B 不正确;对于C ,复数z 对应的点为12 −,所以复数z 对应的点在第二象限,故C 正确; 对于D,z =D 不正确. 故选:C.2. 在下列条件中,一定能使空间中的四点,,,M A B C 共面的是( )A. 2OM OA OB OC −−B. 111532OM OA OB OC =++C. 20MA MB MC ++=D. 0OM OA OB OC +++=【答案】C 【解析】【分析】根据向量共面定理,OM xOA yOB zOC =++,若A ,B ,C 不共线,且A ,B ,C ,M 共面,则其充要条件是1x y z ++=,由此可判断出答案. 的【详解】根据向量共面定理,OM xOA yOB zOC =++,若A ,B ,C 不共线,且A ,B ,C ,M 共面,则其充要条件是1x y z ++=, 由此可得A ,B ,D 不正确,选项C :2MA MB MC −=−,所以,,,M A B C 四点共面, 故选:C.3. 已知向量(2,0,1)n =为平面α的法向量,点(1,2,1)A −在α内,则点(1,2,2)P 到平面α的距离为( )A.B.C. D.【答案】B 【解析】【分析】直接利用点到面的距离的向量求法求解即可 【详解】因为(1,2,1)A −,(1,2,2)P所以(2,0,1)PA =−− ,因为平面α的法向量(2,0,1)n =,所以点P 到平面α的距离||||PA n d n ⋅=.故选:B【点睛】此题考查利用向量求点到面的距离,属于基础题4. 已知A ,B ,C ,D ,E 是空间中的五个点,其中点A ,B ,C 不共线,则“存在实数x ,y ,使得DE x AB y AC =+是“//DE 平面ABC ”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】B 【解析】【分析】利用存在实数x ,y ,使得DE x AB y AC =+⇔//DE 平面ABC 或DE ⊂平面ABC ,结合充分必要条件的定义即可求解.【详解】若//DE 平面ABC ,则,,DE AB AC 共面,故存在实数x ,y ,使得DE x AB y AC =+,所以必要性成立;若存在实数x ,y ,使得DE x AB y AC =+ ,则,,DE AB AC 共面,则//DE 平面ABC 或DE ⊂平面ABC ,所以充分性不成立;所以 “存在实数x ,y ,使得DE x AB y AC =+是“//DE 平面ABC ”的必要不充分条件,故选:B【点睛】关键点点睛:本题考查空间向量共面的问题,理清存在实数x ,y ,使得DE xAB y AC =+⇔//DE 平面ABC 或DE ⊂平面ABC 是解题的关键,属于基础题.5. 在ABC 中,角,,A B C 的对边分别为,,a b c ,且2sin 0,0,,1,2c b C B b a π−=∈,则ABC 的面积为()A.或14 B.或14C.D.或34 【答案】C 【解析】B ,然后利用余弦定理求得c ,代入三角形面积公式即可. 【详解】因为2sin 0c bC −=,由正弦定理sin 2sin sin 0C B C −=, 因为0,,sin 02C C π∈≠,所以1sin 2B =,因为0,2B π∈,所以6B π=,根据余弦定理得2222cos b c a c a B +−⋅⋅,得1c =或2c =,所以11222ABC S =×=或11122ABC S =×= , 故选:C.6. 为庆祝中国共产党成立100周年,甲、乙、丙三个小组进行党史知识竞赛,每个小组各派5位同学参赛,若该组所有同学的得分都不低于7分,则称该组为“优秀小组”(满分为10分且得分都是整数),以下为三个小组的成绩数据,据此判断,一定是“优秀小组”的是( ) 甲:中位数为8,众数为7乙:中位数为8,平均数为8.4 丙:平均数为8,方差小于2 A. 甲 B. 乙C. 丙D. 无法确定【答案】A 【解析】【分析】根据题意,结合“优秀小组”的定义依次分析选项,综合可得答案.【详解】甲:中位数为8,众数为7,可知甲组的得分依次为:7、7、8、9、10,根据“优秀小组”的概念可知甲组一定是“优秀小组”当乙组得分依次为:6、8、8、10、10时,中位数为8,平均数为8.4,但乙组不符合“优秀小组”的概念,当丙组得分依次为:6、8、8、8、10时,丙:平均数为8,方差为825<,但丙组不符合“优秀小组”的概念. 故选:A.7. 如图,已知电路中有5个开关,开关5S 闭合的概率为13,其它开关闭合的概率都是12,且是相互独立的,则灯亮的概率为( )A. 78B.1516 C. 2324D. 45【答案】A 【解析】【分析】设开关i S 闭合为事件i A ,{1,2,3,4,5}i ∈,由所设事件表示事件灯不亮,利用概率乘法公式求其概率,再利用对立事件概率公式求事件灯亮的概率.【详解】设开关i S 闭合为事件i A ,{1,2,3,4,5}i ∈,则事件灯不亮可表示为12345A A A A A ⋅⋅⋅⋅,由已知12341()()()()2P A P A P A P A ====,51()3P A =, ∴ 1234511121()(1)42238P A A A A A ⋅⋅⋅⋅=−×××=, ∴ 事件灯亮的概率78P =, 故选:A.8. 已知正方体1111ABCD A B C D −的棱长为3,点P 在11A C B △的内部及其边界上运动,且DP =,则点P 的轨迹长度为( )A.B. 2πC.D. 3π【答案】A 【解析】【分析】连接1B D 、11B D 、BD ,1111A C B D E = ,连接BE 交1B D 于O ,证明1B D ⊥平面11A C B 得DO ⊥OP ,求出OP 长度,确定O 的位置,确定P 的轨迹形状,从而可求P 的轨迹长度. 【详解】连接1B D 、11B D 、BD ,则1111AC B D ⊥,111A C DD ⊥,1111B D DD D = , ∴11A C ⊥平面11B DD ,∴111A C B D ⊥, 同理11A B B D ⊥,∴1B D ⊥平面11A C B . 设1111A C B D E = ,连接BE 交1B D 于O ,由△BOD ∽△1EOB 且BD =12B E 可知OD =12B O ,则123OD B D ==,连接OP ,则OD OP ⊥,∴OP可得点P 的轨迹为以点O 为半径的圆在11A C B △内部及其边界上的部分,OB =2OE ,E 为11A C 中点,及△11A BC 为等边三角形可知O 为△11A BC 中心, OE=1133BE =<OF =,OE =,πcos 6OE EOF EOF OF ∠∠==, 则∠OFE =∠1A =π3,∴OF ∥1A B ,同理易知OG ∥11A C , 故四边形1A FOG 是菱形,则π.3FOG ∠=∴ FG长度为π3,故点P的轨迹长度为3π. 故选:A .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. PM 2.5的监测值是用来评价环境空气质量的指标之一.划分等级为:PM 2.5日均值在335/m g µ以下,空气质量为一级:PM 2.5日均值在335~75/m g µ,空气质量为二级:PM 2.5日均值超过375/m g µ为超标.如图是某地12月1日至10日PM 2.5的日均值(单位:3/m g µ)变化的折线图,关于PM 2.5日均值说法正确的是( )的A. 这10天的日均值的80%分位数为60B. 前5天的日均值的极差小于后5天的日均值的极差C. 这10天的日均值的中位数为41D. 前5天的日均值的方差小于后5天的日均值的方差 【答案】BD 【解析】【分析】根据百分位数、极差、中位数、方差等知识确定正确答案. 【详解】10个数据为:30,32,34,40,41,45,48,60,78,80,100.88×=,故80%分位数为6078692+=,A 选项错误. 5天的日均值的极差为413011−=,后5天的日均值的极差为804535−=,B 选项正确. 中位数是4145432+=,C 选项错误. 根据折线图可知,前5天数据波动性小于后5天数据波动性,所以D 选项正确. 故选:BD10. 下列命题:①对立事件一定是互斥事件;②若A ,B 为两个随机事件,则()()()P A B P A P B =+ ;③若事件A ,B 满足1()3P A =,3()4P B =,1()4P AB =,则A ,B 相互独立;④若事件A ,B 满足()()1P A P B +=,则A 与B 是对立事件.其中错误的命题是( ) A. ① B. ②C. ③D. ④【答案】BD 【解析】【分析】利用互斥事件、对立事件、相互独立事件的定义及概率的基本性质依次判断4个命题作答. 【详解】对于①:对立事件一定是互斥事件,①正确;对于②:若A ,B 为两个随机事件,则()()()()P A B P A P B P A B =+− ,②错误; 对于③:由()()()113434P AB P A P B ==×=,得A ,B 相互独立,③正确; 对于④:记事件A 为抛一枚硬币正面朝上,事件B 为掷一枚骰子出现偶数点,则()0.5P A =,()0.5P B =,满足()()1P A P B +=,显然事件A 与B 可以同时发生,它们不是对立事件,④错误.故选:BD11. 已知空间四点()0,0,0O ,()0,1,2A ,()2,0,1B −,()3,2,1C ,则下列说法正确的是( )A. 2OA OB ⋅=−B. 以OA ,OBC. 点O 到直线BCD. O ,A ,B ,C 四点共面 【答案】AC 【解析】【分析】直接利用空间向量,向量的模,向量垂直的充要条件,共面向量基本定理,向量的夹角,判定A 、B 、C 、D 的结论即可.【详解】空间四点()0,0,0O ,)0,1,2A ,()2,0,1B −,()3,2,1C ,则()0,1,2OA =,()2,0,1OB =− ,所以OA =,OB = ,对于A :2OA OB ⋅=−,故A 正确;对于B :2cos ,5OA OB OA OB OA OB ⋅==−,所以sin AOB ∠=,所以以OA ,OB 为邻边的平行四边形的面积sin SOA OB AOB ∠=,故B 错误;对于C :由于()2,0,1OB =−,()1,2,2BC = ,所以0OB BC ⋅=,故OB BC ⊥ ,所以点O 到直线BC 的距离||d OB ==,故C 正确;对于D :根据已知的条件求出:()0,1,2OA =,()2,0,1OB =− ,()3,2,1OC =,假设,,OA OB OC 共面,则存在实数λ和µ使得OC OA OB λµ=+,所以3=22=1=2µλλµ−,无解,故,,OA OB OC 不共面,故D 错误; 故选:AC .12. 如图,在棱长为1的正方体1111ABCD A B C D −中,E 为侧面11BCC B 的中心,F 是棱11C D 的中点,若点P 为线段1BD 上的动点,则下列说法正确的是( )A. PE PF ⋅的最小值为148B. 若12BP PD =,则平面PAC 截正方体所得截面的面积为98C. PF 与底面ABCD 所成的角的取值范围为0,4πD. 若正方体绕1BD 旋转θ角度后与其自身重合,则θ的最小值是23π【答案】BCD 【解析】【分析】建立空间直角坐标系,设()101BP BD λλ=≤≤ ,得()1,1,P λλλ−−,利用空间向量法求得数量积PE PF ⋅,计算最小值判断A ;由线面平行得线线平行确定截面的形状、位置,从而可计算出截面面积判断B ;过P 作11B D 的垂线,垂足为Q ,连接FQ ,则PFQ ∠为所求角.设=PQ x ,运用余弦定理求出QF ,由tan PQPFQ FQ∠=,计算判断C ;结合正方体的对称性,利用1BD 是正方体的外接球直径判断D . 【详解】以D 为原点,DA ,DC ,1DD 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系D xyz −.由正方体棱长为1,则11,1,22E,()1,1,0B ,()10,0,1D ,10,,12F ,()1,0,0A .对于A ,()11,1,1BD =−−,设()1,,BP BD λλλλ==−− ,()01λ≤≤,所以()1,1,P λλλ−−,11,,22PE λλλ =−− ,11,,12PF λλλ =−−−, ()()211171113()2221248PE PF λλλλλλλ⋅=−−+−+−−=−−, 所以712λ=时,1()48min PE PF ⋅=− ,故A 错误; 对于B ,12BP PD =,则P 是1BD 上靠近1D 的三等分点,112,,333P,取AC 上靠近C 的三等分点G ,则12,,033G,120,,33PG =−.显然PG与平面11CDD C 的法向量()1,0,0DA = 垂直,因此//PG 平面11CDD C ,所以截面PAC 与平面11CDD C 的交线与PG 平行, 作//CM PG 交11D C 于点M ,设()0,,1M k ,则()0,1,1CMk =− ,由//CM PG ,可得()21133k −−=,解得12k =,则M 与F 重合,因此取11D A 中点N ,易得//NF AC , 所以截面为ACFN ,且为等腰梯形,AC =NF =,AN CF ==梯形的高为h ,截面面积为1928S =,故B 正确; 对于C ,过P 作11B D 的垂线,垂足为Q ,连接FQ ,则PFQ ∠为所求角.设=PQ x,则1D Q =,由余弦定理知,222111222424FQ x x x =+−⋅=−+. 因为P 为线段1BD 上的动点,所以01x ≤≤.当=0x时,tan 0PQPFQ FQ∠==.tan PQPFQ FQ∠=, 当01x <≤时,,11x≥, 所以tan 1PFQ ∠≤,故0,4PFQ π∠∈,C 正确;对于D ,()1,0,0A ,()0,1,0C ,()1,1,0B ,()10,0,1D ,()1,1,0AC =−,()11,1,1BD =−−,则11100AC BD ⋅=−+=,1AC BD ∴⊥ ,同理11AB BD ⊥ . 所以1BD是平面1ACB 一个法向量,即1BD ⊥平面1ACB ,设垂足为1O ,则1111123AO C B O C AO B π∠=∠=∠=,1BD 是正方体的外接球的直径,因此正方体绕1BD 旋转θ角度后与其自身重合,至少旋转23π,故D 正确. 故选:BCD .三、填空题:本题共4小题,每小题5分,共20分.13. 如图,平行六面体ABCD ﹣A 1B 1C 1D 1中,1||||1===ABAD AA ,∠BAD =∠BAA 1=120°,∠DAA 1=60°,则线段AC 1的长度是_______.的【解析】【分析】利用11AC AB AD AA =++,即可求解. 【详解】 11AC AB AD AA =++,∴22221111222AC AB AD AA AB AD AB AA AD AA =+++++111111211()211()211222=+++×××−+×××−+×××2=,1AC ∴.【点睛】本题考查了空间向量的应用,意在考查学生对这些知识的理解掌握水平.14. 已知向量{},,a b c 是空间的一个基底,向量{},,a b a b c +− 是空间的另一个基底,一向量P在基底{}a b c ,,下的坐标为()1,2,3,则向量P在基底{},,a b a b c +− 下的坐标为__________.【答案】31,,322 −【解析】【分析】设()()()()p x a b y a b zc x y a x y b zc =++−+=++−+,可得 123x y x y z +=−== ,所以解出x ,y ,z 即可.【详解】设()()()()p x a b y a b zc x y a x y b zc =++−+=++−+;123x y x y z +=∴−= =,解得:31,,322x y z ==−=;p ∴ 在基底{},,a b a b c +− 下的坐标为:31,,322 −.故答案为:31,,322 −. 15. 祖冲之是我国南北朝时期杰出的数学家、天文学家.他一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面,特别是在探索圆周率π的精确度上,首次将“π”精确到小数点后第七位,即π=3.1415926…,在此基础上,我们从“圆周率”第三到第八位有效数字中随机取两个数字a ,b ,则事件“||5a b −≥”的概率为_______. 【答案】415【解析】【分析】根据给定条件,列出从4,1,5,9,2,6中任取两个数字的所有结果,再求出两个数字差的绝对值不小于5的个数即可作答.【详解】依题意,“圆周率”第三到第八位有效数字分别是4,1,5,9,2,6,从中任取两个数字a ,b 的不同结果是:(1,2),(1,4),(1,5),(1,6),(1,9),(2,4),(2,5),(2,6),(2,9),(4,5),(4,6),(4,9),(5,6),(5,9),(6,9),共15种,它们等可能,事件“||5a b −≥”记为M ,它含有的结果有:(1,6),(1,9),(2,9),(4,9),共4种,于是得4()15P M =, 所以事件“||5a b −≥”的概率为415. 故答案为:41516. 设空间向量,,i j k 是一组单位正交基底,若空间向量a满足对任意的,,x y a xi y j −− 的最小值是2,则3a k +的最小值是_________.【答案】1 【解析】【分析】以,i j 方向为,x y 轴,垂直于,i j 方向为z 轴建立空间直角坐标系,根据条件求得a坐标,由3a k +的表达式即可求得最小值.【详解】以,,i j k方向为,,x y z 轴建立空间直角坐标系,则()1,0,0i = ,()0,1,0j = ,()0,0,1k = 设(),,a r s t = 则a xi y j −−=,当,r x s y ==时a xi y j −−的最小值是2, 2t ∴=± 取(),,2a x y = 则()3,,5a k x y +=3a k ∴+=又因为,x y 是任意值,所以3a k +的最小值是5. 取(),,2ax y =− 则()3,,1a k x y +=3a k ∴+=又因为,x y 是任意值,所以3a k +的最小值是1. 故答案为:1.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步棸. 17. 已知()3,2,1a =− ,()2,1,2b = . (1)求a 与b夹角的余弦值;(2)当()()ka b a kb +⊥−时,求实数k 的值.【答案】(1(2)32k或23k =− 【解析】【分析】(1)根据空间向量夹角公式求得正确答案.(2)根据()()ka b a kb +⊥−列方程,从而求得k 的值.【小问1详解】cos ,a b a ba b⋅==⋅【小问2详解】由于()()ka b a kb +⊥− ,所以()()0ka b a kb +⋅−=, 所以()22210ka k a b kb +−⋅−= ,()22146190,6560k k k k k +−−=−−=, 解得32k或23k =−. 18. 袋中有6个大小相同颜色不全相同的小球,分别为黑球、黄球、绿球,从中任意取一球,得到黑球或黄球的概率是12,得到黄球或绿球的概率是23,试求: (1)从中任取一球,得到黑球.黄球.绿球的概率各是多少? (2)从中任取两个球,得到的两个球颜色不相同的概率是多少? 【答案】(1)111,,362;(2)1115【解析】【分析】(1)从中任取一球,分别记得到黑球、黄球、绿球为事件A ,B ,C ,由于A ,B ,C 为互斥事件,列出方程组,由此能求出从中任取一球,得到黑球、黄球、绿球的概率.(2)黑球、黄球、绿球个数分别为2,1,3,得到的两个球同色的可能有:两个黑球只有1种情况,两个绿球共3种情况,而从6个球中取出2个球的情况共有15种,由此能求出得到的两个球颜色不相同的概率.【详解】(1)解:从中任取一球,分别记得到黑球、黄球、绿球为事件A ,B ,C , 由于A ,B ,C 为互斥事件,根据已知得()()()11()()22()()3P A P B P C P A P B P B P C++=+=+=,解得1()31()61()2P A P B P C===,∴从中任取一球,得到黑球、黄球、绿球的概率分别是111,,362;(2)由(1)知黑球、黄球、绿球个数分别为2,1,3,得到的两个球同色的可能有:两个黑球只有1种情况,两个绿球共3种情况, 而从6个球中取出2个球的情况共有15种, 所以所求概率为1315154+=, 则得到的两个球颜色不相同的概率是41111515−=. 19. 某市为了了解人们对“中国梦”的伟大构想的认知程度,针对本市不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分100分(95分及以上为认知程度高),结果认知程度高的有20人,按年龄分成5组,其中第一组:[)20,25,第二组:[)25,30,第三组:[)30,35,第四组:[)35,40,第五组:[]40,45,得到如图所示的频率分布直方图.(1)根据频率分布直方图,估计这20人的平均年龄和第80百分位数; (2)若第四组宣传使者的年龄的平均数与方差分别为37和52,第五组宣传使者的年龄的平均数与方差分别为43和1,求这20人中35~45岁所有人的年龄的方差. 【答案】(1)32.25,第80百分位数为37.5 (2)10 【解析】【分析】(1)直接根据频率分布直方图计算平均数和百分位数;(2)利用分层抽样得第四组和第五组分别抽取4人和2人,进而设第四组、第五组的宣传使者的年龄的平均数分别为4x ,5x ,方差分别为24s ,25s ,第四组和第五组所有宣传使者的年龄平均数为z ,方差为2s ,进而根据方差公式,代入计算即可得答案. 【小问1详解】设这20人的平均年龄为x ,则22.50.0527.50.3532.50.337.50.242.50.132.25x =×+×+×+×+×=.设第80百分位数为a ,由50.02(40)0.040.2a ×+−×=,解得37.5a =. 【小问2详解】由频率分布直方图得各组人数之比为1:7:6:4:2,故各组中采用分层随机抽样的方法抽取20人,第四组和第五组分别抽取4人和2人, 设第四组、第五组的宣传使者的年龄的平均数分别为4x ,5x ,方差分别为24s ,25s , 则437x =,543x =,2452s =,251s =, 设第四组和第五组所有宣传使者的年龄平均数为z ,方差为2s . 则4542396x x z+=,()(){}222224545142106s s x z s x z =×+−+×+−= , 因此,第四组和第五组所有宣传使者的年龄方差为10,据此,可估计这m 人中年龄在35~45岁的所有人的年龄方差约为10. 20. 已知函数()2sin cos x x f x x +−(1)若123f α = ,且π0,2α ∈,求sin α的值; (2)在锐角ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若122C f=−,求a b 的取值范围. 【答案】(1;(2a b <<【解析】【分析】(1)化简()f x 解析式,由123f α = 得到1sin 3π3α−= ,从而求得cos 3πα −,进而求得sin α.(2)由122C f=−求得C ,利用正弦定理化简a b ,通过tan B 取值范围,求得a b 的取值范围. 【详解】(1)因为()2sin cos x x f x x +1cos 21πsin 2sin 2223x x x −+−=−, 的由123f α = ,得1sin 3π3α −= ,因π0,2α ∈,所以ππ36π3α−<−<,所以πcos 3α−所以ππsin sin 33αα =−+ππππsin cos cos sin 3333αα=−+−1132=×=. (2)由π1sin 232C f C =−=−,因为π0,2C∈ ,所以πππ336C −<−<, 所以ππ36C −=−,即π6C =. 由正弦定理sin sin a bA B=,可得,5πsin sin cos 6sin sin 2sin B a A B b B B B− ===+.因为ABC 是锐角三角形,所以π025ππ062B B <<<−<,即ππ32B <<.所以cos 12sin 2tan aB b B B =+ 由ππ32B <<,得tan B >a b << 21. 如图,在等腰直角三角形PAD 中,90A ∠=°,8AD =,3AB =,B ,C 分别是PA ,PD 上的点,且//AD BC ,M ,N 分别为BP ,CD 的中点,现将BCP 沿BC 折起,得到四棱锥P ABCD −,连结MN .为(1)证明://MN 平面PAD ;(2)在翻折的过程中,当4PA =时,求平面PBC 与平面PCD 夹角的余弦值. 【答案】(1)证明见解析(2 【解析】【分析】(1)取AB 的中点E ,连接EM ,EN ,利用面面平行的判定证明平面//MNE 平面PAD ,再利用面面平行的性质即可证明;(2)以点A 为坐标原点,建立空间直角坐标系,求出相关平面的法向量,利用面面角的空间向量求法即可得到答案. 【小问1详解】在四棱锥P ABCD −中,取AB 的中点E ,连接EM ,EN ,因为M ,N 分别为BP ,CD 的中点,//AD BC ,则ME PA //,//EN AD ,因为PA ⊂平面PAD ,ME ⊄平面PAD ,则//ME 平面PAD ,同理可得,//EN 平面PAD , 又ME EN E ∩=,ME ,EN ⊂平面MNE ,故平面//MNE 平面PAD ,因为MN ⊂平面MNE , 故//MN 平面PAD ; 【小问2详解】因为在等腰直角三角形PAD 中,90∠=°,//AD BC , 所以BCPA ⊥,则在四棱锥P ABCD −中,BC PB ⊥,BC AB ⊥,因为//AD BC ,则AD PB ⊥,AD AB ⊥,又PB AB B ∩=,,PB AB ⊂平面PAB , 故AD ⊥平面PAB ,又PA ⊂平面PAB ,故PA AD ⊥,因为8AD =,3AB =,4PA =,则5PB =,所以222AB PA PB +=,故PA AB ⊥. 以点A 为坐标原点,建立空间直角坐标系如图所示,则:(3,0,0)B ,()0,0,4P ,(0,8,0)D ,(3,5,0)C ,故(3,0,4),(3,5,4),(0,8,4)PB PC PD =−=−=−,设平面PBC 的法向量为(,,)n x y z = ,则3403540n PB x z n PC x y z ⋅=−= ⋅=+−= , 令4x =,则3z =,故(4,0,3)n = ;设平面PCD 的法向量为(,,)m a b c = ,则8403540m PD b c m PC a b c ⋅=−= ⋅=+−= , 令1b =,则1a =,2c =,故(1,1,2)m = ,所以|||cos ,|||||m n m n m n ⋅== , 故平面PBC 与平面PCD. 22. 如图,三棱柱111ABC A B C 中,AB ⊥侧面11BB C C ,已知13BCC π∠=,1BC =,12AB C C==,点E 是棱1C C 的中点.(1)求证:1C B ⊥平面ABC ;(2)在棱CA 上是否存在一点M ,使得EM 与平面11A B E,若存在,求出CM CA 的值;若不存在,请说明理由.【答案】(1)见解析;(2)存在,13CM CA =或523CM CA = 【解析】【分析】(1)利用余弦定理解得1BC =1BC BC ⊥,证得AB ⊥侧面11BB C C , 1AB BC ⊥,继而可证1C B ⊥平面ABC ; (2)以B 为原点,分别以BC ,1BC 和BA 的方向为x ,y 和z 轴的正方向建立空间直角坐标系,假设存在点M ,设(),,M x y z ,由EM 与平面11A B E,可求解.【详解】(1)由题意,因为1BC =,12CC =,13BCC π∠=,利用余弦定理2221112cos 60BC BC CC BC CC =+−×°,解得1BC =22211BC BC CC ∴+=,1BC BC ∴⊥,AB ⊥ 侧面11BB C C ,1AB BC ∴⊥. 又AB BC B ∩= ,AB ,BC ⊂平面ABC ,∴直线1C B ⊥平面ABC .(2)以B 为原点,分别以BC ,1BC 和BA 的方向为x ,y 和z 轴的正方向建立如图所示的空间直角坐标系,则有(0,0,2)A,1(B −,12E,1(2)A −,设平面11A B E 的一个法向量为(,,)m x y z = ,11(0,0,2)A B =−,13,22A E =−, 11100m A B m A E ⋅= ⋅=,203202z x y z −= ∴ −=,令y =1x =,m ∴= , 假设存在点M ,设(),,M x y z ,CM CA λ=,[0,1]λ∈, (1,,)(1,0,2)x y z λ∴−=−,(1,0,2)M λλ∴−,1,22EM λλ ∴=−利用平面11A B E的一个法向量为m =,2693850λλ−+=.即(31)(235)0λλ−−=,13λ∴=或523λ=,13CM CA ∴=或523CM CA =. 【点睛】本题考查了空间向量和立体几何综合问题,考查了学生逻辑推理,空间向量和数学运算能力,属于中档题.。
2024-2025学年湖北省十堰市郧阳中学高二上学期9月月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.直线y=1−x tan72∘的倾斜角为( )A. 108∘B. 72∘C. 118∘D. 18∘2.向量a=(1,2,3),b=(−2,−4,−6),|c|=14,若(a+b)⋅c=−7,则a与c的夹角为( )A. 30∘B. 60∘C. 120∘D. 150∘3.已知直线l1:mx+y−1=0,l2:(3m−2)x+my−2=0,若l1//l2,则实数m的值为( )A. 2B. 1C. 1或2D. 0或134.将一枚均匀的骰子抛掷2次,事件A=“没有出现1点”,事件B=“出现一次1点”,事件C=“两次抛出的点数之和是8”,事件D=“两次掷出的点数相等”,则下列结论中正确的是( )A. 事件A与事件B是对立事件B. 事件A与事件D是相互独立事件C. 事件C与事件D是互斥事件D. 事件C包含于事件A5.已知点M是直线y=x+1上一点,A(1,0),B(2,1),则|AM|+|BM|的最小值为( )A. 2B. 22C. 1+2D. 106.已知在矩形ABCD中,AB=1,BC=3,将矩形ABCD沿对角线AC折起,使平面ABC与平面ACD垂直,则|BD|=( )A. 102B. 62C. 52D. 27.在棱长为2的正方体ABCD−A1B1C1D1中,E为AB的中点,则点A1到平面ECC1的距离为( )A. 15B. 55C. 255D. 258.古代城池中的“瓮城”,又叫“曲池”,是加装在城门前面或里面的又一层门,若敌人攻入瓮城中,可形成“瓮中捉鳖”之势.如下图的“曲池”是上.下底面均为半圆形的柱体.若AA1垂直于半圆柱下底面半圆所在平面,AA1=3,AB=4,CD=2,E为弧A1B1的中点,则直线CE与平面DEB1所成角的正弦值为( )A. 39921B. 27321C. 24221D. 4221二、多选题:本题共3小题,共18分。
山东省青岛第五十八中学2023-2024学年高二上学期9月月考检测数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A .π6B .π34.如图,在三棱锥-P ABC AC方向上的投影向量为(A .34AC -B .-5.柏拉图多面体是柏拉图及其追随者对正多面体进行系统研究后而得名的几何体.下图是棱长均为1的柏拉图多面体A .12B .146.在正方体1111ABCD A B C D -中,点的取值范围是()A .ππ,43⎡⎤⎢⎥⎣⎦B .π0,2⎡⎤⎢⎥⎣⎦7.三面角是立体几何的基本概念之一,而三面角余弦定理是解决三面角问题的重要依据.三面角-P ABC 是由有公共端点线间的平面部分所组成的图形,设面BPC 所成的角为θ,由三面角余弦定理得-P ABC 中,6PA =,60APC ∠=棱锥-P ABC 体积的最大值为(A .2724B .2748.“阿基米德多面体”也称为半正多面体,是由边数不全相同的正多边形为面围成的多面体,它体现了数学的对称美.如图,将一个正方体沿交于一顶点的三条棱的中点截去一个三棱锥,共可截去八个三棱锥,得到八个面为正三角形,六个面为正方形的米德多面体”,则该多面体中具有公共顶点的两个正三角形所在平面的夹角正切值为A .22B .1二、多选题A .166AC =B .1BC AB ⊥C .111,120DA C B ︒=D .直线1BD 与AC 所成角的余弦值为11.已知正方体111ABCD A B C D -A .1AB AD AA ⨯= B .AB AD AD AB⨯=⨯ C .111()AB AD AA AB AA AD AA +⨯=⨯+⨯D .11111()ABCD C D B A V AB AD CC -=⨯⋅ 三、填空题13.已知,,i j k是不共面向量,,a i j k b =-+=- 个向量共面,则实数λ=.14.已知向量()()0,1,1,4,1,0,a b a b λ=-=+=15.如图,在棱长为2的正方体1111ABCD A B C D -则△MAD 的重心到直线BN 的距离为16.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.古希腊历史学家希罗多德记载:胡夫金字塔的每一个侧面三角形的面积等于金字塔高的平方,则其侧面三角形底边上的高与底面正方形的边长的比值为面角的余弦值为.四、解答题17.如图,在三棱柱111ABC A B C -中,线段11A C 上一点.若直线1AB 与平面BCM 18.如图,在棱长为1的正四面体OABC 在MN 上,且2MG GN =,设OA a = (1)试用向量a ,b ,c 表示向量(1)求二面角11A BD B --所成角的正弦值;(2)点P 是矩形11AA B B (包含边界)内任一点,且的正弦值的取值范围.20.空间中,两两互相垂直且有公共原点的三条数轴构成直角坐标系,如果坐标系中有①若1BE EB =,求向量1 ED 的斜60 坐标;埃舍尔多面体可以用两两垂直且中心重合的三个正方形构造,设边长均为形n n n n A B C D ,1,2,3n =的顶点为“框架点”,定义两正方形交线为记为,n n P Q ,将极点11,P Q ,分别与正方形2222A B C D 的顶点连线,1,2,3,4m =,如(图3).埃舍尔多面体可视部分是由12点均为“框架点”,底面四边形由两个“极点”与两个“中点们构造了其中两个四棱锥11122A P E P E -与22131A P E P F -(1)求异面直线12P A 与12QB 成角余弦值;(2)求平面111P A E 与平面122A E P 的夹角正弦值;(3)求埃舍尔体的表面积与体积(直接写出答案).22.学习几何体结构素描是学习素描的重要一步.如图所示,这是一个用来练习几何体。
2024-2025学年广东省深圳市建文外国语学校高二(上)月考数学试卷(9月份)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知{a ,b ,c }是空间的一个基底,那么下列选项中不可作为基底的是( )A. {a ,b ,a +c }B. {a ,b ,a +2b }C. {a +2c ,b ,c }D. {a ,a +b ,a +c }2.如图,四面体ABCD 中,点E 是CD 的中点,记AB =a ,AC =b ,AD =c ,则BE =( )A. a−12b +12c B. −a +12b +12c C. 12a−b +12c D. −12a +b +12c3.已知点A(a,−3,5),B(0,b,2),C(2,7,−1),若A ,B ,C 三点共线,则a ,b 的值分别是( )A. −2,3B. −1,2C. 1,3D. −2,24.如图,在平行六面体ABCD−A′B′C′D′中,AB =5,AD =3,AA′=7,∠BAD =60°,∠BAA′=∠DAA′=45°,则AC′的长为( )A. 98+56 2B. 98−56 2C. 89+56 2D. 89−56 25.如图,在正方体ABCD−A′B′C′D′中,棱长为1,|BP|=13|BD′|,则P点的坐标为( )A. (13,13,13)B. (23,23,23)C. (13,23,13)D. (23,23,13)6.我国古代数学名著《九章算术》中,将底面为矩形且一侧棱垂直于底面的四棱锥称为阳马.如图,四棱锥P−ABCD 为阳马,PA ⊥平面ABCD ,且AB =AD =AP =3,EC =2PE ,则AE ⋅DE =( )A. −3B. 3C. 2D. 57.正方体不在同一表面上的两顶点A(−1,2,−1),B(3,−2,3),则正方体的体积是( )A. 4B. 4 3C. 64D. 192 38.已知向量a =(2,−1,3),b =(−4,2,t)的夹角为钝角,则实数t 的取值范围为( )A. (−∞,−6)B. (−∞,−6)∪(−6,103)C. (103,+∞) D. (−∞,103)二、多选题:本题共3小题,共18分。
2024—2025学年度上学期高二年级一调考试数学试卷(答案在最后)本试卷共4页,19题.全卷满分150分.考试用时120分钟.注意事项:1.答题前,先将自己的姓名、考号等填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用签字笔直接写在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知1sin 12M x x ⎧⎫=-≤≤⎨⎬⎩⎭,πππ,,0,462N ⎧⎫=--⎨⎬⎩⎭,则M N = ()A.π,06⎧⎫-⎨⎬⎩⎭ B.π,04⎧⎫-⎨⎬⎩⎭C.ππ,0,62⎧⎫-⎨⎩⎭ D.ππ,,046⎧⎫--⎨⎬⎩⎭2.在平行六面体1111ABCD A B C D -中,M 为AC 与BD 的交点,若11A B a = ,11A D b = ,1A A c =,则下列向量中与1D M相等的向量为()A.1122a b c-++ B.1122a b c ++C.1122a b c -+D.1122a b c--+ 3.若函数()f x 在[2,)+∞上单调递减且对任意R x ∈满足(1)(3)f x f x +=-,则不等式(32)(4)f x f ->的解集是()A.2,(2,)3⎛⎫-∞+∞ ⎪⎝⎭B.2,3⎛⎫-∞ ⎪⎝⎭C.(2,)+∞ D.2,23⎛⎫⎪⎝⎭4.在四棱锥P ABCD -中,底面ABCD 是边长为3的正方形,PA ⊥底面ABCD ,6PA =,点G 在侧棱PB 上,且满足2PG GB =,则异面直线PC 和DG 的距离为()A.14B.15C.7 D.775.空间中有三点(0,0,0)A ,(1,,2)B m ,(1,2,1)C --,且(1,1,1)n =-为平面ABC 的一个法向量,则以AB 、AC 为邻边的平行四边形的面积为()A.32B.2C.3D.6.在矩形ABCD 中,2AB =,AD =,沿对角线AC 将矩形折成一个大小为θ的二面角B AC D --,当点B 与点D 之间的距离为3时,cos θ=()A.13B.16 C.13-D.16-7.边长为1的正方体1111ABCD A B C D -中,E ,F 分别是1AA ,11A D 的中点,M 是DB 靠近点B 的四等分点,P 在正方体内部或表面,()0DP EF MF ⋅+= ,则||DP的最大值是()A.1D.28.已知点A ,B ,C ,D ,P ,Q 都在同一个球而上,ABCD 为正方形,若直线PQ 经过球心,且PQ ⊥平面ABCD .则异而直线PA ,QB 所成的角的聂小值为()A.60°B.45°C.30°D.15°二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是()A.已知(0,1,1)a = ,(0,0,1)b =- ,则a 在b 上的投影向量为110,,22⎛⎫-- ⎪⎝⎭B.若两个不同平面α,β的法向量分別是u ,v,且(2,0,4)u = ,(4,0,8)v =-- ,则//αβC.若233555OG OA OB OC =++,则A ,B ,C ,G 四点共面D.若向量p mx ny kz =++ ,(x ,y ,z 都是不共线的非零向量)则称p在基底{},,x y z 下的坐标为(,,)m n k ,若p 在单位正交基底{,,}a b c 下的坐标为(1,2,3),则p 在基底{,,}a b a b c -+ 下的坐标为13,,322⎛⎫- ⎪⎝⎭10.如图所示是一个以AB 为直径,点S 为圆心的半圆,其半径为4,F 为线段AS 的中点,其中C 、D 、E 是半圆圆周上的三个点,且把半圆的圆周分成了弧长相等的四段,若将该半圆围成上一个以S 为顶点的圆锥的侧面,则关于此圆锥,下列说法不正确的是()A.CEF △为正三角形B.SA ⊥平面CEFC.//SD 平面CEFD.点D 到平面CEF 的距离为311.如图,点P 是边长为2的正方体1111ABCD A B C D -的表面上一个动点,则()A.当点P 在侧面11BB C C 上时,四棱锥11P AA D D -的体积为定值B.存在这样的点P ,使得1111222AP AB AD AA =++C.当直线AP 与平面ABCD 所成的角为45°时,点P 的轨迹长度为π42+D.当33AP =时,点P 的轨迹长度为53π3三、填空题:本题共3小题,每小题5分,共15分.12.若复数z 满足383i z z +=+,则||z =___________.13.空间内四点(0,0,0)A ,(1,0,0)B ,13,22C ⎛⎫⎪ ⎪⎝⎭,D 可以构成正四面体,则AD = ___________.14.如图,在正方体1111ABCD A B C D -中,4AD =,点E ,F 分别为11A B ,1BB 的中点,则平面1EFD 截正方体所得截面面积为___________,动点P 满足1AP xAB y AD z AA =++ ,且122x y z ++=,则当||AP取得取小值时二面角1A AD P --的余弦值为___________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)在如图所示的试验装置中,两个正方形框架ABCD ,ABEF 的边长都是2,且它们所在的平面互相垂直.活动弹子M ,N 分别在正方形对角线AC 和BF 上移动,且MA 和NF 的长度保持相等,记(0MA NF αα==<<.(1)求MN 的长;(2)当MN 的长最小时,求平面MNA 与平面MNB 夹角的余弦值.16.(本小题满分15分)如图,已知多面体1111ABCD A B C D -的底面ABCD 是菱形,侧棱1BB ⊥底面ABCD ,且1111244CC AA BB DD === .(1)证明:1A C BD ⊥;(2)若AC =11BB =,120ABC ︒∠=,求直线BC 与平面111B C D 所成的角的正弦值.17.(本小题满分15分)如图所示,在长方体1111ABCD A B C D -中,1AD =,12AA AB ==,M 为棱1DD 的中点.(1)若P 是线段BM 上的动点,试探究:11A M A P ⋅是否为定值?若是,求出该定值;否则,请说明理由;(2)过1A M 作该长方体外接球的截面,求截面面积的取值范围.18.(本小题满分17分)如图,三棱台111ABC A B C -,AB BC ⊥,1AC BB ⊥,平面11ABB A ⊥平面ABC ,6AB =,4BC =,12BB =,1AC 与1A C 相交于点D ,2AE EB =,且//DE 平面11BCC B .(1)求三棱锥111C A B C -的体积;(2)平面:11A B C 与平面ABC 所成角为α,1CC 与平面11A B C 所成角为β,求αβ+的值.19.(本小题满分17分)如图1,在平行四边形ABCD 中,24AB BC ==,60ABC ∠=︒,E 为CD 的中点,将ADE △沿AE 折起,连接BD 与CD ,得到的四棱锥如图2.图1图2(1)当BD 为何值时,平面ADE ⊥平面ABCE ?(2)设(01)BF BD λλ=≤≤,当BE DE ⊥时,是否存在实数λ,使得直线AF 与平面ABCE 所成角的正弦值为10?若存在,求出λ的值;若不存在,请说明理由;(3)当三棱锥B CDE -的体积最大时,求三棱锥D ABE -的内切球的半径.月考卷参考答案一、选接题1.C 【解析】将πππ,,0,462N ⎧⎫=--⎨⎩⎭中的元表依次代入1sin 12x -≤≤验证,只有π6-,0,π2满足1sin 12x -≤≤,所以ππ,0,62M N ⎧⎫=-⎨⎬⎩⎭ .故选C.2.C 【解析】因为在平行六面体1111ABCD A B C D -中,11()22DM DB DA DC ==+=()111112A D AB -+,所以()111111111111111222D M D D DM A A A D A B A B A D A A =+=+-+=-+ 1122a b c =-+,故选C.3.D 【解祈】因为(1)(3)f x f x +=-,所以()f x 的对称轴为2x =,()f x 在(2,)+∞单调递减,则()f x 在(,2)-∞单调递增,又因为(32)(4)f x f ->,由对称性可得|322||42|x --<-,所以|34|2x -<,2342x -<-<,223x <<.故选D.4.A 【解析】如图,以点A 为原点,AB ,AD ,AP分别作为x ,y ,z 轴正方向,建立空间直角坐标系,则(3,0,0)B ,(3,3,0)C ,(0,3,0)D ,(0,0,6)P ,(1,0,4)G .所以(1,3,4)DG =- ,(3,3,6)PC =-,(3,0,0)DC = ,设(,,)n x y z = 为直线PC 和DG 的公垂线的方向向量,则有3403360n DC x y z n PC x y z ⎧⋅=-+=⎪⎨⋅=+-=⎪⎩,可取(1,3,2)n = ,所以异面直线PC 和DG的距离为||||14DC n n ⋅==.故选A.5.D 【解析】平面ABC 的一个法向量为(1,1,1)n =-,则(1,1,1)(1,,2)0n AB m ⋅=-⋅= ,解得1m =-,故(1,1,2)B -,(1,1,2)AB =- ,(1,2,1)AC =--,则1cos 2||||AB ACA AB AC ⋅===⋅,则sin 2A ==,则平行四边形面积为11||||sin 22222AB AC A ⋅⨯=⨯=.故选D.6.B 【解析】分别作BE AC ⊥,DF AC ⊥,垂足为E ,F ,则,EB FD θ=〈〉.由2AB =,AD =可得4AC =,所以AD DCEB FD AC⋅===,1AE CF ==,2EF =.因为BD BE EF FD =++ ,则()222222||2BD BD BE EF FD BE EF FD BE FD ==++=+++⋅,即9343π)θ=+++-,故1cos 6θ=.故选B.7.B 【解析】如图,建立空间直角坐标系,设(,,)P x y z ,则(0,0,0)D ,11.0,2E ⎛⎫ ⎪⎝⎭,1,0.12F ⎛⎫⎪⎝⎭,33,,044M ⎛⎫ ⎪⎝⎭,所以11,0,22EF ⎛⎫=- ⎪⎝⎭ ,13,,144MF ⎛⎫=-- ⎪⎝⎭ ,则333,,442EF MF ⎛⎫+=-- ⎪⎝⎭ ,因为()0DP EF MF ⋅+=,又(,,)DP x y z = ,所以3330442x y z --+=,即2x yz +=,所以2222222||2x y DP x y z x y +⎛⎫=++=++ ⎪⎝⎭,又01x ≤≤,01y ≤≤,所以22221111322x y x y ++⎛⎫⎛⎫++≤++= ⎪ ⎪⎝⎭⎝⎭.当且仅当1x y ==,此时1z =时,等号成立,所以||DP 的最故选B.8.A 【解析】设球的半径为(0)R R >,记ABCD 中心为O ,因为ABCD 为正方形,直线PQ 经过球心,且PQ ⊥平西ABCD .所以PQ 过点O 且PQ 的中点为球心,设球心为G ,以O 为原点,OB 、OC 、OP 分别为x ,y ,z 轴正半轴,建立空间直角坐标系O xyz -,设(0)OA OB OC OD r r ====>,(0,0,)G t ()R t R -<<,则(0,,0)A r -,(,0,0)B r ,(0,0,)P R t +,(0,0,)Q R t -,所以(0,,)PA r R t =--- ,(,0,)QB r t R =- ,所以22()()PA QB t R t R R t ⋅=-+-=- ,所以22||()PA r R t =++ 22||()QB r R t =+- 又222OG OB R +=,即222t r R +=.所以222222cos ,||||()()PA QBPA QB PA QB r R t r R t ⋅〈〉==⋅++⨯+-22222212222R t R R R R R t-==≤=-,当且仅当0t =时等号成立,设直线PA ,QB 所成的角为α则1cos |cos ,|2PA QB α=〈〉≤ ,又090α︒≤≤︒,所以min 60a =︒.故选A.二、选择题9.BD 【解析】对于A ,由于(0,1,1)a = ,(0,0,1)b =- ,则a 在b的投影向量为||cos ,2(0,0,1)(0,0,1)||2b a a b b 〈〉⋅=⨯-= ,故A 错误;对于B :若两个不同平面α,β的法向量分别是u ,v ,且(2,0,4)u = ,(4,0,8)v =-- ,2u v -=,则//αβ,故B 正确;对于C :由于2331555++≠,对于233555OG OA OB OC =++ ,故A ,B ,C ,G 四点不共面,故C 错误;对于D :p 在单位正交基底{,,}a b c下的坐标为(1,2,3),即23(1,2,3)p a b c =++= ,所以p 在基底{,,a b a b c -+〉 下满足(1,2,3)()()()()x a b y a b zc x y a y x b zc =-+++=++-+(,,)x y y x z =+-,故1x y +=,2y x -=,3z =,解得12x =-,32y =,3z =,则p 在基底{,,}a b a b c -+ 下的坐标为13,,322⎛⎫-⎪⎝⎭,故D 正确.故选BD.10.ABD 【解析】选项A,该半圆围成的圆锥,如图所示,设四棱底面半径为r ,则2π4πr =,2r ∴=,4CE ∴=,F 为AS 的中点,O 为AD 的中点,//FO SD ∴,且122FO CE ==,90CFE ︒∴∠=,CEF △为等腰直角三角形,选项A 错误;选项B ,若SA ⊥平面CEF ,则90AFO ∠=︒,直角AOF △中,2AO OF AF ===,60AFO ︒∴∠=,选项B 错误;选项C ,//FO SD ,FO ⊂平面EFC ,//SD ∴平面EFC ,选项C 正确;选项D ,CE AD ⊥ ,CE SO ⊥,CE ∴⊥平面SAD ,∴平面CEF ⊥平面SAD ,D ∴到直线FO 的距离即为D 到平面CEF 的距离,又//FO SD ,D ∴到直线FO 的距离等于O 到直线SD,选项D 错误,故选ABD.11.ACD 【解析】略【解析】略13.136,263⎛± ⎝⎭【解析】由已知正四西体ABCD 的棱长为1,所以D 的竖坐标为正四面体的高,ABC △的外接圆半径为112sin 603︒⨯=,所以正四面体的高为3=,而横坐标,纵坐标即底面三角形ABC 的重心坐标,1011232D x ++==,003236D y ++==,所以1,,263D ⎛⎫± ⎪ ⎪⎝⎭,故答案为136,263⎛±⎝⎭.[只写对一个不给分]14.18;5【解析】略四、解答题15.解:(1)由题意可知,直线BC 、BE 、BA 两两垂直,以B 原点建立如图所示的空间直角坐标系,则(2,0,0)A ,(0,0,2)C ,(2,2,0)F ,(0,2,0)E ,因为MA NF α==,所以222M ⎛-⎝,2222N ⎛⎫--⎪⎝⎭.所以2||224MN αα=-+.(2)22||224(2)2MN ααα=-+=-+2α=时,||MN 最小.此时,M ,N 为AC 、BF 的中点,则(1,0,1)M ,(1,1,0)N ,取MN 的中点G ,连接AG ,BG ,则111,,22G ⎛⎫⎪⎝⎭,因为AM AN =,BM BN =,所以AG MN ⊥,BG MN ⊥.所以AGB ∠是平面MNA 与平面MNB 的夹角或其补角,因为111,,22GA ⎛⎫=-- ⎪⎝⎭ ,111,,22GB ⎛⎫=--- ⎪⎝⎭ .所以1cos 3||||GA GB GA GB GA GB ⋅〈⋅〉==-⋅,所以平面MNA 与平面MNB 夹角的余弦值是13.16.解:(1)因为1124AA BB =,所以11//BB AA ,又因为1BB ⊥平面ABCD ,所以1AA ⊥平面ABCD ,又因为BD ⊂平面ABCD ,所以1AA BD ⊥,因为四边形ABCD 是菱形,所以BD AC ⊥,又因为1AC AA A = ,AC ,1AA ⊂平面1AA C ,所以BD ⊥平面1AA C ,又因为1A C 平面1AA C ,所以1BD A C ⊥.(2)设AC 交BD 于O ,以O 为原点,以OB 为x 轴,OC 为y 轴,过O 作11//OO AA 为z 轴建立空间直角坐标系,由图可知1(1,0,1)B ,1(1,0,1)D -,13,4)C ,(1,0,0)B ,3,0)C .,则11(2,0,0)D B = ,11(3,3)B C =- ,设平面111B C D 的一个法向量为(,,)n x y z =,则111100n D B n B C ⎧⋅=⎪⎨⋅=⎪⎩ ,即20330x x z =⎧⎪⎨-++=⎪⎩,令1z =-,则3,1)n =- ,(3,0)BC =- ,所以33cos ,224||||n BC n BC n BC ⋅〈〉===⨯⋅ .设直线BC 与平面111B C D 所成角为α,则3sin |cos |4a n BC =〈⋅〉= ,因此直线BC 与平面111B C D 所成角的正弦值为34.17.略18.(1)略(2)由题意及(1)得,以B 为坐标原点,分别以BA ,BC ,1BB 为x ,y ,z轴的正方向建立空间直角坐标系,如图,(6,0,0)A ,(0,4,0)C ,1(0,0,2)B ,()13,0,2A ,1(0,2,2)C ,则11(3,0,0)B A = ,1(0,4,2)B C =- ,1)(0,2,2CC =- ,设平面11A B C 的一个法向量为(,,)n x y z =,由11130420n B A x n B C y z ⎧⋅==⎪⎨⋅=-=⎪⎩ ,取1y =,则(0,1,2)n = ,平面ABC 的一个法向量为1(0,0,2)BB = ,所以11cos 5||n BB a n BB ⋅===⋅,11sin 10||n CC n CC β⋅===⋅ .又因为α,π0,2β⎛⎫∈ ⎪⎝⎭,所以sin 5α=,cos 10β=.cos()cos cos sin sin 1051052αβαβαβ+=-=⨯=,又(0,π)αβ+∈,所以π4αβ+=.19.略。
2022-2023学年河南省洛阳市第一高级中学高二上学期9月月考数学试题一、单选题1.已知向量()0,1,1a =-与()20,2,b k k =-共线,则实数k =( )A .0B .1C .1-或2D .2-或1【答案】D【分析】根据空间共线向量的坐标表示可得2112k k-=-,即可求出k 的值. 【详解】因为()()20,1,10,2,a b k k =-=-、共线,所以2112k k-=-, 解得2k =-或1. 故选:D2.“1m =”是“直线1l :()410m x my -++=与直线2l :()220mx m y ++-=互相垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【分析】根据给定直线方程求出12l l ⊥的等价条件,再利用充分条件、必要条件的定义判断作答.【详解】依题意,12(4)(2)0l l m m m m ⊥⇔-++=,解得0m =或1m =,所以“1m =”是“直线1l :()410m x my -++=与直线2l :()220mx m y ++-=互相垂直”的充分不必要条件. 故选:A3.已知两点()1,2A -,()2,1B ,直线l 过点()0,1P -且与线段AB 有交点,则直线l 的倾斜角的取值范围为( ) A .π3π,44⎡⎤⎢⎥⎣⎦B .ππ30,,42π4⎡⎤⎡⎤⋃⎢⎥⎢⎥⎣⎦⎣⎦C .π3π0,,π44⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭D .πππ3,,422π4⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦【答案】C【分析】作出图形,求出,PA PB 的斜率,数形结合可求得直线l 的斜率的取值范围,再由斜率与倾斜角的关系可求出倾斜角的取值范围. 【详解】如图所示,直线PA 的斜率21110PA k -+==--,直线PB 的斜率11120PB k +==-. 由图可知,当直线l 与线段AB 有交点时,直线l 的斜率[]1,1k ∈-, 因此直线l 的倾斜角的取值范围是π3π0,,π44⎡⎤⎡⎫⋃⎪⎢⎥⎢⎣⎦⎣⎭.故选:C4.已知实数,x y 满足250x y ++=22x y + A 5B 10C .25D .10【答案】A【详解】 22x y +(,)x y 到坐标原点的距离, 又原点到直线250x y ++=的距离为225521d ==+22x y +5 A. 5.直线()24y k x =-+与曲线214y x 有两个不同的交点,则实数的k 的取值范围是( ) A .53,124⎛⎤ ⎥⎝⎦B .5,12⎛⎫+∞ ⎪⎝⎭C .13,24⎛⎤⎥⎝⎦D .50,12⎛⎫ ⎪⎝⎭【答案】A【详解】解:因为曲线y =124x -(|x|≤2)与直线y =k(x -2)+4有两个交点时,那么结合图像可知参数k 的取值范围是53(,]124,选A6.经过点P (1,4)的直线在两坐标轴上的截距都是正值,且截距之和最小,则直线的方程为A .x +2y ﹣6=0B .2x +y ﹣6=0C .x ﹣2y +7=0D .x ﹣2y ﹣7=0【答案】B【详解】试题分析:设出直线方程的截距式,把经过的点P (1,4)的坐标代入得a 与b 的等式关系,把截距的和a +b 变形后使用基本不等式求出它的最小值. 解:设直线的方程为1x y a b +==1(a >0,b >0),则有141a b+=,∴a +b =(a +b )×1=(a +b )×(14a b +)=5+4b aa b+≥5+4=9, 当且仅当14a b=,即a =3,b =6时取=. ∴直线方程为2x +y ﹣6=0. 故选B .【解析】直线的斜截式方程.7.如图,在正四棱柱ABCD-A 1B 1C 1D 1中,AA 1=2,AB =BC =1,动点P ,Q 分别在线段C 1D ,AC 上,则线段PQ 长度的最小值是( ).A .23B .33C .23D .53【答案】C【详解】建立如图所示的空间直角坐标系,则A (1,0,0),B (1,1,0),C (0,1,0),C 1(0,1,2),设点P 的坐标为(0,λ,2λ),λ∈[0,1],点Q 的坐标为(1-μ,μ,0),μ∈[0,1],∴PQ当且仅当λ=19,μ=59时,线段PQ 的长度取得最小值23. 8.点()2,1P --到直线()():131225l x y λλλ+++=+的距离为d ,则d 的取值范围是( )A .0d ≤<B .0d ≤≤C .dD .d ≥【答案】A【分析】显然直线过定点,先求出定点A ,当直线过点P 时,d 有最小值,当直线与AP 垂直时d 有最大值,一定要注意要去验证最值能否取到.【详解】()()131225x y λλλ+++=+,化简得()()23250x y x y λ+-++-=,所以当203250x y x y +-=⎧⎨+-=⎩时,()()23250x y x y λ+-++-=恒成立,所以直线l 过定点()1,1A ,所以点当直线l 过点()2,1P --时,d 有最小值为0,此时513λ=-;d 的最大值为()1,1A 和点()2,1P --l 与AP 垂直,因为112123AP k +==+,所以直线l 的斜率32k =-,又因为()():131225l x y λλλ+++=+,所以有133122λλ+-=-+,化简得23=,故此时λ无解;所以d0d ≤<故选:A9.已知A ,B 两点都在以PC 为直径的球O 的球面上,AB BC ⊥,4AB BC ==,若球O 的体积为36π,则异面直线PB 与AC 所成角的余弦值为( )A B C D 【答案】B【分析】由题意,根据球的性质,建立空间直角坐标系,求直线的方向向量,根据夹角公式,可得答案.【详解】由题意,取AC 的中点为E ,连接,OE BE ,在ABC 中,4AB BC ==,且AB BC ⊥,则BE AC ⊥,AE EC BE ===,即E 为ABC 外接圆圆心,在球O 中,易知OE ⊥平面ABC ,以E 为原点,分别以,,EB EC EO 所在直线为,,x y z 轴,建立空间直角坐标系,作图如下:在Rt CEO △中,12cos 12ACCE ACACP CO PCCP ∠===,则//PA OE ,即PA ⊥平面ABC , 因为AC ⊂平面ABC ,所以PA AC ⊥,球O 的体积3413632V PC ππ⎛⎫=⋅⋅= ⎪⎝⎭,解得6PC =, 在Rt ACP 中,222PA PC AC =-=,则()0,22,0A -,()22,0,0B ,()0,22,0C ,()0,22,2P -, 即()0,42,0AC =,()22,22,2PB =-, 1610cos ,542884AC PB AC PB AC PB⋅===⨯++⋅, 异面直线PB 与AC 所成角的余弦值为105. 故选:B.10.如图,正方体1111ABCD A B C D -中,1AN NA =,11A M MD =,11B E B C λ=, 当直线1DD 与平面MNE 所成的角最大时,λ=( )A .12 B .13C .14D .15【答案】C【分析】利用坐标法,利用线面角的向量求法,三角函数的性质及二次函数的性质即得. 【详解】如图建立空间直角坐标系,设正方体1111ABCD A B C D -的棱长为1,则()()()()1111,0,1,1,0,,0,1,0,1,1,1,0,0,0,0,0,122M N C B D D ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,所以()111,0,1B E B C λλ==--,()1,1,1E λλ--,111,0,,,1,222MN ME λλ⎛⎫⎛⎫=-=-- ⎪ ⎪⎝⎭⎝⎭,设平面MNE 的法向量为(),,m x y z =,则()00,,m MN m ME x y z ⎧⋅=⎪⎨⋅=⎪⎩,∴11022102x z x y z λλ⎧-=⎪⎪⎨⎛⎫⎪-+-= ⎪⎪⎝⎭⎩,令1x =,可得11,2,12m λ⎛⎫=- ⎪⎝⎭,又()10,0,1DD =,设直线1DD 与平面MNE 所成的角为α,则11221sin cos ,11224224m DD m DD m DD αλλ⋅===⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭0,2απ⎡∈⎤⎢⎥⎣⎦, ∴当14λ=时,sin α有最大值,即直线1DD 与平面MNE 所成的角最大. 故选:C.11.已知圆()()22:341C x y -+-=和两点(),A m m -,(),B m m -()0m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为( ) A .42B .32C 322D .2【答案】B【解析】根据使得90APB ∠=︒的点P 在以AB 为直径的圆上,再分析轨迹圆与圆C 的关系即可.【详解】由题, 使得90APB ∠=︒的点P 在以AB 为直径的圆上,又两点(),A m m -,(),B m m -,所以圆心为()0,0.半径为()222m m m +-=.故P 的轨迹方程为2222x y m +=.又由题意知,当圆()()22:341C x y -+-=内切于222x y m +=时m 取最大值. 此时2223416m ,故32m =.故选:B【点睛】本题主要考查了圆与圆的位置关系,重点是根据90APB ∠=︒求出点P 的轨迹.属于中等题型.12.如图所示,圆柱1OO 中,EF 是底面直径,点M 是O 上一点,90EOM ∠=︒,点H 是母线FG 上一点,点K 是上底面的一动点,4EF =,3FG =,2FH =,则( )A .存在点K ,使得5EK HK +=B .存在唯一的点K ,使得90EKH ∠=︒C .满足MK EH ⊥的点K 的轨迹长度是32D .当90EKH ∠=︒时,三棱锥K EMH -外接球的表面积是20π 【答案】D【分析】建立空间直角坐标系,利用坐标法判断选项A ,B ,C 的对错,再通过确定三棱锥K EMH -外接球的球心及半径判断D.【详解】由圆锥的性质可得1O O ⊥平面EFM ,OM EF ⊥如图以O 为原点,1,,OM OF OO 为,,x y z 的正方向建立空间直角坐标系,设1(02)KO G θθπ∠=≤<,1KO r =(02)r ≤≤,则(0,2,0)E -,(0,2,2)H ,(sin ,cos ,3)K r r θθ,(2,0,0)M , 设H 关于点G 的对称点为N ,因为KG HN ⊥,HG GN =,所以KH KN =, 所以EK HK EK KN NE +=+≥, 又(0,2,4)N ,所以2220(22)4425EK HK +≥+++=>,A 错误, 又(sin ,cos 2,3)EK r r θθ=+,(sin ,cos 2,1)HK r r θθ=- 因为90EKH ∠=︒,所以0EK HK ⋅=, 所以2222cos sin 430r r θθ+-+=,所以1r =, 所以满足90EKH ∠=︒的点K 的轨迹为圆,B 错误, 因为MK EH ⊥,(sin 2,cos ,3)MK r r θθ=-,(0,4,2)EH =, 所以4cos 60r θ+=,所以3cos 2r θ=-,故3(sin ,,3)2K r θ-,所以满足MK EH ⊥的点K 的轨迹为线段PQ , 所以2232272PQ ⎛⎫=-= ⎪⎝⎭,C 错误,因为222222EM =+=,2223MH OM OH =+=,2225EH EF HF =+=,所以EMH 为直角三角形,取EH 的中点为C , 又EKH 为直角三角形,所以CE CH CK CM ===,故C 为三棱锥K EMH -外接球的球心,故外接球的半径为5, 所以三棱锥K EMH -的外接球的表面积为20π,D 正确, 故选:D.二、填空题13.P ABCD -是正四棱锥,1111ABCD A B C D -是正方体,其中2AB =,6PA 1B 到平面PAD 的距离为________【答案】655【分析】以11A B 为x 轴,11A D 为y 轴,1A A 为z 轴建立空间直角坐标系,求出平面PAD 的法向量,1B A 的坐标,利用距离公式,即可得到结论.【详解】解:以11A B 为x 轴,11A D 为y 轴,1A A 为z 轴建立空间直角坐标系,设平面PAD 的法向量是(,,)m x y z =, (0,2,0),(1,1,2)AD AP ==,∴由00m AD m AP ⎧⋅=⎨⋅=⎩,可得2020y x y z =⎧⎨++=⎩ 取1z =得(2,0,1)m =-,1(2,0,2)B A =-,∴1B 到平面PAD 的距离1||655||B A m d m ⋅==. 65【点睛】本题考查点到平面的距离,考查向量知识的运用,考查学生的计算能力,属于中档题.14.己知圆22 : 42150C x y x y +---=上有四个不同的点到直线():76l y k x =-+的距5k 的取值范围是______.【答案】1,22⎛⎫⎪⎝⎭【分析】由题意知,足圆心()2,1C 到直线():76l y k x =-+的距离5d <,解方程即可得出答案.【详解】圆22 : 42150C x y x y +---=化为标准方程为()()22: 2120C x y -+-=, 所以圆心()2,1,25C r =,若圆C 上有四个不同的点到直线():76l y k x =-+的距离等于5, 必须满足圆心()2,1C 到直线():76l y k x =-+的距离5d <,所以2217651k k k --+<+,化简得:22250k k +-<,解得:122k <<. 故答案为:1,22⎛⎫⎪⎝⎭15.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”,即将军在观望烽火之后从山脚下某处出发,先到河边饮马再回到军营,怎样走才能使总路程最短在如图所示的直角坐标系xOy 中,设军营所在平面区域为229{(,)|}4x y x y +≤,河岸线所在直线方程为3100x y +-=.假定将军从点(2,1)P 处出发,只要到达军营所在区域即回到军营,则将军可以选择最短路程为_____________.【答案】72【分析】求出点P 关于直线的对称点(3,4)P ',根据对称性,原问题转化成求P '到营区的最短距离,利用圆的几何性质即可得解.【详解】设点(2,1)P 关于直线3100x y +-=的对称点(,)P a b ',13221310022b a a b -⎧=⎪⎪-⎨++⎪+⨯-=⎪⎩解得34a b =⎧⎨=⎩,所以(3,4)P ',将军从P 出发到达直线上点A 再到营区,PA P A '=, 所以本题问题转化为求点(3,4)P '到营区的最短距离, 根据圆的几何性质可得最短距离为3375222P O '-=-=.故答案为:72【点睛】此题以中国传统文化为背景考查求点关于直线的对称点,解决圆上的点到圆外一点的最短距离,考查对圆的几何性质的应用.16.矩形ABCD 中,3AB =,1BC =,现将ACD 沿对角线AC 向上翻折,设二面角D AC B --的平面角为θ,当θ在ππ,32⎡⎤⎢⎥⎣⎦内变化时,BD 的范围为______.【答案】71022⎡⎤⎢⎥⎣⎦,【分析】分别过点B ,D 作BF AC DE AC ⊥⊥,,根据DB DE EF FB =++,计算275,42DB ⎡⎤∈⎢⎥⎣⎦,得到答案.【详解】如图1,分别过点B ,D 作BF AC DE AC ⊥⊥,,垂足分别为F ,E , 则在四面体ABCD 中也满足BF AC DE AC ⊥⊥,. 因为3AB =,1BC =,所以2AC =,13322DE BF ⨯===, 则12AE CF ==,1EF =.在四面体ABCD 中,DB DE EF FB =++,因为二面角D AC B --的平面角为θ,且BF AC DE AC ⊥⊥,, 所以DE 和FB 的夹角为πθ-, 所以()222222DB DE EF FBDE EF FB DE FB =++=+++⋅()2233335312cos πcos 22θθ=+++-=-⎝⎭⎝⎭因为ππ,32θ⎡⎤∈⎢⎥⎣⎦,所以275,42DB ⎡⎤∈⎢⎥⎣⎦,则72DB ⎡∈⎢⎣⎦.故答案为:⎣⎦三、解答题17.已知两直线1:2(3)10l mx m y +-+=,2:220l x my m ++=,当m 为何值时,1l 和2l (1)平行; (2)垂直?【答案】(1)32m =-;(2)0m =或5m =.【分析】(1)根据1111:0l A x B y C ++=与2222:0l A x B y C ++=平行的条件12210A B A B -=且12210B C B C -≠列式可解得.(2) 根据1111:0l A x B y C ++=与2222:0l A x B y C ++=垂直的条件12120A A B B +=列式可得.【详解】(1)因为12l l //,所以22(3)20m m m ⨯--⨯=,解得32m =-或1m =,当1m =时,两条直线重合,不合题意舍去. 所以32m =-.(2)因为12l l ⊥,所以22(3)20m m m ⨯+-⨯=,解得0m =或5m =. 【点睛】本题考查了两条直线平行或垂直的条件,属于基础题. 若1111:0l A x B y C ++=,2222:0l A x B y C ++= 则12l l //⇔12210A B A B -=且12210B C B C -≠; 12l l ⊥⇔ 12120A A B B +=.18.如图,在四棱锥P ABCD -中,AB ⊥平面PAD ,//AB DC ,E 为线段PD 的中点,已知2PA AB AD CD ====,120PAD ︒∠=.(1)证明:直线//PB 平面ACE ;(2)求直线PB 与平面PCD 所成角的正弦值. 【答案】(1)证明见解析;(2)24. 【分析】(1)连接BD 交AC 于点H ,连接HE ,可证//HE PB ,从而得证; (2)建立空间直角坐标系,利用空间向量法求线面积的正弦值; 【详解】(1)证明:连接BD 交AC 于点H ,连接HE//AB DC ,AB CD =,四边形ABCD 是平行四边形,H ∴是AC 中点,又E 为线段PD 的中点, //HE PB ,又HE ⊂平面ACE ,PB ⊂/平面ACE直线//PB 平面 ACE(2)AB ⊥平面PAD ,作Ax AP ⊥,建立如图所示空间直角坐标系A xyz -由已知2PA AB AD CD ====,120PAD ︒∠= 得(0,0,2)B ,(0,2,0)P ,(3,1,0)D -,(3,1,2)C -()0,2,2PB =- , (3,3,0)PD =- ,(0,0,2)CD =-设平面PCD 的法向量(,,)n x y z =0n CD n PD ⎧⋅=⎨⋅=⎩, 20330z x y -=⎧⎪⎨-=⎪⎩,不妨取()3,1,0n =22cos ,4222PB n PB n PB n⋅--∴===⨯所以直线PB 与平面PCD 所成角的正弦值为24【点睛】本题考查线面平行的证明,以及空间向量法求线面角,属于中档题.19.已知圆22:4240C x y x y ++--=.(1)过点(1,5)M 作圆C 的切线l ,求切线l 的方程;(2)设过点1,12⎛⎫⎪⎝⎭的直线m 与圆C 交于AB 两点,若点A 、B 分圆周得两段弧长之比为1:2,求直线m 得方程.【答案】(1)7241130x y -+=或1x =; (2)6850x y -+=或68110x y +-=【分析】(1)根据圆心到直线的距离等于半径求解,注意分斜率存在与不存在两种情况; (2)利用条件可分析出弦所对圆心角,据此求出圆心到直线的距离,即可求解. 【详解】(1)由22:4240C x y x y ++--=可得22(2)(1)9x y ++-=,即圆心为(2,1)C -,半径3r =,显然当直线斜率不存在时,1x =是圆的切线,当直线斜率存在时,设直线为5(1)y k x -=-,即50kx y k -+-=, 由圆心到直线的距离2|215|31k k d k --+-==+,解得724k =,故切线为7241130x y -+=或1x =.(2)因为点A 、B 分圆周得两段弧长之比为1:2,故120ACB ∠=︒, 所以30CAB ∠=︒,故圆心到直线的距离322r d ==, 直线斜率不存在时,由13(2)22--≠知,不符合题意,当直线斜率存在时,设直线方程为11()2y k x -=-,则圆心到直线的距离25||3221k k =+,解得34k =±, 故直线方程为6850x y -+=或68110x y +-=.20.如图所示,四棱锥S ABCD -中,平面SAD ⊥平面ABCD ,底面ABCD 是边长为2正方形,22,4SA SC ==,AC 与BD 交于点O ,点E 在线段SD 上.(1)求证:SA ⊥平面ABCD ;(2)若//OE 平面SAB ,求二面角S AC E --的余弦值. 【答案】(1)证明见解析 25【分析】(1)根据面面垂直性质定理得AB ⊥平面SAD ,进而证明SA AB ⊥,再根据集合关系证明SA AC ⊥即可证明结论;(2)根据题意,E 为SD 的中点,进而以,,AB AD AS 分别为x 轴,y 轴,z 轴建立空间直角坐标系,利用坐标法求解即可;【详解】(1)证明:因为平面SAD ⊥平面ABCD 且交线为AD , 又AB ⊂平面ABCD 且AB AD ⊥,所以AB ⊥平面SAD , 又SA ⊂平面SAD ,所以SA AB ⊥.因为ABCD 是边长为2正方形,所以22AC =,又22,4SA SC ==, 所以222SA AC SC +=,即SA AC ⊥,又因为AB AC A ⋂=,,AB AC ⊂平面ABCD ,所以SA ⊥平面ABCD . (2)解:因为OE ∥平面SAB ,OE ⊂平面SBD ,平面SBD 平面SAB SB =, 所以OE SB ∥,因为O 为BD 的中点,所以E 为SD 的中点,以,,AB AD AS 分别为x 轴,y 轴,z 轴建立空间直角坐标系, 则有()()()()()()0,0,0,2,0,0,2,2,0,0,2,0,0,0,22,0,1,2A B C D S E , 易得平面SAC 的一个法向量为()2,2,0n DB ==-, 设平面EAC 的一个法向量为(),,m x y z =,则00m AE m AC ⎧⋅=⎨⋅=⎩20220y z x y ⎧+=⎪⇒⎨+=⎪⎩,取1z =,则()2,2,1m =-, 设平面SAC 与平面EAC 所成夹角为θ,则4225cos 5225m n m nθ⋅===⋅⋅, 所以平面SAC 与平面EAC 所成夹角的余弦值为255.21.长方形ABCD 中,2=22=AB AD ,M 是DC 中点(图1).将ADM △沿AM 折起,使得AD BM ⊥(图2)在图2中:(1)求证:平面ADM ⊥平面ABCM ;(2)在线段BD 上是否存点E ,使得二面角E AM D --的余弦值为55,说明理由. 【答案】(1)证明见解析(2)存在,理由见解析【分析】(1)利用勾股定理与线面垂直的性质证明BM ⊥平面ADM 即可.(2) 以M 为坐标原点,MA 为x 轴,MB 为y 轴,过M 作平面ABCM 的垂线为z 轴,建立空间直角坐标系. 设(01)BE BD λλ=<<,再根据二面角的向量方法,分别求解面的法向量,再根据法向量的夹角求解即可.【详解】(1)在长方形ABCD 中,连结BM ,因为2AB AD =,M 是DC 中点, 所以2AM BM AD ==,从而222AM BM AB +=, 所以AM BM ⊥ 因为AD BM ⊥,ADAM A =,所以BM ⊥平面ADM . 因为BM ⊂平面ABCM , 所以平面ADM ⊥平面ABCM .(2)因为平面ADM ⊥平面ABCM ,交线是AM ,所以在面ADM 过M 垂直于AM 的直线必然垂直平面ABCM .以M 为坐标原点,MA 为x 轴,MB 为y 轴,过M 作平面ABCM 的垂线为z 轴, 建立空间直角坐标系.则()2,0,0A ,()0,2,0B ,()1,0,1D ,(1,2,1)BD =-.设(01)BE BD λλ=<<,则(),22,ME MB BE λλλ=+=-.设1(,,)x y z =n 是平面AME 的法向量,则1100n ME n MA ⎧⋅=⎪⎨⋅=⎪⎩,即(22)020x y z x λλλ+-+=⎧⎨=⎩,取()10,,22n λλ=-, 平取面AMD 的一个法向量是()20,1,0n =. 依题意122cos ,2n n =, 即()222525λλλ=+-,解方程得12λ=, 因此在线段BD 上存点E ,使得二面角E AM D --的余弦值为55. 【点睛】本题主要考查了面面垂直的判定与利用空间直角坐标系求解是否存在点满足条件的问题.一般做法是先假设存在,再设对应的向量的参数,再根据二面角的余弦列出关于参数的表达式最后进行求解即可.属于中档题.22.已知线段AB 的端点B 的坐标是()65,,端点A 在圆()()221:434C x y -+-=上运动.(1)求线段AB 的中点P 的轨迹2C 的方程;(2)设圆1C 与曲线2C 的两交点为M ,N ,求线段MN 的长;(3)若点C 在曲线2C 上运动,点Q 在x 轴上运动,求AQ CQ +的最小值. 【答案】(1)22(5)(4)1x y -+-=. 14. (3)523.【分析】(1)设点P 的坐标为()x y ,,点A 的坐标为()00x y ,,由于点B 的坐标为()65,,利用点P 是线段AB 的中点,求出026x x =-,025y y =-,通过点A 在圆1C 上运动,转化求解中点P 的轨迹2C 的方程即可;(2)将圆1C 与圆2C 的方程相减得22190x y +-=,求出圆2C 的圆心到直线22190x y +-=的距离d ,即可求解||MN ;(3)由题可得1122123QA QC QC r QC r QC QC +≥-+-=+-,当且仅当A 在线段1QC 且C 在线段2QC 上时,取等号.设()343C -,为()143C ,关于x 轴的对称点,可得13QC QC =,即323QA QC QC QC +≥+-2333C C -=,即可求解AQ CQ+的最小值.【详解】(1)解:设点P 的坐标为()x y ,,点A 的坐标为()00x y ,,由于点B 的坐标为()65,,且点P 是线段AB 的中点,所以062x x +=, 052y y +=, 于是有 002625x x y y =-⎧⎨=-⎩①, 因为点A 在圆221:(4)(3)4C x y -+-=上运动,即: 2200(4)(3)4x y -+-=②, 把①代入②,得22(264)(253)4x y --+--=,整理,得22(5)(4)1x y -+-=, 所以点P 的轨迹2C 的方程为22(5)(4)1x y -+-=.(2)解:将圆()()221:434C x y -+-=与圆()()222:541C x y -+-=的方程相减得: 22190x y +-=,由圆()()222:541C x y -+-=的圆心为()54,,半径为1,且()54,到直线22190xy +-=的距离d==,则||MN == (3)解:圆()()221:434C x y -+-=是以()143C ,为圆心,半径12r =的圆,圆2C 是以()254C ,为圆心,半径21r =的圆, 所以1122123QA QC QC r QC r QC QC +≥-+-=+-①,当且仅当A 在线段1QC 且C 在线段2QC 上时,取等号.设()343C -,为()143C ,关于x 轴的对称点,则13QC QC =,代入①式得: 323QA QC QC QC +≥+-233523C C -=,当且仅当23C Q C ,,共线时,取等号.所以AQ CQ +的最小值为523.。
高二数学9月月考试题一、单选题(每小题5分)1.已知,则( )A. B.C.D.2.函数)A. B. C. D.3.函数是( )A.最小正周期为的奇函数 B.最小正周期为的偶函数C.最小正周期为的奇函数 D.最小正周期为的偶函数4.若函数是定义在上的奇函数,,,则( )A.2B.0C.60D.625.已知空间向量,,则在上的投影向量坐标是( )A. B. C. D.6.在正四面体中,过点作平面的垂线,垂足为点,点满足,则( )A. B.C. D.7.在空间直角坐标系中,若直线的方向向量为,平面的法向量为,则( )A B. C.或 D.与斜交8.已知向量,,且平面,平面,若平面与平面的夹角的余弦的值为( )A.或 B.或1 C.或2D.二、多选题(每小题6分)9.三棱锥中,平面与平面的法向量分别为,,若,则二面角2i z =+izz =+3i 4-1i 4-3i4+1i 4+y =[3,4)(,3]-∞[3,)+∞(,4]-∞2π2cos 14y x ⎛⎫=-- ⎪⎝⎭πππ2π2()f x R (2)()f x f x -=(1)2f =(1)(2)(30)f f f ++⋅⋅⋅+=(3,4,0)a =(3,1,4)b =- b a (3,4,0)--34,,055⎛⎫--⎪⎝⎭314,,555⎛⎫--⎪⎝⎭(3,1,4)--P ABC -A PBC H M 34AM AH = PM =131444PA PB PC -+111444PA PB PC ++111424PA PB PC -+113444PA PB PC -+l (1,2,1)a =-α(2,3,4)n =//l αl α⊥l α⊂//l αl α(1,2,1)m =- (,1,)n t t =- m ⊥ αn ⊥βαβt 121-151-12-A BCD -ABD BCD 1n 2n 12π,3n n =的大小可能为( )A. B. C.D.10.随机抽取8位同学对2024年数学新高考|卷的平均分进行预估,得到一组样本数据如下:97,98,99,100,101,103,104,106,则下列关于该样本的说法正确的有( )A.均值为101 B.极差为9C.方差为8D.第60百分位数为10111.已知空间中三点,,,则( )A.与是共线向量B.与向量方向相同的单位向量坐标是C.与D.在三、填空题(每小题5分)12.已知是定义在上的奇函数,当时,,当时,,则_______.13.已知向量,,,若,,共面,则_______.14已知向量,,若与的夹角为钝角,则实数的取值范围是_______.四、解答题(五个大题共77分)15.(本题13分)(2024年新课标全国Ⅱ卷数学真题)记的内角,,的对边分别为,,,已知.(1)求.(2)若,求的周长.16(本题15分)某中学根据学生的兴趣爱好,分别创建了“书法”、“诗词”、“理学”三个社团,据资料统计新生通过考核选拔进入这三个社团成功与否相互独立.2015年某新生入学,假设他通过考核选拔进入该校的“书法”、“诗词”、“理学”三个社团的概率依次为、、,已知三个社团他都能进入的概率为,至少进入一个社团的概率为,且.(1)求与的值;(2)该校根据三个社团活动安排情况,对进入“书法”社的同学增加校本选修学分1分,对进入“诗词”A BD C --π6π32π35π6(0,1,0)A (2,2,0)B (1,3,1)C -AB AC AB ⎫⎪⎪⎭AB BC BC AB ()f x R 0x >2()22xxf x -=+0x <()22x x f x m n -=⋅+⋅m n +=(2,3,4)a x = (0,1,2)b = (1,0,0)c =a b c x =(2,,1)a t =--(2,1,1)b = a b t ABC △A B C a b c sin 2A A +=A 2a =sin sin 2C c B =ABC △m 13n 12434m n >m n社的同学增加校本选修学分2分,对进入“理学”社的同学增加校本选修学分3分.求该新同学在社团方面获得校本选修课学分分数不低于4分的概率.17.(本题15分)如图,在以,,,,,为顶点的六面体中(其中平面),四边形是正方形,平面,,且平面平面.(1)设为棱的中点,证明:,,,四点共面;(2)若,求六面体的体积.18.(本题17分)一家水果店为了解本店苹果的日销售情况,记录了过去200天的日销售量(单位:kg ),将全部数据按区间,,,分成5组,得到图所示的频率分布直方图.(1)求图中的值;并估计该水果店过去200天苹果日销售量的平均数(同一组中的数据用该组区间的中点值为代表);(2)若一次进货太多,水果不新鲜,进货太少,又不能满足顾客的需求.店长希望每天的苹果尽量新鲜,又能地满足顾客的需要(在100天中,大约有85天可以满足顾客的需求).请问,每天应该进多少水果?(3)在日销售量为苹果中用分层抽样方式随机抽6个苹果,再从这6苹果中随机抽取2个苹果,求抽取2个苹果都来自日销售量在的概率.19(本题17分)(2022年新高考天津数学高考真题)直三棱柱中,,,为的中点,为的中点,为的中点.A B C D E F F ∈EDC ABCD ED ⊥ABCD BF FE =FEB ⊥EDB M EB A C F M 24ED AB ==EFABCD [50,60)[60,70)⋅⋅⋅[90,100]a 85%[70,90]kg [80,90]111ABC A B C -12AA AB AC ===AC AB ⊥D 11A B E 1AA F CD(1)求证:平面;(2)求直线与平面所成角的正弦值;(3)求平面与平面夹角的余弦值.//EF ABC BE 1CC D 1ACD 1CC D高二数学9月月考试题参考答案一、单选题(每小题5分共40分)1.A2.A3.A4.A【详解】由题意,所以的周期为4,且关于直线对称,而,所以.5.B【详解】因为空间向量,,所以,,,则在上的投影向量坐标是:.6.B【详解】在正四面体中,因为平面,所以是的中心,连接,则,所以.7.C【解析】由可得,所以或,即可得正确选项.【详解】直线的方向向量为,平面的法向量为,因为,所以,所以或.8.B【详解】因为,所以,,,因为平面,平面,若平面与平面,,解得或1.二、多选题(每小题6分共18分)9.BC【详解】二面角的大小与法向量的夹角相等或互补,二面角的大小可能为或.10.ABD【详解】A选项,均值为,A正确;(2)()()(2)f x f x f x f x-==--=--()f x()f x1x=(1)(2)(3)(4)(0)(1)(1)(2)(2)(0)0f f f f f f f f f f+++=++-+===(1)(2)(30)(29)(30)(1)(2)(0)(1)022f f f f f f f f f++⋅⋅⋅+=+=+=+=+=(3,4,0)a=(3,1,4)b=-9405a b⋅=-++=-5a==b==ba 5134(3,4,0),,05555a b aa a⋅-⎛⎫⋅=⨯=--⎪⎝⎭P ABC-AH⊥PBC H PBC△PH()()211323PH PB PC PB PC=⨯+=+()33334444PM PA AM PA AH PA PH PA PA PH PA=+=+=+-=+-()3331311144434444PA PH PA PA PB PC PA PA PB PC=+-=+⨯+-=++a n⋅=a n⊥lα⊂//lαl(1,2,1)a=-α(2,3,4)n=(2,3,4)(1,2,1)2640a n⋅=⋅-=-+=a n⊥lα⊂//lα(1,2,1)m=-(,1,)n t t=-22m n t⋅=+m=n=m⊥αn⊥βαβ=25610t t-+=15t=∴A BD C--π3π2ππ33-=9798991001011031041061018+++++++=B 选项,极差为,B 正确;C 选项,方差为,C 错;D 选项,因为,故从小到大,选择第5个数作为第60百分位数,即101.11.BD 【详解】由已知,,,,因此与不共线,A 错;,所以与向量,B 正确;,,,C 错;在上的投影是,D 正确.三、填空题(每小题5分共15分)12.【详解】令,则,所以.因为是定义在上的奇函数,所以,所以,所以,,所以.13.【详解】由题意得,存在,使得,即,故解得,.14.【详解】由,得,解得,又,得,解得,所以与夹角为钝角,实数的取值范围为且.四、解答题(五个大题共77分)15.(本题13分)【解析】(1)由可得,即,由于,故,解得.(2)由题设条件和正弦定理,106979-=222(97101)(98101)(106101)169410492517882-+-+⋅⋅⋅+-+++++++==60%8 4.8⨯=(2,1,0)AB = (1,2,1)AC =- (3,1,1)BC =-1221-≠AB AC AB = AB ⎫=⎪⎪⎭6105AB BC ⋅=-++=- BC = cos ,AB BC AB BC AB BC⋅〈〉===BC AB BC AB AB⋅==5-0x <0x ->2()22xx f x -+-=+()f x R ()()f x f x -=-2()22422xx x x f x +--=--=-⨯-4m =-1n =-5m n +=-23m n a mb nc =+ (2,3,4)(0,1,2)(1,0,0)x m n =+2342nx m m=⎧⎪=⎨⎪=⎩2m =23x =(,1)(1,5)-∞-- 0a b ⋅<(2)2(1)10t -⨯++-⨯<5t <//a b 21211t --==1t =-a b t 5t <1t ≠-67=+sin 2A A +=1sin 12A A +=πsin 13A ⎛⎫+= ⎪⎝⎭ππ4π(0,π),333A A ⎛⎫∈⇒+∈ ⎪⎝⎭ππ32A +=π6A =sin sin 2sin 2sin sin cos C c B B C C B B =⇔=又,,则,进而,于是,,由正弦定理可得,,即,解得,,故的周长为.16.(本题15分)【详解】(1)依题,解得.(2)由题令该新同学在社团方面获得本选修课学分的分数为,获得本选修课学分分数不低于4分为事件A ,则;;.故.17.(本题15分)【详解】(1)连接,由四边形是正方形,故,又平面,平面,故,由,,平面,故平面,又为棱的中点,,故,又平面平面,平面平面,平面,故平面,故,所以,,,四点共面;(2)设与交于点,连接,则,又平面,平面,则平面,又因为六面体,则平面平面,又平面,故,则四边形为矩形,则,且平面,又,故,则.18(本题17分)【详解】(1)由直方图可得,样本落在,,,的频率分别为,,0.2,0.4,0.3,由,解得.B (0,π)C ∈sin sin 0B C ≠cos B =π4B =7π12C A B π=--=sin sin(π)sin()sin cos sin cos C A B A B A B B A =--=+=+=sin sin sin a b c A B C ==2ππ7πsin sin sin 6412b c==b =c =+ABC △2++78=+11324131(1)1(1)34mn m n m n ⎧=⎪⎪⎪⎛⎫----=⎨ ⎪⎝⎭⎪⎪>⎪⎩1214m n ⎧=⎪⎪⎨⎪=⎪⎩i X ()4121123412P X =⨯⨯=()5111123424P X =⨯⨯=()6111123424P X =⨯⨯=1111()1224246P A =++=78+AC ABCD AC DB ⊥ED ⊥ABCD AC ⊂ABCD ED AC ⊥DE BD D = DE BD ⊂EDB AC ⊥EDB M EB BF FE =FM EB ⊥FEB ⊥EDB FEB EDB EB =FM ⊂EFB FM ⊥EDB //FM AC A C F M AC BD O OM //OM DE OM ⊂ACFM DE ⊂/ACFM //DE ACFM EFABCD CDEF ACFM CF =DE ⊂CDEF //DE CF OCFM 1CF =CF ⊥ABCD BF FE =122CF DE ==11204422333EFABCD E ABCD B EFC V V V --=+=⨯⨯+⨯⨯=557=++[50,60)[60,70)⋅⋅⋅[90,100]10a 10a 10100.20.40.31a a ++++=0.005a =则样本落在,,,频率分别为0.05,0.05,0.2,0.4,0.3,所以,该苹果日销售量的平均值为:.(2)为了能地满足顾客的需要,即估计该店苹果日销售量的分位数.依题意,日销售量不超过90kg 的频率为,则该店苹果日销售量的分位数在,所以日销售量的分位数为.所以,每天应该进95kg 苹果.(3)由日销售量为,的频率分别为0.2,0.4知,抽取的苹果来自日销售量中的有2个,不妨记为,,来自日销售量为的苹果有4个,不妨记为,,,,任意抽取2个苹果,有,,,,,,,,,,,,,,,共有15个基本事件,其中2个苹果都来自日销售中的有6个基本事件,由古典概型可得.19.(本题17分)【解析】(1)证明:在直三棱柱中,平面,且,则以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则、、、、、、、、,则,易知平面的一个法向量为,则,故,平面,故平面.[50,60)[60,70)⋅⋅⋅[90,100]5060607070808090901000.050.050.20.40.383.5(kg)22222+++++⨯+⨯+⨯+⨯+⨯=85%85%10.03100.7-⨯=85%[90,100]85%0.850.7901095(kg)10.7-+⨯=-[70,80)[80,90][70,80)1a 2a [80,90]1b 2b 3b 4b ()12,a a ()11,a b ()12,a b ()13,a b ()14,a b ()21,a b ()22,a b ()23,a b ()24,a b ()12,b b ()13,b b ()14,b b ()23,b b ()24,b b ()34,b b [80,90]62155P ==557++111ABC A B C -1AA ⊥111A B C AC AB ⊥1111A C A B ⊥1A 1A A 11A B 11A C x y z (2,0,0)A (2,2,0)B (2,0,2)C 1(0,0,0)A 1(0,2,0)B 1(0,0,2)C (0,1,0)D (1,0,0)E 11,,12F ⎛⎫⎪⎝⎭10,,12EF ⎛⎫= ⎪⎝⎭ABC (1,0,0)m =0EF m ⋅= EF m ⊥ EF ⊂/ ABC //EF ABC(2),,,设平面的法向量为,则,取,可得,.因此,直线与平面夹角的正弦值为.(3),,设平面的法向量为,则,取,可得,则因此,平面与平面.1(2,0,0)C C = 1(0,1,2)C D =- (1,2,0)EB =1CC D ()111,,u x y z = 111112020u C C x u C D y z ⎧⋅==⎪⎨⋅=-=⎪⎩ 12y =(0,2,1)u =4cos ,5EB u EB u EB u ⋅==⋅BE 1CC D 451(2,0,2)AC = 1(0,1,0)A D =1ACD ()222,,v x y z = 122122200v A C x z v A D y ⎧⋅=+=⎪⎨⋅==⎪⎩ 21x =(1,0,1)v =-cos ,u v u v u v ⋅〈〉===⋅ 1ACD 1CC D。
南山中学2021-2021学年高二数学上学期9月月考试题〔含解析〕第I 卷〔选择题,一共60分〕一.选择题:本大题一一共12个小题,每一小题5分,一共60分,在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的123l l l ,,的倾斜角分别为123ααα,,,那么有〔 〕A. 123ααα<<B. 132ααα<<C. 321ααα<<D.213ααα<<【答案】B 【解析】 【分析】根据直线的倾斜程度确定倾斜角的大小.【详解】由图象可知132,,l l l 的倾斜角依次增大,故132ααα<<. 应选:B【点睛】此题主要考察了直线倾斜角的概念,属于容易题.2.假设直线过点〔1,2〕,〔4,3 〕那么此直线的倾斜角是〔 〕A. 6πB.4π C.3π D.2π【答案】A 【解析】 【分析】设直线的倾斜角为α,根据直线的斜率和倾斜角的关系,即可求解. 【详解】设直线的倾斜角为α,那么,又∵[0,)απ∈,所以6πα∈,应选A.【点睛】此题主要考察直线的斜率与倾斜角,属于简单题. 求直线的倾斜角往往先求出直线的斜率,求直线斜率的常见方法有一以下三种,〔1〕直线上两点的坐标求斜率:利用2121y y k x x -=- ;〔2〕直线方程求斜率:化成点斜式即可;〔2〕利用导数的几何意义求曲线切点处的切线斜率.1l 的倾斜角为60︒,直线2l 经过点3)A ,(2,3)B --,那么直线山1l ,2l 的位置关系是〔 〕 A. 平行或者重合 B. 平行C. 垂直D. 重合【答案】A 【解析】 【分析】根据题中所给直线的倾斜角求出其斜率,再利用斜率坐标公式求得其斜率,得到斜率相等,从而得到两直线平行或者重合.【详解】由题意可知直线1l 的斜率1k 3 直线2l 的斜率2k 233--3,因为12k k =,所以1l ∥2l 或者1l ,2l 重合.【点睛】该题考察的是有关两直线的位置关系,所涉及的知识点有两直线平行的条件,注意不能将重合丢掉.4.以下四个说法中,正确说法的个数是〔 〕①经过定点()000P x y ,的直线,都可以用方程()00y y k x x --=来表示:②经过任意两个不同点()()111222P x y P x y ,,,的直线12PP ,都可以用方程()()121y y x x --()()121x x y y --=来表示;③在x 轴、y 轴上的截距分别为,a b 的直线方程都可以用1x ya b+=表示; ④经过点()0,b 的直线,都可以用方程y kx b +=来表示. A. 0个 B. 1个C. 2个D. 4个【答案】B 【解析】 【分析】①没有考虑斜率问题,错误;②对于任意不同点确定的直线都合适,正确;③根据截距概念判断;④考虑直线斜率是否存在问题【详解】①过定点()000P x y ,的直线斜率不存在时,方程不成立,故错误;②对于任意不同点确定的直线都合适,正确;③根据截距概念知,a b 可以为0,此时不能用1x ya b+=表示,故错误;④当过点()0,b 的直线斜率不存在时,不能用方程y kx b +=来表示,故错误. 应选:B.【点睛】此题主要考察了直线方程的各种形式,考察斜率是否存在,截距是否为0,属于中档题.3y x =绕原点逆时针旋转90︒,再向右平移1个单位,所得到的直线为〔 〕A. 1133y x =-+ B. 1133y x =-- C. 113y x =-- D.113y x =-+【答案】A 【解析】【分析】根据直线过原点,互相垂直直线间的斜率关系,平移知识,可得到所求直线. 【详解】当直线3y x =绕原点逆时针旋转90︒时,所得直线斜率为13-,直线方程为13y x =-,再将直线向右平移1个单位可得:1(1)3y x =--,即1133y x =-+. 应选:A.【点睛】此题主要考察了垂直直线斜率之间的关系,直线的平移,属于中档题.2214x y +=的两个焦点为1F 、2F ,过1F 作垂直于x 轴的直线与椭圆相交,一个交点为P ,那么2PF =〔 〕 A.32B. 3C.72D. 4【答案】C 【解析】 试题分析:,所以当时,,而,所以,应选C.考点:椭圆的性质7.在坐标平面内,与点()1,2A 间隔 为1,且与点()3,1B 间隔 为2的直线一共有〔 〕A. 1条B. 2条C. 3条D. 4条【答案】B 【解析】【详解】根据题意可知,所求直线斜率存在,可设直线方程为y =kx +b , 即kx -y +b =0, 所以12|2|11k b d k -+==+,22|31|21k b d k -+==+,解之得k =0或者43k =-, 所以所求直线方程为y =3或者4x +3y -5=0, 所以符合题意的直线有两条,选B.x 2+y 2-2x +4y +3=0的圆心到直线x -y =1的间隔 为( )A. 2B.22C. 1D.【答案】D 【解析】圆心为()1,2-,点到直线10x y --=的间隔 22=.应选D. ()10,3F -、()20,3F ,动点P 满足()1290PF PF a a a+=+>,那么点P 的轨迹是〔 〕A. 椭圆B. 线段C. 不存在D. 椭圆或者线段 【答案】D 【解析】【详解】当0a >时,由均值不等式的结论有:996a a a a+≥⨯=,当且仅当3a =时等号成立.当96a a +=时,点P 的轨迹表示线段12F F , 当1296a F F a+>=时,点P 的轨迹表示以12F F 为焦点的椭圆,此题选择D 选项.点睛:椭圆定义中的常数必须大于12F F ,在应用根本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或者和为定值;三相等——等号能否获得〞.1x -⋅()2210ln x y +﹣=所表示的曲线的图形是〔 〕 A. B. C.D.【答案】D 【解析】 【分析】10x -=和()2210ln x y +﹣=构成,即可选出. 1x -⋅()2210ln x y +﹣=所以可得10x -=或者()2210ln x y +﹣=, 即1x =或者222x y +=,1x ≥且0y ≠所以曲线为直线1(0)x y =≠与圆222x y +=在直线1(0)x y =≠的右边局部构成, 应选:D.【点睛】此题主要考察了方程与曲线的概念及直线与圆的方程,属于中档题.11.设圆(x +1)2+y 2=25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点.线段AQ 的垂直平分线与CQ 的连线交于点M ,那么M 的轨迹方程为( )A. 224412125x y -=B. 224412125x y +=C. 224412521x y -=D. 224412521x y +=【答案】D 【解析】 【分析】根据线段中垂线的性质可得,MA MQ =,又 5MQ MC +=,故有5MC MA AC +=>,根据椭圆的定义断判轨迹为椭圆,求出,a b 值,即得椭圆的HY 方程.【详解】由圆的方程可知,圆心()1,0C -,半径等于5,设点M 的坐标为(),x y ,AQ 的垂直平分线交CQ 于M ,MA MQ ∴=,又 5MQ MC +=,5MC MA AC ∴+=>,根据椭圆的定义可得,点M 的轨迹是以,A C 为焦点,且25,1,2a cb ==∴=,故椭圆方程为221252144x y +=,即224412521x y +=,应选D.【点睛】此题主要考察定义法求轨迹方程,属于难题.求轨迹方程的常见方法有:①直接法,设出动点的坐标(),x y ,根据题意列出关于,x y 的等式即可;②定义法,根据题意动点符合曲线的定义,直接求出方程;③参数法,把,x y 分别用第三个变量表示,消去参数即可;④逆代法,将()()00x g x y h x ⎧=⎪⎨=⎪⎩代入()00,0f x y =.12.12F F 为椭圆2212516x y +=的左、右焦点,假设M 为椭圆上一点,且12MF F ∆的内切圆的周长等于3π,那么满足条件的点M 有〔 〕 A. 0个 B. 1个C. 2个D. 4个【答案】C 【解析】【详解】试题分析:由椭圆方程2212516x y +=可得2225,16a b ==,5,4,3a b c ∴===. 由椭圆的定义可得12210MF MF a +==,且1226F F c ==, 所以12MF F ∆的周长121210616MF MF F F ++=+=. 设12MF F ∆的内切圆的半径为r ,由题意可得23r ππ=,解得32r =. 设()00,M x y ,那么()1212121201122MF F S MF MF F F r F F y ∆=++⋅=⋅,即0131166222y ⨯⨯=⨯⋅,解得04y =.04y ∴=±. ()0,4M ∴或者()0,4-.即满足条件的点M 有2个.故C 正确.考点:1椭圆的定义;2三角形的内切圆.【思路点晴】此题主要考察的是椭圆的简单几何性质,难度中等.此题主要根据12MF F ∆内切圆的周长等于3π可得其内切圆的半径,再根据椭圆的定义可求得12MF F ∆的周长,用面积相等法可得M 的纵坐标,根据M 的纵坐标与椭圆方程即可求得满足条件的点M 的个数.第II 卷〔非选择题,一共90分〕二.填空题:本大题一一共4小题,每一小题5分,一共20分.把答案直接填在答题卡中的横线上.()14:l y k x -=与直线2l 关于点()21,对称,那么直线2l 恒过定点_____.【答案】()0,2 【解析】 【分析】根据直线()14:l y k x -=恒过定点,求其关于点()21,的对称点,即可求解.【详解】因为()14:l y k x -=过定点(4,0),而(4,0)关于点()21,的对称点为(0,2),又直线()14:l y k x -=与直线2l 关于点()21,对称,所以直线2l 恒过定点(0,2).【点睛】此题主要考察了直线系过定点,直线关于点对称,点关于点对称问题,属于中档题.()24A ,向圆224x y +=引切线AB AC ,〔B C ,是切点〕;那么线段BC 的长为_____【答案】5【解析】 【分析】设圆心为O ,求出AO ,利用勾股定理求AB ,根据切线性质,BC OA ⊥,根据等面积法可得12AO BC AB BO ⋅=⋅,即可求出BC .【详解】设圆心为O ,那么AO ==,在Rt AOB ∆中,4AB ===,根据面积等积法可知,12AO BC AB BO ⋅=⋅,所以BC ==【点睛】此题主要考察了圆的切线的平面几何性质,属于中档题.()0,2P ﹣作直线l ,假设直线l 与过()()2321A B ﹣,,,的线段总没有公一共点,那么直线l 斜率的取值范围是_____ 【答案】5322k -<< 【解析】 【分析】先求直线l 与线段AB 有公一共点时l 的斜率范围,进而可以得到l 与线段AB 无有公一共点时的斜率范围.【详解】设直线l 的斜率为k ,直线AP 的斜率为AP k ,直线BP 的斜率为BP k , 如图:当直线l 与线段AB 有公一共点时,3(2)5202AP k k --≤==---或者1(2)3202BP k k --≥==-, 即当直线l 与线段AB 有公一共点时52k ≤-或者者32k ≥, 所以当直线l 与线段AB 无有公一共点时,5322k -<<. 故答案为:5322k -<< 【点睛】此题主要考察了直线相交问题,斜率公式,数形结合,属于中档题.xOy 中,点(3,0)P 在圆C :22224280x y mx y m +--+-=内,动直线AB 过点P 且交圆C 于A ,B 两点,假设ABC ∆的面积的最大值为16,那么实数m 的取值范围为 .【答案】[3+3,3+7)∪(3-7,3-3]【解析】试题分析:由题意得圆心(,2),C m 半径4 2.r =因为点(3,0)P 在圆222:24280C x y mx y m +--+-=内,所以223060280m m +--+-<,解得327327.m -<<+设C 到直线间隔 为d ,那么.d CP ≤又222222112162222ABC d r d r S d AB d r d ∆+-=⋅=⋅-≤==,当且仅当222d r d =-,即216,4d d ==时取等号,因此2(3)24CP m ≥-+≥,即33m ≥+或者32 3.m ≤-综上实数m 的取值范围为[323,37)(327,323]++⋃--. 考点:直线与圆位置关系三.解答题:本大题一一共4小题,一共70分.解容许写出文字说明、证明过程或者演算步骤.l 经过两条直线23100xy +﹣=和3420x y +﹣=的交点,求分别满足以下条件的直线l 的方程:〔1〕垂直于直线3240x y +﹣=;〔2〕平行于直线4370x y ﹣﹣=.【答案】〔1〕2320x y +-=〔2〕43140x y -+=【解析】【分析】〔1〕求出两直线的交点,根据垂直可得出斜率,点斜式写出直线方程〔2〕根据平行可得出待求直线的斜率,点斜式写出直线方程.【详解】由231003420x y x y -+=⎧⎨+-=⎩,得22x y =-⎧⎨=⎩,所以交点为()2,2-()1因为垂直于直线3240x y +﹣=,所以所求直线斜率为23k =-, 所求直线方程为()2223y x -=-+,即2320x y +-=. ()2因为平行于直线4370,x y ﹣﹣=所以斜率43k =. 所求直线方程为()4223y x -=+,即43140x y -+=. 【点睛】此题主要考察了直线垂直,直线平行的位置关系,属于中档题.222430C x y x y ++-+:=.〔1〕假设圆C 的切线在x 轴和y 轴上的截距相等,且截距不为零,求此切线的方程; 〔2〕从圆C 外一点P 向该圆引一条切线,切点为M ,且有PM PO =〔o 为坐标原点〕,求PM 的最小值.【答案】〔1〕10x y ++=或者30x y +-=〔2〕10【解析】【分析】〔1〕根据截距相等设切线方程为()0x y a a +=≠,利用圆心到直线的间隔 等于半径求解〔2〕设()11,P x y ,根据切线与半径垂直,可求出P 点轨迹方程为直线,问题转化为O 到直线的间隔 减去半径即可.【详解】()1切线在两坐标轴上的截距相等且截距不为零∴设切线方程为()0x y a a +=≠,又圆()()22:122C x y ++-=,∴圆心()1,2C -到切线的间隔 ,=1a =-或者3a =故所求切线的方程为:1030x y x y ++=+-=或()2设()11,P x y ,切线PM 与半径CM 垂直,222PM PC CM ∴=- ()()22221111122x y x y ∴++--=+,整理得112430x y -+=故动点P 在直线2430x y -+=上,由PM 的最小值就是PO 的最小值而PO 的最小值为O 到直线2430x y -+=的间隔 10d = 【点睛】此题主要考察了直线与圆相切的断定,点到直线的间隔 ,属于中档题.220x y +﹣=经过椭圆:C 22221(0)x y a b a b+=>>的左顶点A 和上顶点D ,椭圆C 的右顶点为B ,点E 是椭圆C 上位于x 轴上方的动点,直线AE BE ,与直线:l 103x =分别交于,M N 两点.〔1〕求椭圆C 的方程;〔2〕求线段MN 的长度的最小值.【答案】〔1〕2214x y +=〔2〕83 【解析】【分析】〔1〕求出直线与坐标轴的交点,即可求出,a b ,写出椭圆的方程〔2〕由题意设直线AE 的方程为()()20y k x k =+>,联立直线l ,求出M ,联立椭圆求出E ,写出BE ,联立l 写出N ,可得16133k MN k=+,根据均值不等式求最值. 【详解】令0x =得1y =,所以()0,1D ,所以1b =,令0y =得2x =-,所以()2,0A -所以2a =,所以椭圆的HY 方程为2214x y += ()2显然直线AE 的斜率存在且为正数,设直线AE 的方程为()()20y k x k =+>,联立得()2103y k x x ⎧=+⎪⎨=⎪⎩,解得1016,33k M ⎛⎫ ⎪⎝⎭, 由()22244y k x x y ⎧=+⎨+=⎩,得:()222214161640k x k x k +++-= 此时2222(16)4(14)(164)16k k k ∆=-+-=,由求根公式得()2222162814214k k x k k -+-==++或者()()2222162814214k k x k k ---==++舍 所以222284,1414k k E k k ⎛⎫- ⎪++⎝⎭,从而直线的方程为()124y x k =--, 联立得()124103y x k x ⎧=--⎪⎪⎨⎪=⎪⎩,解得101,33N k ⎛⎫- ⎪⎝⎭,所以1611618233333k k MN k k =+≥⋅=,当且仅当14k =时取""=, 因此,线段MN 长度的最小值为83. 【点睛】此题主要考察了椭圆的HY 方程,直线与椭圆的位置关系,均值不等式,属于难题.20.如图,定圆()2234C x y +:﹣=,定直线360m x y ++:=,过()10A ﹣,的一条动直线l 与直线相交于N ,与圆C 相交于P Q ,两点,M 是PQ 中点.〔1〕当l 与m 垂直时,求证:l 过圆心C ;〔2〕当2PQ =3l 的方程;〔3〕设t =AM AN ,试问t 是否为定值,假设为定值,恳求出t 的值;假设不为定值,请说明理由.【答案】〔1〕证明见解析〔2〕1x =-或者4340x y -+=〔3〕t 的值是定值,且5t =-,详见解析【解析】【分析】〔1〕根据垂直可得到l 斜率,写出其方程即可验证是否过圆心〔2〕分斜率是否存在讨论,当斜率不存在时,检验是否符合题意,斜率存在时,利用半弦长,半径,圆心距构成直角三角形求斜率即可〔3〕分斜率存在与不存在两种情况,斜率不存在时求出点的坐标计算即可,当斜率存在时,设直线方程联立圆可得点的坐标,利用向量计算即可.【详解】〔1〕当l 与m 垂直时, 13l mk k =-=,又过点()10A -,, 所以直线方程为3(1)y x =+, 圆心为(0,3)C ,显然直线l 经过圆心. ()10A -, 〔2〕当直线l 与x 轴垂直时,易知1x =-符合题意:当直线l 与x 轴不垂直时,设直线():1l y kx =+,由于PQ =1CM =由1CM ==,解得43k =, 故直线l 的方程为1x =-或者4340x y -+=〔3〕当l 与x 轴垂直时,易得()51,3,1,3M N ⎛⎫--- ⎪⎝⎭又()1,0A -,那么()50,3,0,3AM AN ⎛⎫==- ⎪⎝⎭,故5AM AN ⋅=-,即5t =- 当l 的斜率存在时,设直线l 的方程为()1y k x =+代入圆的方程得()()2222126650k x k k x k k ++-+-+= 那么22321P QM x x k k x k+-+==+,()22311M M k k y k x k +=+=+ 即222233,11k k k k M k k ⎛⎫-++ ⎪++⎝⎭那么222313,11k k k AM k k ⎛⎫++= ⎪++⎝⎭, 由(1)360y k x x y =+⎧⎨++⎩=,得:365,1313k k N k k ---⎛⎫ ⎪++⎝⎭, 那么55,1313k AN k k --⎛⎫= ⎪++⎝⎭,故()()()()()22253155113113k k k k t AM AN k k k k -+--=⋅=+++++()()()()2251315131k k k k -++==-++ 综上,t 的值是定值,且5t =-解法二:如图:连结CA 并延长交直线m 于点B ,连结,CM CN ,由AC m ⊥,又CM l ⊥,所以四点,,,M C N B 都在以CN 为直径的圆上,由相交弦定理得||t AM AN AM AN AC AB =⋅=-⋅=-⋅, 因为()10A -,,(0,3)C , 所以直线AC 方程为3(1)y x =+,由3(1)360y x x y =+⎧⎨++⎩=,解得:3232x y ⎧-⎪⎪⎨⎪-⎪⎩==,即33,22()B --, 所以22(1)310AC =-+=223310(1)(0)22AB =-+++= 所以10105t AC AB =-⋅==. 【点睛】此题主要考察了直线的垂直,直线与圆相交弦的性质,向量的运算,直线与圆相交“设而不求〞的问题,属于中档题.励志赠言经典语录精选句;挥动**,放飞梦想。
江苏省南京市建邺区2024-2025学年高二上学期9月月考数学试卷一、单选题1.在复平面内,复数z 对应的点的坐标是()3,4,则z =( ) A .34i -B .43i -C .34i +D .43i +2.已知直线l ()1220m y +--=的倾斜角为23π,则m =( ) A .13B .1C .32D .-13.在ABC V 中,角A 、B 、C 的对边分别为a 、b 、c .若s i n :s i n :s i n 4:5:6A B C =,则co s A =( ) A .916-B .916 C .34-D .344.抛掷两枚质地均匀的硬币一次,设“第一枚硬币正面朝上”为事件A ,“第二枚硬币反面朝上”为事件B ,则下述正确的是( ). A .A 与B 对立B .A 与B 互斥C .()()()P A B P A P B +>+D .A 与B 相互独立5.若ππ44αβ-<<<,且1cos sin 2αβ=,tan 2tan 3αβ=,则()cos αβ-=( )A B .C D .6.直线l 过点()0,3与圆C :222220x y x y +---=交于,A B 两点且AB =l 的方程为( ) A .34120x y +-= B .34120x y +-=或4210x y ++= C .0x =D .0x =或34120x y +-=7.若曲线y y =k (x -2)+4有两个交点,则实数k 的取值范围是( ) A .3,14⎛⎤ ⎥⎝⎦B .3,4⎛⎫+∞ ⎪⎝⎭C .(1,+∞)D .(1,3]8.在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且()sin sin a A b c B =+,则a bc-的取值范围是( )A .11,32⎛⎫ ⎪⎝⎭B .1,13⎛⎫ ⎪⎝⎭C .⎫⎪⎪⎝⎭D .12⎫⎪⎪⎝⎭二、多选题9.已知ABC V 内角A ,B ,C 所对的边分别为a ,b ,c ,则下列说法正确的是( ) A .若A B <,则sin sin A B <B .若2a =,π3B =2b <C .若22tan tan A Ba b=,则ABC V 为等腰三角形 D .若tan tan tan 0A B C ++>,则ABC V 为锐角三角形10.已知圆()()221:1311C x y -+-=与圆2222:2230C x y x my m ++-+-=,则下列说法正确的是( )A .若圆2C 与x 轴相切,则2m =B .若3m =-,则圆C 1与圆C 2相离C .若圆C 1与圆C 2有公共弦,则公共弦所在的直线方程为()246220x m y m +-++=D .直线210kx y k --+=与圆C 1始终有两个交点11.已知正四棱台1111ABCD A B C D -的所有顶点都在球O 的球面上,11122,AB A B AA ===E 为1BDC V 内部(含边界)的动点,则( )A .1//AA 平面1BDCB .球O 的表面积为6πC .1EA EA +的最小值为D .AE 与平面1BDC 所成角的最大值为60°三、填空题12.已知圆C 的圆心为原点O ,且与直线0x y ++=相切,若点P 在直线8x =上,过P 点引圆C 的两条切线PA PB ,,切点为A B ,,则直线AB 恒过定点.13.折扇又名“撒扇”、“纸扇”,是一种用竹木或象牙做扇骨,韧纸或绫绢做扇面的能折叠的扇子,如图1.其展开几何图是如图2的扇形AOB ,其中120AOB ∠=o ,2OC =,OA =4,点E 在»CD上(包含端点),则EA EB ⋅u u u r u u u r的取值范围是.14.如图,在平面直角坐标系中,以OA 为始边,角α与β的终边分别与单位圆相交于E ,F 两点,且π0,2α⎛⎫∈ ⎪⎝⎭,π,π2β⎛⎫∈ ⎪⎝⎭,若直线EF 的斜率为14,则()sin αβ+=.四、解答题15.某商场为了制定合理的停车收费政策,需要了解顾客的停车时长(单位:分钟).现随机抽取了该商场到访顾客的100辆车进行调查,将数据分成6组:(]0,100,(]100,200,(]200,300,(]300,400,(]400,500,(]500,600,并整理得到如下频率分布直方图:(1)若某天该商场到访顾客的车辆数为1000,根据频率分布直方图估计该天停车时长在区间(]400,600上的车辆数;(2)为了吸引顾客,该商场准备给停车时长较短的车辆提供免费停车服务.若以第30百分位数为标准,请你根据频率分布直方图,给出确定免费停车时长标准的建议(数据取整数). 16.在ABC V 中,角,,A B C 的对边分别为(),,,2cos cos a b c b c A a C -=.(1)求A ;(2)若ABC V BC 边上的高为1,求ABC V 的周长.17.已知圆C :(x ﹣3)2+y 2=1与直线m :3x ﹣y +6=0,动直线l 过定点A (0,1).(1)若直线l 与圆C 相切,求直线l 的方程;(2)若直线l 与圆C 相交于P 、Q 两点,点M 是PQ 的中点,直线l 与直线m 相交于点N .探索AM AN ⋅u u u u r u u u r是否为定值,若是,求出该定值;若不是,请说明理由.18.如图,在圆锥PO 中,AB 是底面的直径,且3PO =,4AB =,30BAC ︒∠=,M 是BC 的中点.(1)求证:平面PBC ⊥平面POM ; (2)求二面角O PB C --的余弦值.19.已知在平面直角坐标系中,点(),0A a 、点()0,B b (其中a 、b 为常数,且0ab ≠),点O 为坐标原点.(1)设点P 为线段AB 靠近点A 的三等分点,()()1OP OA OB λλλ=+-∈u u u r u u u r u u u rR ,求λ的值; (2)如图,设点121,,,,,k n P P P P -L L 是线段AB 的n 等分点,()1k OP OA OB μμ=+-u u u r u u u r u u u r,其中11k n ≤≤-,n ,*k ∈N ,2n ≥,求当2020n =时,求121n OA OP OP OP OB -+++++u u u r u u u r u u u r u u u u u r u u u rL 的值(用含a 、b 的式子表示)(3)若1a b ==,[]0,1t ∈,求()113t AB AO OB t BA -++-u u u r u u u r u u u r u u u r的最小值.。
知识改变命运宜昌金东方高级中学2015年秋季学期9月月考高二数学试题(理)命题:夏小迪 审题:李照东本试题卷共4页,三大题22小题。
全卷满分150分,考试用时120分钟。
★祝考试顺利★一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线1=x 的倾斜角为α,则α ( )A .等于0B .等于4πC .等于2π D .不存在 2.方程x 2+y 2+2ax +2by +a 2+b 2=0表示的图形是( )A .以(a ,b )为圆心的圆B .以(-a ,-b )为圆心的圆C .点(a ,b )D .点(-a ,-b ) 3.圆422=+y x 截直线0323=-+y x 所得的弦长是( )A .2B .1C .3D .324.已知两圆的方程是221x y +=和226890x y x y +--+=,那么两圆的位置关系是( ) A .相离 B .相交 C .內切 D .外切5.若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是 ( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)6.若圆)0(022222>=++-+k y kx y x 与两坐标轴无公共点,那么实数k 的取值范围是 ( )( )A .20<<k B .21<<kC . 10<<kD .2>k7.执行如题图所示的程序框图,若输出K 的值为8,则判断框图可填入的条件是( )A 、s ≤34 B 、s ≤56 C 、s ≤1112 D 、s ≤15248.设圆的方程为()()22134x y -++=,过点()1,1--作圆的切线,则切线方程为( )知识改变命运A .1x =-B .1x =-或1y =-C .10y +=D .1x y +=或0x y -=9.若直线)2(-=x k y 与曲线21x y -=有交点,则 ( )A .k 有最大值33,最小值33- B .k 有最大值21,最小值21-C .k 有最大值0,最小值 33- D .k 有最大值0,最小值21-10.若直线mx +2ny -4=0(m 、n ∈R ,n ≠m )始终平分圆x 2+y 2-4x -2y -4=0的周长,则mn 的取值范围是( ) A .(0,1)B .(0,-1)C .(-∞,1)D .(-∞,-1)11.()(),',,'A a a B b b 是圆222=+y x 上任意的两点,若''1ab a b +=-,则线段AB 的长是( )AB .2C .2 D12.已知点()(),0P a b ab ≠是圆222:O x y r +=内一点,直线m 是以P 为中点的弦所在的直线,若直线n的方程为2a xb y r +=,则( )A .m ∥n ,且n 与圆O 相离 B. m ∥n ,且n 与圆O 相交 C. m 与n 重合,且n 与圆O 相离 D. m ⊥n ,n 与圆O 相离 二、填空题:本大题共4小题,每小题5分,共20分.13.圆22:2440C x y x y +--+=的圆心到直线3440x y ++=的距离d = . 14.在z 轴上与点(4,1,7)A -和点(3,5,2)B -等距离的点C 的坐标为 .15. 执行如图所示的程序框图,输出的s 值为 16.过点P (-2,4)作圆O :(x -2)2+(y -1)2=25的切线l ,直线m :ax -3y =0与直线l 平行,则直线l 与m 的距离为是三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤。
17.(本小题满分10分)阅读下列算法,并结合它的程序框图:(1)根据上述自然语言的算法,试完成程序框图中①和②处的空白;(2)写出程序的功能,并计算出最后的输出结果。
18.(本小题满分12分)求下列各圆的标准方程:(1)圆心在直线y=0上,且圆过两点A(1,4),B(3,2);(2)圆心在直线2x+y=0上,且圆与直线x+y-1=0切于点M(2,-1).19.(本小题满分12分)已知圆C :(x-1)2+(y-2)2=2,点P坐标为(2,-1),过点P作圆C的切线,切点为A,B.(1)求直线P A,PB的方程;(2)求直线AB的方程.知识改变命运知识改变命运20、(本小题满分12分)在平面直角坐标系xOy 中,已知圆2212320x y x +-+=的圆心为Q ,过点(02)P ,且斜率为k 的直线与圆Q 相交于不同的两点A B , (Ⅰ)求k 的取值范围;(Ⅱ)是否存在常数k ,使得向量OA OB +与PQ 共线?如果存在,求k 值;如果不存在,请说明理由.21、 (本小题12分)已知圆C :224x y +=.(1)直线l 过点()1,2P ,且与圆C 交于A 、B两点,若||AB =l 的方程; (2)过圆C 上一动点M 作平行于x 轴的直线m ,设m 与y 轴的交点为N ,若向量OQ OM ON =+,求动点Q 的轨迹方程,22、(本小题满分12分)已知圆x 2+y 2-6mx -2(m -1)y +10m 2-2m -24=0(m ∈R ). (1)求证:不论m 为何值,圆心在同一直线l 上; (2)与l 平行的直线中,哪些与圆相交、相切、相离;(3)求证:任何一条平行于l 且与圆相交的直线被各圆截得的弦长相等.知识改变命运宜昌金东方学校·高中2015年9月月考高二年级数学试题(理)答题卷一、选择题。
(每小题5分,共50分)二、填空题。
(每小题5分,共25分)13.___3_________ 14_____ (0,0,14/9)15.__-10_______________16____4二、解答题。
(共70分) 17、(本小题满分10分)密 封 线内不准答 题知识改变命运18、(本小题满分12分)18.解:(1)由已知设所求圆的方程为(x -a )2+y 2=r 2,于是依题意,得 ⎪⎩⎪⎨⎧.=+)(,=+)(2222 4 - 3 16 - 1r a r a 解得⎪⎩⎪⎨⎧.,-20 = 1 = 2r a 故所求圆的方程为(x +1)2+y 2=20.(2)因为圆与直线x +y -1=0切于点M (2,-1),所以圆心必在过点M (2,-1)且垂直于x +y -1=0的直线l 上. 则l 的方程为y +1=x -2,即y =x -3. 由⎪⎩⎪⎨⎧.=+,-=023 y x x y 解得⎪⎩⎪⎨⎧.- =,=2 1 y x 即圆心为O 1(1,-2),半径r =222 + 1 - + 1 - 2)()(=2. 故所求圆的方程为(x -1)2+(y +2)2=2.19.已知圆C :(x -1)2+(y -2)2=2,点P 坐标为(2,-1),过点P 作圆C 的切线,切点为A ,B .(1)求直线P A ,PB 的方程;(2)求直线AB 的方程.19.解:(1)设过P 点圆的切线方程为y +1=k (x -2),即kx ―y ―2k ―1=0. 因为圆心(1,2)到直线的距离为2,1+ 3 - - 2k k =2, 解得k =7,或k =-1.故所求的切线方程为7x ―y ―15=0,或x +y -1=0. (2)容易求出k PC =-3,所以k AB =31.如图,由CA 2=CD ·PC ,可求出CD =PC CA 2=102.设直线AB 的方程为y =31x +b ,即x -3y +3b =0.由102=23 + 1 3 + 6 - 1 b 解得b =1或b =37(舍).所以直线AB 的方程为x -3y +3=0.(2)也可以用联立圆方程与直线方程的方法求解.知识改变命运20、21、解(Ⅰ)①当直线l 垂直于x 轴时,则此时直线方程为1=x ,l 与圆的两个交点坐标为()3,1和()3,1-,其距离为32,满足题意②若直线l 不垂直于x 轴,设其方程为()12-=-x k y , 即02=+--k y kx设圆心到此直线的距离为d ,则24232d -=,得1=d∴1|2|12++-=k k ,34k =, 故所求直线方程为3450x y -+=综上所述,所求直线为3450x y -+=或1=x(Ⅱ)设点M 的坐标为()00,y x ,Q 点坐标为()y x ,,则N 点坐标是()0,0y∵OQ OM ON =+,∴()()00,,2x y x y = 即x x =0,20y y =又∵42020=+y x ,∴4422=+y x 由已知,直线m //ox 轴,所以,0y ≠,∴Q 点的轨迹方程是221(0)164y x y +=≠, 22、(1)证明 配方得:(x -3m )2+[y -(m -1)]2=25,设圆心为(x ,y ),则⎩⎪⎨⎪⎧x =3m y =m -1, 消去m 得x -3y -3=0,知识改变命运则圆心恒在直线l :x -3y -3=0上.(2)解 设与l 平行的直线是l 1:x -3y +b =0, 则圆心到直线l 1的距离为 d =|3m -3(m -1)+b |10=|3+b |10.∵圆的半径为r =5,∴当d <r ,即-510-3<b <510-3时,直线与圆相交; 当d =r ,即b =±510-3时,直线与圆相切;当d >r ,即b <-510-3或b >510-3时,直线与圆相离.(3)证明 对于任一条平行于l 且与圆相交的直线l 1:x -3y +b =0,由于圆心到直线l 1的距离d =|3+b |10,弦长=2r 2-d 2且r 和d 均为常量.∴任何一条平行于l 且与圆相交的直线被各圆截得的弦长相等.薄雾浓云愁永昼, 瑞脑消金兽。
佳节又重阳, 玉枕纱厨, 半夜凉初透。
东篱把酒黄昏后, 有暗香盈袖。
莫道不消魂, 帘卷西风, 人比黄花瘦。