控制工程基础第三章-2
- 格式:ppt
- 大小:1.21 MB
- 文档页数:64
【关键字】基础第三章习题及答案3-1.假设温度计可用传递函数描述其特性,现在用温度计测量盛在容器内的水温。
发现需要时间才能指示出实际水温的98%的数值,试问该温度计指示出实际水温从10%变化到90%所需的时间是多少?解:2.已知某系统的微分方程为,初始条件,试求:⑴系统的零输入响应yx(t);⑵激励f (t)(t)时,系统的零状态响应yf (t)和全响应y(t);⑶激励f (t) e3t (t)时,系统的零状态响应yf (t)和全响应y(t)。
解:(1) 算子方程为:3.已知某系统的微分方程为,当激励=时,系统的全响应。
试求零输入响应yx(t)与零状态响应yf (t)、自由响应与强迫响应、暂态响应与稳态响应。
解:4. 设系统特征方程为:。
试用劳斯-赫尔维茨稳定判据判别该系统的稳定性。
解:用劳斯-赫尔维茨稳定判据判别,a4=1,a3=6,a2=12,a1=10,a0=3均大于零,且有所以,此系统是稳定的。
5. 试确定下图所示系统的稳定性.解:系统稳定。
满足必要条件,故系统稳定。
6.已知单位反应系统的开环传递函数为,试求系统稳定时,参数和的取值关系。
解:由Routh表第一列系数大于0得,即7. 设单位反应系统的开环传递函数为,要求闭环特征根的实部均小于-1,求K值应取的范围。
解:系统特征方程为要使系统特征根实部小于,可以把原虚轴向左平移一个单位,令,即,代入原特征方程并整理得运用劳斯判据,最后得8. 设系统的闭环传递函数为,试求最大超调量σ%=9.6%、峰值时间tp=0.2秒时的闭环传递函数的参数ξ和ωn的值。
解:∵=9.6%∴ξ=0.6∵tp==0.2∴ωn=19.6rad/s9.设单位负反应系统的开环传递函数为求(1)系统的阻尼比ζ和无阻尼自然频率ωn;(2)系统的峰值时间tp、超调量σ%、调整时间tS(△=0.02);解:系统闭环传递函数与标准形式对比,可知 , 故 , 又10. 一阶系统结构图如下图所示。
控制工程基础第三章参考答案1. 请问什么是系统的时滞?系统的时滞是指系统输入与响应之间的时间延迟。
在许多实际的控制系统中,输出变量的改变并不立即反映在系统的输入上,而是有一定的延迟。
这种延迟就是系统的时滞。
2. 请简述控制系统的稳态误差。
控制系统的稳态误差是指在稳态下,输出与期望值之间的差别。
稳态误差可以分为零稳态误差和非零稳态误差。
零稳态误差是指当输入值为常数时,输出值与期望值之间的差别;非零稳态误差是指当输入值为非常数时,输出值与期望值之间的差别。
3. 请解释积分环节在控制系统中的作用。
积分环节在控制系统中的作用是消除稳态误差,尤其对于常量输入的情况。
当系统存在零稳态误差时,引入积分环节可以通过积累误差信号来逐渐减小误差,以达到稳定的目标。
积分环节还可以提高系统的灵敏度,增强系统的抗干扰能力。
4. 请简要说明先行环节的作用。
先行环节是在系统前面加入的一个环节,其作用是预先对输入信号进行处理,以改善系统的性能。
常见的先行环节包括微分环节和预估环节。
微分环节可以提高系统的动态响应速度,并减小系统超调量;预估环节可以通过估计未来的输入值来增强系统的鲁棒性。
5. 请解释滞后环节在控制系统中的作用。
滞后环节在控制系统中的作用是补偿相位滞后,改善系统的相位特性。
它可以有效提高系统的稳定性和抗干扰能力,减小系统的超调量和震荡现象。
滞后环节常用于降低系统的低频增益,使系统在低频段的响应更加平滑和稳定。
6. 什么是校正环节?请简要说明其作用。
校正环节是指在控制系统中用于校正输出与期望值之间差别的环节。
它通过调整系统的增益、相位和延迟等参数,使得系统的输出能够与期望值更加接近。
校正环节起到了提高系统性能、降低误差和稳定系统的作用。
7. 请解释反馈控制在控制系统中的作用。
反馈控制是一种常见的控制策略,它根据系统的输出信号与期望值之间的差别,调整系统的输入信号,以实现期望的控制目标。
反馈控制可以有效补偿系统的非线性特性、时滞和干扰等因素,提高系统的稳定性和鲁棒性。
第三章3-2.假设温度计可用1/(Ts+1)传递函数描述其特性。
现用该温度计测量某容器中的水温,发现经1min 后才能指示出实际水温的96%,问:(1). 该温度计的指示从实际水温的10%变化到90%所需的时间是多少? (2). 如果给该容器加热,使容器内水温以0.1℃/s 的速度均匀上升,当定义误差e(t)=r(t)-c(t)时,温度计的稳态指示误差有多大? 解:(1). 设实际水温为T r ,温度计原来处于T 0=0度,当温度计放入水中时,相当于输入一阶跃值为T r -T 0=T r 的阶跃函数,温度计的时间响应函数为:()()⎪⎪⎭⎫ ⎝⎛--=-Tt r eT T t c 10 ()()⎪⎪⎭⎫ ⎝⎛-==--Tt rr e T t c T T t c 10 根据题意可得:Te 60196.0--=即可得:T=18.64(s),()⎪⎪⎭⎫ ⎝⎛-=-Tt re T t c 1 10%所需的时间为64.18111.0t e--=,()s t 96.11=。
90%所需的时间为64.18119.0t e--=,()s t 92.422=。
所以可得该温度计的指示从实际水温的10%变化到90%所需的时间(上升时间)是()s t t t r 96.4012=-=(2). 由题可知系统为一阶系统,故系统稳定,为求当r(t)=0.1t 时的稳态误差,由一阶系统的时间响应分析可知,单位斜坡响应的稳态误差为T ,所以稳态指示误差:()C T t e t 864.11.0lim =⨯=∞→(将1/(Ts+1)转化为开环传递函数为1/(Ts )时的单位反馈系统,则可见此时系统的误差为e(t)=r(t)-c(t)。
根据系统为I 型,可得稳态速度误差系数为Kv=K=1/T ,得当输入信号为r(t)=0.1t 时的稳态误差为C T K e vssv 864.11.011.0=⨯=⨯=) 3-5.某控制系统如图3-24所示,已知K=125,试求: (1). 系统阶次,类型。
3-1 已知某单位反馈系统的开环传递函数为1)(+=Ts Ks G k ,试求其单位阶跃响应。
解法一,采用拉氏反变换:系统闭环传递函数为:()()()()1()1k k G s C s Ks R s G s Ts K Φ===+++ 输入为单位阶跃,即:1()R s s= 故:1()()()11K A BC s s R s K Ts K s s s T=Φ=⋅=+++++ 可由待定系数法求得:,11K KA B K K ==-++ 所以,1111()()111K K K K K C s K K s K s s s T T++=-=-+++++对上式求拉氏反变换:1()(1)1k t TK c t e K +-=-+解法二,套用典型一阶系统结论:由式(3-15),已知典型一阶系统为:()1()()1C s s R s Ts Φ==+ 由式(3-16),其单位阶跃响应为:1()1t Tc t e-=-若一阶系统为()()()1C s Ks R s Ts Φ==+,则其单位阶跃响应为:1()(1)t T c t K e -=- 现本系统闭环传递函数为:()()(1)()()1()1(1)11k k G s C s K K K K s R s G s Ts K Ts K T s '+Φ====='++++++ 其中,,11T KT K K K ''==++ 所以,11()(1)(1)1k t t T T Kc t K ee K +--''=-=-+采用解法二,概念明确且解题效率高,计算快捷且不易出错,应予提倡。
3-2 设某温度计可用一阶系统表示其特性,现在用温度计测量容器中的水温,当它插入恒温水中一分钟时,显示了该温度的98%,试求其时间常数。
又若给容器加热,水温由0℃按10℃/min 规律上升,求该温度计的测量误差。
解:(1)由题意知,误差为2%,因此调节时间:41min s t T ==,即时间常数T :10.25min 15sec 4s T t ===(2)由题意知输入信号为斜坡信号,()10min r t C ︒=。
控制工程基础第三版课后习题答案控制工程基础第三版课后习题答案控制工程是一门涉及到系统控制与优化的学科,它是现代工程技术的重要组成部分。
掌握控制工程的基础知识对于工程师来说至关重要。
而《控制工程基础》这本教材则是控制工程学习的重要参考书之一。
本文将为读者提供《控制工程基础第三版》课后习题的答案,希望能够帮助读者更好地理解和掌握这门学科。
第一章:控制系统基础知识1. 什么是控制系统?控制系统是由一系列相互关联的元件和设备组成的,用于实现对某个过程或系统的控制和调节的系统。
2. 什么是开环控制系统?开环控制系统是指输出信号不受输入信号的影响,只根据事先设定的控制规律进行控制的系统。
3. 什么是闭环控制系统?闭环控制系统是指输出信号受到输入信号的反馈影响,根据反馈信号对输出信号进行调节的系统。
4. 什么是传递函数?传递函数是指输出变量与输入变量之间的关系,通常用一个分子多项式除以一个分母多项式的形式来表示。
5. 什么是稳定性?稳定性是指系统在受到干扰或参数变化的情况下,能够保持稳定状态的能力。
第二章:线性系统的数学模型1. 什么是线性系统?线性系统是指系统的输入和输出之间存在线性关系的系统。
2. 什么是状态空间模型?状态空间模型是用状态变量来描述系统动态行为的数学模型。
3. 什么是传递函数模型?传递函数模型是用传递函数来描述系统输入和输出之间关系的数学模型。
4. 如何从状态空间模型转换为传递函数模型?可以通过拉普拉斯变换将状态空间模型转换为传递函数模型。
5. 如何从传递函数模型转换为状态空间模型?可以通过分解传递函数为部分分式的形式,然后利用反变换将其转换为状态空间模型。
第三章:控制系统的时域分析1. 什么是单位阶跃响应?单位阶跃响应是指系统在输入信号为单位阶跃函数时的响应。
2. 什么是阻尼比?阻尼比是指系统的阻尼系数与临界阻尼系数之间的比值。
3. 什么是超调量?超调量是指系统响应的峰值与稳态值之间的差值。