利用导数证明不等式的两种通法
- 格式:doc
- 大小:363.00 KB
- 文档页数:6
导数中证明不等式技巧——构造、切线放缩、二元变量、凹凸反转,唯手熟尔!导数中的不等式证明导数中的不等式证明是高考中的一个经典考点。
由于不等式证明的灵活性和多样性,该考点备受命题者的青睐。
本文将从五个方面系统地介绍一些常规的不等式证明手段。
命题角度1:构造函数典例1】(赣州市2018届高三摸底考试)已知函数$f(x)=1-\ln x+\frac{e}{x}$,$g(x)=x-\frac{e}{x}$,若曲线$y=f(x)$与曲线$y=g(x)$的一个公共点是$A(1,1)$,且在点$A$处的切线互相垂直。
求$a,b$的值,并证明当$x\geq1$时,$f(x)+g(x)\geq\frac{2}{x}$。
解析】(1)$a=b=-1$;2)$g(x)=-\frac{e}{2\ln x}+\frac{x}{2}-\frac{e}{2x}$,$f(x)+g(x)\geq\frac{2}{x}$ $\Leftrightarrow 1-\frac{1}{x}+\frac{e}{x}-\frac{e}{2\ln x}+\frac{x}{2}-\frac{e}{2x}\geq\frac{2}{x}$ $\Leftrightarrow\frac{1}{x}+\frac{ e}{2\ln x}-\frac{x}{2}+\frac{e}{2x}\leq1$。
令$h(x)=f(x)+g(x)-\frac{2}{x}$,则$h(x)=1-\frac{1}{x}+\frac{e}{x}-\ln x-\frac{e}{2\ln x}+\frac{x}{2}-\frac{e}{2x}$,$h'(x)=-\frac{1}{x^2}+\frac{e}{x^2}-\frac{1}{x}-\frac{e}{2x^2}+\frac{1}{2}-\frac{e}{2x^2}$,$h''(x)=\frac{2}{x^3}-\frac{3e}{x^3}+\frac{2e}{x^3}$。
导数与构造函数证明不等式的技巧导数是微积分中的一个重要概念。
它可以描述函数在各个点上的变化率,也可以用来求函数的最大值、最小值以及拐点等重要信息。
而构造函数则是数学中一种非常常见的证明不等式的方法。
本文将介绍一些常用的导数和构造函数证明不等式的技巧。
一、使用导数证明不等式1. 求导数确定函数的单调性对于一个函数$f(x)$,如果它在某个区间上的导数$f'(x)$大于0,说明它在该区间上单调递增;如果导数$f'(x)$小于0,则说明它在该区间上单调递减。
因此,如果要证明一个不等式在某个区间上成立,可以先求出函数在该区间上的导数,确定其单调性,然后再比较函数在两个端点处的取值即可。
例如,对于函数$f(x)=x^2-4x+3$,我们可以求出它的导数为$f'(x)=2x-4$。
由于$f'(x)>0$时$f(x)$单调递增,因此当$x<2$时,$f(x)<f(2)$,当$x>2$时,$f(x)>f(2)$,即$f(x)$在$x<2$和$x>2$的区间上都小于$f(2)$,因此我们可以得到不等式$f(x)<f(2)$,即$x^2-4x+3<1$。
2. 求导数判断函数的最值对于一个函数$f(x)$,如果它在某个点$x_0$处的导数$f'(x_0)=0$,且$f^{''}(x_0)>0$(即$f(x)$的二阶导数大于0)则$f(x)$在$x_0$处取得一个局部最小值;如果$f^{''}(x_0)<0$,则$f(x)$在$x_0$处取得一个局部最大值。
因此,如果要证明一个不等式最值的存在性,可以先求出函数的导数,再找出导数为0的点即可。
3. 构造特殊的函数如果一个不等式的两边都是多项式,可以考虑构造一个较为特殊的函数,来证明不等式的成立性。
例如,对于不等式$\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\leq\dfrac{3}{2\sqrt[3]{abc}}$,我们可以考虑构造一个函数$f(x)=\dfrac{1}{a+b+x}+\dfrac{1}{b+c+x}+\dfrac{1}{c+a+x}-\dfrac{3}{2\sqrt[3]{(a+x)(b+x)(c+x)}}$,并证明$f(x)\leq 0$。
利用导数证明不等式的四种常用方法方法一:使用函数的单调性如果函数f(x)在区间[a,b]上单调递增(或递减),则对于任意的x1,x2∈[a,b],有f(x1)≤f(x2)(或f(x1)≥f(x2))。
举例说明:证明当x>0时,e^x>1+x。
我们考虑函数f(x)=e^x-(1+x),取f'(x)=e^x-1、如果f'(x)≥0,则f(x)在x>0上单调递增,且f(x)在x=0处取到最小值。
通过计算可得f'(x)≥0,所以f(x)在x>0上单调递增,即e^x-(1+x)≥0。
即e^x>1+x。
方法二:使用函数的极值点如果函数f(x)在一些点x0处取得极小值(或极大值),则该点附近的函数值也有相应的性质。
举例说明:证明(1+x)^n > 1+nx,其中n为自然数。
我们考虑函数f(x) = (1+x)^n - (1+nx),取f'(x) = n(1+x)^(n-1) - n。
令f'(x) = 0,可得x = -1/(n-1)。
我们先考虑x ∈ (-∞, -1/(n-1)),在此区间上f'(x) > 0,所以f(x)在此区间上单调递增。
当x < -1/(n-1)时,有f(x) > f(-1/(n-1)) = 0。
所以在此区间上(1+x)^n > 1+nx。
同理可得,当x ∈ (-1/(n-1), +∞)时,也有(1+x)^n > 1+nx。
方法三:使用函数的凹凸性如果函数f(x)在一些区间上是凹的(或凸的),则函数的函数值也有相应的性质。
举例说明:证明当a>0时,有√a≤(a+1)/2我们考虑函数f(x) = √x,取f''(x) = -x^(-3/2)。
我们知道,当f''(x)≥0时,函数f(x)在该区间上为凹函数。
计算可得f''(x)≥0,所以f(x)在[0, +∞)上为凹函数。
利用导数证明不等式的几种策略导数在数学中起着至关重要的作用,不仅可以用来求函数的极值点和拐点,还可以用来证明不等式。
在证明不等式时,我们可以利用导数的性质来进行推导。
下面将介绍几种利用导数证明不等式的策略。
1.利用单调性证明不等式对于一个给定的函数,在其定义域内,如果函数在一段区间上是单调递增或者单调递减的,则可以利用该函数的导数证明一些不等式。
例如,我们要证明对于任意正实数x,有ln(x+1) < x。
我们可以设函数f(x) = x - ln(x+1),然后计算导数f'(x) = 1 - 1/(x+1)。
观察导数的符号可以发现,当x > 0时,导数f'(x) < 0,即函数f(x)在x > 0上是单调递减的。
因此,我们可以得出结论:ln(x+1) < x 对于任意正实数x成立。
2.利用极值点证明不等式对于一个给定的函数,如果该函数在一些点处取得极大值或者极小值,我们可以通过证明该极值点处的函数值与其他点处的函数值之间的关系,来证明不等式。
例如,我们要证明对于任意非负实数x,有x^3-3x^2+1>=0。
我们可以设函数f(x)=x^3-3x^2+1,然后计算导数f'(x)=3x^2-6x。
观察导数的零点可以发现,f'(x)=0时,x=0或者x=2,即函数f(x)在x=0和x=2处取得极小值或者极大值。
进一步计算f(0)=1和f(2)=-1可以发现,f(0)是函数f(x)在其定义域内的最小值。
因此,我们可以得出结论:x^3-3x^2+1>=0对于任意非负实数x成立。
3.利用泰勒展开证明不等式对于一个给定的函数,在一些点的邻域内,我们可以使用该函数的泰勒展开式来近似表示该函数。
通过比较泰勒展开式的高阶项可以得出一些不等式。
例如,我们要证明对于任意正实数x,有e^x>x^2、我们可以使用泰勒展开式来近似表示函数e^x和函数x^2,在x=0处进行展开。
导数中证明不等式技巧——构造切线放缩二元变量凹凸反转唯手熟尔!在导数中证明不等式时,我们可以运用一些技巧来简化证明过程。
以下是几种常用的技巧:1.构造法:构造一个函数,使其导数的符号与要证明的不等式的符号相同。
例如,要证明$f(x)>g(x)$,可以构造一个函数$h(x)=f(x)-g(x)$,然后证明$h'(x)>0$。
这样,当$h'(x)>0$时,$h(x)$就递增,从而$f(x)-g(x)$也递增,即$f(x)>g(x)$。
2.切线放缩法:通过构造一个切线来放缩函数。
例如,要证明$f(x)>g(x)$,可以找到函数$f(x)$在其中一点处的切线,然后利用切线的性质来证明不等式。
具体地,找到函数$f(x)$在其中一点$x_0$处的切线$y=h(x_0)+h'(x_0)(x-x_0)$,然后证明$h(x_0)+h'(x_0)(x-x_0)>g(x)$成立。
3.二元变量法:将不等式中的一些变量表示为另一个变量的函数,然后对新的不等式进行处理。
例如,对于$f(x)>g(x)$,我们可以将其中的一个变量表示为另一个变量的函数,例如$x=h(y)$,然后将不等式转化为$F(y)>G(y)$的形式进行证明。
4.凹凸反转法:利用函数的凹凸性质来证明不等式。
例如,要证明$f(x)>g(x)$,可以证明$-f(x)<-g(x)$,然后利用函数的凹凸性质,通过证明$-f(x)$是凸函数,而$-g(x)$是凹函数,从而得到$-f(x)<-g(x)$成立。
最后,无论采用哪种技巧,熟练掌握基本的导数计算和不等式性质是非常重要的。
只有通过大量的练习,加深对导数和不等式的理解,才能真正掌握这些技巧,并在实际应用中灵活运用。
专题五 利用导数证明不等式一、用函数的单调性证明不等式:我们知道函数在某个区间上的导数值大于(或小于)0时,则该函数在该区间上单调递增(或递减).因而在证明不等式时,根据不等式的特点,有时可以构造函数,用导数证明该函数的单调性,然后再用函数单调性达到证明不等式的目的.即把证明不等式转化为证明函数的单调性.一般方法:构造辅助函数→判定单调性→得所证不等式.基本依据:若()f x 在(,)a b 内单增⇒()()()f a f x f b <<;若()f x 在(,)a b 内单减⇒()()()f b f x f a <<.具体有如下几种形式:1.由欲证形式直接构造构造“形似”函数,然后用导数证明该函数的增减性;再利用函数在它的同一单调递增(减)区间,自变量越大,函数值越大(小),来证明不等式成立.【例1】当0x >时,求证;2ln(1)02x x x --+<. 证明:设2()ln(1) (0)2x f x x x x =--+≥,则2()1x f x x '=-+. ∵0x >,∴()0f x '<,故()f x 在[0,)+∞上递减,∴0x >时,()(0)0f x f <=,即2ln(1)02x x x --+<成立. 【针对练习1】求证:当(1,)x ∈+∞时,3221ln 032x x x -->. 证明:设3221()ln 32F x x x x =--,[1,)x ∈+∞,则221(1)(21)()2x x x F x x x x x-++'=--=. 当1>x 时,()0F x '>,从而)(x F 在(1,)+∞上为增函数, ∴1()(1)06F x F >=>,∴3221ln 032x x x -->. 2.由欲证形式做恒等变形作差或作商,变成初等函数四则运算的形式,若变量没有x ,将其中一个常数改为x ),则另一端即为所求作的辅助函数()F x ,然后利用导数证明该函数的单调性,达到证明不等 式的目的.【例2】求证:当),0(+∞∈x 时,2ln(1)2(1)x x x x +<-+. 证明:令2()ln(1)2(1)x f x x x x =--++,补充定义(0)0f =,则 2222244212()104(1)14(1)x x x x f x x x x +-'=--=>+++, ∴()f x 在[0,)+∞上单调递增,∴在(0,)+∞上()(0)0f x f >=, ∴2ln(1)2(1)x x x x +<-+. 点评:一般的,用导数证明不等式时要注意所构造的函数在区间端点处是否连续,即是否要补充函数在端点处的定义;另外要注意用到一个结论:设函数()f x 在区间[,)a +∞上连续,在区间(,)a +∞内可 导,且()0f x '>,又()0f a ≥,则x a >时,()0f x >.【针对练习2】求证:当(0,)x π∈时,sin x x <.证明:令()sin f x x x =-,补充定义(0)0f =,则()cos 10f x x '=-<,∴()f x 在(0,)π上单调递减,∴在(0,)π上()(0)0f x f <=,∴sin x x <.【例3】当)1,0(∈x 时,证明:22(1)ln (1)x x x ++<.证明:令22()(1)ln (1)f x x x x =++-,则(0)0f =,而2()ln (1)2ln(1)2f x x x x '=+++-,(0)0f '=,当(0,1)x ∈时,ln(1)22()22[ln(1)]0111x f x x x x x x+''=+-=+-<+++, ∴()f x '在(0,1)x ∈上递减,即()(0)0f x f ''<=,从而()f x 在(0,1)递减, ∴()(0)0f x f <=,22(1)ln (1)x x x ++<.【针对练习3】求证:当),0(+∞∈x 时,2112x e x x ->+. 证明:设21()1 (0)2x f x e x x x =---≥,则()1x f x e x '=--,()1x f x e ''=-. 当0x ≥时,()0f x ''≥,∴()f x '在[0,)+∞上单调递增,()(0)0f x f ''≥=,∴()f x 在[0,)+∞上单调递增,()(0)0f x f ≥=,∴2112x e x x ->+. 【例4】求证:当0x π<<时,sin 2x x π>. 证明:若令()sin 2x x f x π=-,证明过程比较麻烦,我们可令sin 2()x f x x=, 则221cos sin cos 2222()(tan )022x x x x x x f x x x ⋅-'==-<, ∵0x π<<,∴022x π<<,则tan 22x x <,∴()0f x '<,即()f x 在(0,)π上单减, 故1()()f x f ππ>=,即sin 2x x π>. 【例5】求证:当b a e >>时,b a a b >.(常数不等式一般化为函数不等式证明) 分析:ln ln ln ln b a a b a b b a a b a b >⇔>⇔>,可令ln () ()x f x x e x=>,证()f x 单减; 或者ln ln b a a b b a a b >⇔>,证ln ln ()x a a x x a >>,可令()ln ln ()f x x a a x x a =->,证()0f x >.证法一:令ln () ()x f x x e x =>,则21ln ()0x f x x -'=<,∴()f x 在(,)e +∞单减, 又b a e >>,∴ln ln a b a b>,即b a a b >. 证法二:令()ln ln ()f x x a a x x a e =->>,则()ln 0a f x a x'=->, ∵ln 1a >,1a x<,∴()f x 在(,)a +∞单增, ∴()()0f x f a >=,ln ln ()x a a x x a >>,特别地令x b =,得ln ln b a a b >,即b a a b >.【针对练习4】证明:当1x >时,2ln (1)ln ln(2)x x x +>+.证明:设ln(1)() (1)ln x f x x x+=>,则22ln ln(1)ln (1)ln(1)1()ln (1)ln x x x x x x x x f x x x x x +--+++'==+. 由于11x x <<+,∴0ln ln(1)x x <<+,故ln (1)ln(1)x x x x -++,∴在(1,)+∞内()0f x '<,∴()f x 在(1,)+∞单减,即ln(1)ln(2)ln ln(1)x x x x ++>+, 从而2ln (1)ln ln(2)x x x +>+.3.通过换元后作差构造函数证明不等式. 【例6】(07山东)证明:对任意的正整数n ,不等式23111ln(1)n n n +>-都成立. 分析:本题是山东卷的第(2)问,从所证结构出发,只需令x n=1,则问题转化为:当0>x 时,恒有 23ln(1)x x x +>-成立,现构造函数32()ln(1)h x x x x =-++,求导即可达到证明.证明:令32()ln(1)h x x x x =-++,则32213(1)()3211x x h x x x x x +-'=-+=++在),0(+∞∈x 上恒正, ∴函数()h x 在(0,)+∞上单调递增,∴(0,)x ∈+∞时,恒有()(0)0h x h >=,即32ln(1)0x x x -++>,∴23ln(1)x x x +>-.对任意正整数n ,取1(0,)x n =∈+∞,则有23111ln(1)n n n+>-. 【针对练习5】若(0,)x ∈+∞,求证:111ln 1x x x x+<<+. 证明:令11t x +=,∵0x >,∴1t >,11x t =-. 则原不等式11ln 1t t t ⇔-<<-,令()1ln f t t t =--([1,))t ∈+∞,∴1()1f t t'>-. ∵[1,)t ∈+∞,∴()0f t '≥,∴()f t 在[1,)+∞上为增函数.()(1)0f t f >=,∴1ln t t ->. 令1()ln 1g t t t =-+([1,))t ∈+∞,∴22111()t g t t t t-'=-=, ∵[1,)t ∈+∞,∴()0g t '≥,∴()g t 在[1,)+∞上为增函数.()(1)0g t g >=,∴1ln 1t t >-,∴111ln 1x x x x+<<+. 点评:(1)代换作用:此题设代换11t x=+,0x <<+∞实际上就是把原来取不到的0x =值代换为可取 到的1t =,把原来要研究函数在x →+∞处的值,等价为研究函数在1t =处的值;(2)若令1t x =,则11ln(1)x x +<,即为本题的特例,想一想11ln 1x x x +<+如何证? 4.利用导数求出函数的最值(或值域)后,再证明不等式.【例7】求证:当n N *∈,3n ≥时,221nn >+.证明:要证原式,即需证:2210n n -->,对3n ≥时成立.设()22 1 (3)x f x x x =--≥,则()2ln2 2 (3)x f x x '=-≥,∵3x ≥,∴3()2ln 22f x '≥->,∴()f x 在[3,)+∞上是增函数,∴()f x 的最小值为3(3)26110f =--=>,()0 (3)f x x >≥. ∴,n N *∈,3n ≥时,221n n >+.【针对练习6】当0x >,01a <<时,证明:1a x ax a -≤-.证明:设() 1 (0)a f x x ax a x =-+->,则11()(1)a a f x ax a a x--'=-=-.令()0f x '=,得1x =.当(0,1)x ∈时,()0f x '>,当(1,)x ∈+∞时,()0f x '<,即)(x g 在(0,1)上为增函数,在(1,)+∞上为减函数.故函数()f x 在(0,)+∞上的最大值为max ()(1)0f x f ==,即()(1)0f x f ≤=,∴10a x ax a -+-≤,即1a x ax a -≤-.【例8】(07安徽)已知定义在正实数集上的函数21()22f x x ax =+,2()3ln g x a x b =+,其中0a >, 且2253ln 2b a a a =-,求证:()()f x g x ≥. 证明:设221()()()23ln 2F x g x f x x ax a x b =-=+--,则23()(3)()2a x a x a F x x a x x-+'=+-=, ∵0x >,0a >,∴当x a =时,()0F x '=,故()F x 在(0,)a 上为减函数,在(,)a +∞上为增函数,于是函数()F x 在(0,)+∞上的最小值是()()()0F a f a g a =-=,故当0x >时,有()()0f x g x -≥,即()()f x g x ≥.【针对练习7】已知函数()ln(1)f x x x =+-,求证:当1x >-时,恒有11ln(1)1x x x -≤+≤+. 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数1()ln(1)11g x x x =++-+,从其 导数入手即可证明. 证明:1()111x f x x x '=-=-++. ∴当10x -<<时,()0f x '>,即()f x 在(1,0)-上为增函数;当0>x 时,()0f x '<,即()f x 在(0,)+∞上为减函数.于是函数()f x 在(1,)-+∞上的最大值为max ()(0)0f x f ==,因此,当1x >-时,()(0)0f x f ≤=,即ln(1)0x x +-≤,∴ln(1)x x +≤. 令1()ln(1)11g x x x =++-+,则2211()1(1)(1)x g x x x x '=-=+++. 当(1,0)x ∈-时,()0g x '<,当(0,)x ∈+∞时,()0g x '>,即)(x g 在(1,0)-上为减函数,在(0,)+∞上为增函数.故函数)(x g 在(1,)-+∞上的最小值为min ()(0)0g x g ==,∴当1x >-时,()(0)0g x g ≥=,即1ln(1)101x x ++-≥+,∴111)1ln(+-≥+x x . 综上可知,当1x >-时,有11ln(1)1x x x -≤+≤+. 【例9】已知31()3f x x x =-,1x ,2[1,1]x ∈-时,求证:12|()()|f x f x -43≤. 证明:∵2()1f x x '=-,[1,1]x ∈-时,()0f x '≤,∴()f x 在[1,1]-上递减,故()f x 在[1,1]-上的最大值为2(1)3f -=,最小值为2(1)3f =-, 即()f x 在[1,1]-上的值域为22[,]33-. ∴1x ,2[1,1]x ∈-时,1|()|f x 23≤,2|()|f x 23≤, 即有12|()()|f x f x -≤12|()||()|f x f x +224333≤+=. 【针对练习8】证明:若1p >,对于[0,1]中的任意x 都有11(1)12p p p x x -≤+-≤.证明:()(1) (01)p p f x x x x =+-≤≤,则1111()(1)[(1)]p p p p f x px p x p x x ----'=--=--,令()0f x '=,则11(1)p p x x --=-,即1x x =-,解得12x =. 当1(,1]2x ∈时,()0f x '>,当1[0,)2x ∈时,()0f x '<,∴()f x 在1[0,)2递减;()f x 在1(,1]2递增.∴()f x 的最小值为111111()()()2()22222p p p p f -=+==, 又(1)1f =,(0)1f =,∴()f x 的最大值为1,即[0,1]x ∈时,11()12p f x -≤≤, 故11(1)12p p p x x -≤+-≤. 二、用中值定理证明不等式: 1.利用拉格朗日中值定理:若()f x 满足以下条件:(1))(x f 在闭区间],[b a 内连续;(2))(x f 在开区间),(b a 上可导,则在(,)a b 内至少存在一点ξ,使得()()()f b f a f b aξ-'=-. 一般方法:构造辅助函数→据拉格朗日中值定理得等式→由ξ的范围确定()f ξ'范围得所证不等式.【例1】证明不等式:ln b a b b a b a a--<<(0)a b <<. 分析:把不等式可以改写成11()ln ln ()b a b a b a b a-<-<-,可见中项是函数ln x 在区间[,]a b 两端值之 差,而()b a -是该区间的长度,于是可对ln x 在[,]a b 上使用拉格朗日中值定理.证明:设()ln f x x =,则1()f x x'=.在区间[,]a b 上满足拉格朗日中值定理的条件, 故在(,)a b 上存在ξ,使得()()1()f b f a f b a ξξ-'==-,即ln ln 1b a b a ξ-=-. 又因111b aξ<<,于是有1ln ln 1b a b b a a -<<-,即ln b a b b a b a a --<<. 【针对练习1】设0a b <<,证明:22ln ln 2b a a b a a b ->-+. 证明:设()ln f x x =,则1()f x x'=.在区间[,]a b 上满足拉格朗日中值定理的条件, 故在(,)a b 上存在ξ,使得()()1()f b f a f b a ξξ-'==-,即ln ln 1b a b a ξ-=-. ∵222a b ab +≥,∴2212a b a b ≥+,又因11b ξ<,于是有22ln ln 2b a a b a a b ->-+. 【针对练习2】设2e a b e <<<,证明:2224ln ln ()b a b a e->-. 证明:令2()ln f x x =,则2ln ()x f x x'=.在区间[,]a b 上满足拉格朗日中值定理的条件, 故在(,)a b 上存在ξ,使得()()2ln ()f b f a f b a ξξξ-'==-,即22ln ln ln 2b a b a ξξ-=⋅-,2(,)(,)a b e e ξ∈⊂. 再令ln ()x g x x=2()e x e <<,1ln ()0x g x x -'=<, ∴()g x 单调递减,222()()g g e e ξ>=,从而2ln 42eξξ⋅>, ∴原不等式2224ln ln ()b a b a e->-成立. 说明:也可令2224()ln ln ()f x x a x a e=---,2()e a x e <<<,证()0f x >. 【例2】若0y x <<,1p >,则11()()p p p p py x y x y py x y ---<-<-.分析:∵0y x <<,则原不等式等价于11p pp p x y py px x y---<<-)1(>p . 令()p f t t =,则我们容易联想到Lagrange 中值定理()()()()f x f y f x y x yξ-'-=-. 证明:设()p f t t =,则1()p f t pt -'=.在(,)y x 上满足Lagrange 中值定理的条件, 故(,)y x ξ∃∈,使得()()()f x f y f x y ξ-'=-,即1p pp x y p x yξ--=-. ∵(,)y x ξ∈,y x ξ<<,∴111p p p py p px ξ---<<,∴11()()p p p p py x y x y py x y ---<-<-.【针对练习3】(13湖北理)设n N *∈,r 为正有理数.证明:1111(1)(1)11r r r r r n n n n n r r ++++--+-<<++. 证明:1()r f x x +=,x N *∈,r 为正有理数,则()(1)r f x r x '=+.在区间[,1]n n +上满足拉格朗日中值定理的条件,故在(,1)n n +上存在ξ,使得(1)()()(1)1r f n f n f r n nξξ+-'==++-, 即11(1)(1)r r r n n r ξ+++-=+,∴11(1)1r r r n n r ξ+++-=+. 又∵(,1)n n ξ∈+,r 为正有理数,∴r r n ξ>,∴11(1)1r r r n n n r +++-<+. 同理可证11(1)1r r r n n n r ++--<+,∴1111(1)(1)11r r r r r n n n n n r r ++++--+-<<++. 【例3】证明:当0x >时,ln(1)1x x x x <+<+. 分析:注意到ln10=,可构造函数的改变量ln(1)ln1x +-,则相应自变量的改变量为(1)1x x +-=,所 证不等式等价于1ln(1)ln111x x x+-<<+,可考虑用拉格朗日中值定理,导数入手即可证明. 证明:令()ln f x x =,则1()f x x'=.在区间[1,1]x +上满足拉格朗日中值定理的条件. 故在(1,1)x +上存在ξ,使得(1)(1)1()11f x f f x ξξ+-'==+-, 即ln(1)ln11x x ξ+-=,∴ln(1)1x x ξ+=.由于1111x ξ<<+,∴1ln(1)11x x x +<<+,即ln(1)1x x x x <+<+. 【针对练习4】若01x <<,证明:2(1)1x x e x -<+. 证明:将不等式变形为2(1)(1)0x x e x --+<,令2()(1)(1)x f x x e x =--+,则2()(12)1x f x x e '=--.在区间[0,] (01)x x <<上满足拉格朗日中值定理的条件.故在(0,)x 上存在ξ,使得()(0)() (0)0f x f f x x ξξ-'=<<-,即()(0)()f x f f x ξ'-=, ∴22(1)(1)[(12)1]x x e x e x ξξ--+=--.由于2()(12)1f e ξξξ'=--的范围不易判断,于是求2()40f e ξξξ''=-<.∴()f ξ'在(0,1)上单调递减,()(0)0f f ξ''<=,即()(0)()0f x f f x ξ'-=<, ∴2(1)(1)0x x e x --+<.小结:拉格朗日中值定理本身是以等式的形式存在的,利用它证明不等式时,根据ξ在(,)a b 内的取值可以估计()f ξ'的取值范围,从而得到要证的不等式.在具体操作时,若要证的不等式不含函数改变 量()()f b f a -和自变量b a -,通过对不等式变形,凑出()()f b f a -和b a -,关键是准确选择函 数()f x ,以及区间[,]a b .同时在确定()f ξ'时,可利用导数有关知识,如求二阶导数.2.利用积分中值定理:若)(x f 在闭区间],[b a 内连续,则在(,)a b 内至少存在一点ξ,使得()()()ba f x dx fb a ξ'=-⎰.一般方法:构造辅助函数→据积分中值定理得等式→由ξ的范围确定()f ξ'范围得所证不等式.【例4】(13湖北理)设n N *∈,r 为正有理数.证明:1111(1)(1)11r r r r r n n n n n r r ++++--+-<<++. 证明:()r f x x =,x N *∈,r 为正有理数,则在区间[,1]n n +上满足积分中值定理的条件, 故在(,1)n n +上存在ξ,使得111111(1)()[(1)]|11r r n rr n n n n n f n n x dx x r r ξ++++++-+-===++⎰, 即11(1)1r r rn n r ξ+++-=+. 又∵(,1)n n ξ∈+,r 为正有理数,∴r r n ξ>,∴11(1)1r r rn n n r +++-<+. 同理可证11(1)1r r r n n n r ++--<+,∴1111(1)(1)11r r r r r n n n n n r r ++++--+-<<++. 【针对练习5】积分中值定理证明不等式:ln b a b b a b a a--<<(0)a b <<. 分析:1ln ln ln b a b b a dx a x =-=⎰,可见可用积分中值定理构造函数1()f x x=,[,]x a b ∈来处理. 证明:设1()f x x=,则在区间[,]a b 上满足积分中值定理的条件, 故在(,)a b 上存在ξ,使得1()()ln |ln ln b b a a b a f dx x b a x ξ-===-⎰,即ln ln 1b a b a ξ-=-. 又因111b aξ<<,于是有1ln ln 1b a b b a a -<<-,即ln b a b b a b a a --<<. 三、用凹凸性证明不等式:我们知道,在(,)a b 内,若()0f x ''>,则函数()y f x =的图形下凸,即位于区间12[,]x x 中点122x x +处弦的纵坐标不小于曲线的纵坐标,即有:1212()()()22x x f x f x f ++≤,其中1x ,2(,)x a b ∈内任意两点.等号仅在12x x =时成立.在(,)a b 内,若()0f x ''<,则函数()y f x =的图形上凸,即位于区间12[,]x x 中点122x x +处弦 的纵坐标不小于曲线的纵坐标,即有:1212()()()22x x f x f x f ++≥,其中1x ,2(,)x a b ∈内任意两 点.等号仅在12x x =时成立.一般方法:构造辅助函数→判定凹凸性→得所证不等式. 【例1】设0x >,0y >,证明不等式ln ln ()ln2x y x x y y x y ++≥+,且等号仅在x y =时成立. 分析:将不等式两边同时除以2,变形为为ln ln ()ln 222x x y y x y x y +++≥,便可看出,左边是函数 ()ln f t t t =在两点x ,y 处的值的平均值,而右边是它在中点2x y +处的函数值,这时只需 ()0f t ''≥即可得证.证明:设()ln f t t t =,即()1ln f t t '=+,1()0f t t''=>,故函数()y f x =在(0,)+∞是下凸的. 由下凸函数性质x ,(0,)y ∈+∞,1[()()]()22x y f x f y f ++≥,得 ln ln ()ln 222x x y y x y x y +++≥,即ln ln ()ln 2x y x x y y x y ++≥+,等号仅在x y =时成立. 【针对练习1】证明:1()() (0, 0, , 1)22n n n x y x y x y x y n ++>>>≠>. 证明:令() (0, 1)n f t t t n =>>,则1()n f t nt -'=,2()(1)0n f t n n t -''=->,∴函数()n f t t =在(0,)+∞是凹的,据凹凸性的定义可知,对任意的x ,(0,)y ∈+∞,x y ≠有()()()22x y f x f y f ++<,即1()()22n n n x y x y ++>.。
第108课利用导数证明不等式基本方法:解决这类问题关键是构造一个新的函数,再研究新函数在所考虑区间上的单调性和极值、最值;注意:构造新函数()F x 不同,确定()F x '符号难易程度可能不同,所以构造新函数时可对原不等式作适当的变形再进行构造.先构造在赋值,证明和式或积式成立.一、典型例题1.已知函数()21e xax x f x +-=.(1)求曲线()y f x =在点()0,1-处的切线方程;(2)证明:当1a ≥时,()e 0f x +≥.答案:(1)210x y --=;(2)见解析解析:(1)()()2212e x ax a xf x +-'-+=,()02f '=.因此曲线()y f x =在点()0,1-处的切线方程是210x y --=.(2)当1a ≥时,()()21e 1e e x x f x x x +-+≥+-+.令()211e x g x x x +=+-+,则()121e x g x x +=++'.当1x <-时,()0g x '<,()g x 单调递减;当1x >-时,()0g x '>,()g x 单调递增;所以()g x ()1=0g ≥-.因此()e 0f x +≥.2.已知函数()23e 2x f x x x x =++-,证明:()ln f x x >.答案:见解析解析:法一:()23e 2x f x x x x =++-,设()2e ln x h x x x x x =++-,则只需证明()32h x >,()()11e 21x h x x x =+++-'()11e 2x x x ⎛⎫=++- ⎪⎝⎭,设()1e 2x g x =+-,则()21e 0x g x x =+>',()g x ∴在()0,+∞上单调递增,141e 2404g ⎛⎫=+-< ⎪⎝⎭ ,131e 2303g ⎛⎫=+-> ⎪⎝⎭ ,011,43x ⎛⎫∴∃∈ ⎪⎝⎭,使得0001()0e 2x g x x =+-=,且当()00,x x ∈时,()0g x <,当()0,x x ∈+∞时,()0g x >,∴当()00,x x ∈时,()0h x '<,()h x 单调递减,当()0,x x ∈+∞时,()0h x '>,()h x 单调递增,()()0min h x h x ∴==020000e ln x x x x x ++-,由001e 20x x +-=,得001e 2x x =-,()00012h x x x ⎛⎫∴=-+ ⎪⎝⎭2000ln x x x +-20001ln x x x =-+-,设()21ln x x x x ϕ=-+-,11,43x ⎛⎫∈ ⎪⎝⎭,()121x x x ϕ'=--()()211x x x +-=,∴当11,43x ⎛⎫∈ ⎪⎝⎭时,()0x ϕ'<,()x ϕ在11,43⎛⎫ ⎪⎝⎭单调递减,∴()()00h x x ϕ=>21133ϕ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭111ln 33⎛⎫-+- ⎪⎝⎭73ln392=+>,因此()32h x >.法二:先证当0x ≥时,()23e 2x f x x x x =++-322x ≥-,即证2e (e 1)0x x x x x x x +-=-+≥,e 10x x -+≥在0x ≥时,显然成立,得证.再证32ln 2x x -≥,设()32ln (0)2h x x x x =-->,则()1212x h x x x ='-=-,令()0h x '=,得12x =,当10,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,()h x 单调递减;当1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0h x '>,()h x 单调递增.∴()32ln 2h x x x =--11ln2022h ⎛⎫≥=-+=> ⎪⎝⎭,即32ln 2x x ->.又()233e 222x f x x x x x =++-≥-,()ln f x x ∴>.二、课堂练习1.已知2()e ln(1)x f x x =++,当0x ≥时,求证:2()(1)f x x x ≥++.答案:见解析解析:设22()e ln(1)(1)(0)x F x x x x x =++-+-≥,则21()2e2(1)11x F x x x '=+-+-+,令()()g x F x '=,则221()41e 2()x g x x '=--+22221[]e e e 2(1)0(1)x x x x =-+-+>+,所以()g x 在[0,)+∞上递增,所以()()(0)0g x F x g '=≥=;所以()F x 在[0,)+∞上递增,所以()(0)0F x F ≥=,即0x ≥时不等式2()(1)f x x x ≥++成立.2.已知函数()e ln 1x f x a x =--.(1)设2x =是()f x 的极值点.求a ,并求()f x 的单调区间;(2)证明:当1e a ≥时,()0f x ≥.答案:(1)212e a =;()f x 在(0,2)单调递减,在(2,)+¥单调递增;(2)证明见解析.解析:(1)()f x 的定义域为()0,+∞,1()e x f x a x ¢=-,由题设知,(2)0f ¢=,所以212ea =.从而()21e ln 12e x f x x =--,211()e 2ex f x x '=-.当02x <<时,()0f x ¢<;当2x >时,()0f x ¢>.所以()f x 在(0,2)上单调递减,在(2,)+¥上单调递增.(2)当1e a ≥时,e ()ln 1e x f x x ≥--.设e ()ln 1e x g x x =--,则()e 1e x g x x'=-,当01x <<时,()0g x ¢<,当1x >时,()0g x ¢>.所以1x =时()g x 取最小值.故当0x >时,()(1)0g x g ³=.因此,当1a e≥时,()0f x ≥.三、课后作业1.已知函数()e 1xf x =-,当1x >-时,证明:221()1x x f x x +->+.答案:见解析解析:因为当1x >-时,不等式221()1x x f x x +->+等价为221e 121x x x x x +->+=+,即证e 20x x ->.设函数()e 2(1)x h x x x =->-,则()e 2x h x '=-,令()0h x '=,解得ln 2x =.当ln 2x >时,()0h x '>,当1ln 2x -<<时,()0h x '<,所以2()(ln 2)22ln 2ln e ln 40h x h ≥=-=->,所以e 20xx ->,则不等式221()1x x f x x +->+成立.2.已知()()21ln 1f x x x x =-+-,证明:()1f x >-.答案:见解析解析:()()12ln 3,0,f x x x x +'=-∈+∞,令()()12ln 3,0,h x x x x =-+∈+∞,所以()2221210x h x x x x+=+=>',故()h x 在()0,+∞上单调递增,又()1e 120,1ln4ln 024h h ⎛⎫=>=-=< ⎪⎝⎭,所以存在01,12x ⎛⎫∈ ⎪⎝⎭,使得()00h x =,即()00f x '=,所以()0012ln 30*x -+=,所以()(),f x f x '随x 的变化情况如下:x()00,x 0x ()0,x +∞)f x '(-0+()f x 单调递减极小值单调递增所以()()()0000min 21ln 1f x f x x x x ==-+-,由()*式得0013ln 22x x =-,代入上式得()()()0000min 00131321122222f x f x x x x ⎛⎫==--+-=--+ ⎪⎝⎭,令()1312,,1222t x x x x ⎛⎫=--+∈ ⎪⎝⎭,所以()()()22121212022x x t x x x +-'=-=<,所以()t x 在1,12⎛⎫ ⎪⎝⎭上单调递减,()()1t x t >,又()11t =-,所以()1t x >-,即()01f x >-,所以()1f x >-.3.已知函数()21e xax x f x +-=.证明:当1a ≥时,()e 0f x +≥.答案:见解析解析:当1a ≥时,()()21e 1e e x x f x x x +-+≥+-+.令()211e x g x x x +=+-+,则()121e x g x x +=++'.再令()()121e x x h x g x +++'==,则()12e 0x h x ++'=>,所以()h x 单调递增,又()()110h g '-=-=,所以当1x <-时,()0h x <即()0g x '<,()g x 单调递减;当1x >-时,()0h x >即()0g x '>,()g x 单调递增;所以()g x ()1=0g ≥-.因此()e 0f x +≥.。
利用导数证明不等式的几种方法导数是微积分的一个重要概念,它可以用来研究函数的变化趋势和性质。
在证明不等式时,利用导数是一种常见的方法。
下面将介绍几种常用的利用导数证明不等式的方法。
一、极值点法这种方法的基本思路是通过求函数的导数,并找出函数的极值点,来确定不等式的成立条件。
具体步骤如下:1.求函数的导数。
2.找出导数存在的区间。
3.求出导数的零点即函数的极值点。
4.判断在极值点附近函数的变化情况,从而确定不等式的成立条件。
例如,我们要证明一个函数f(x)在区间[a,b]上是单调递增的。
则可以通过求函数的导数f'(x),找出f'(x)的零点,然后判断f'(x)的符号来确定f(x)的变化趋势。
这种方法的特点是简单直观,容易理解和操作。
但是要求函数的导数存在,在一些特殊情况下可能无法使用。
二、Lagrange中值定理法Lagrange中值定理是微积分中的一个重要定理,它表明:如果一个函数在区间 [a, b] 上连续,并且在 (a, b) 上可导,则在 (a, b) 存在一个点 c,使得函数在 c 处的导数等于函数在 [a, b] 上的平均变化率。
利用这个定理,可以通过求函数在区间两个点处的导数差值,来推导出不等式。
具体步骤如下:1.假设函数在区间[a,b]上连续,并且在(a,b)上可导。
2.设点a和点b为函数的两个不同取值,即f(a)和f(b)。
3. 由Lagrange中值定理,存在点 c 在 (a, b) 上,使得 f'(c) = (f(b) - f(a)) / (b - a)。
4.判断f'(c)的符号,从而确定不等式的成立条件。
Lagrange中值定理法的优点是具有普适性,可以应用于各种函数。
但是要求函数在区间上连续,在一些特殊情况下可能无法使用。
三、Cauchy中值定理法Cauchy中值定理是微积分中的另一个重要定理,它是Lagrange中值定理的推广形式。
3.5 利用导数证明不等式【题型解读】【知识储备】1.导数证明不等式方法:(1)构造单函数求最值证明不等式; (2)构造双函数比较最值证明不等式; (3)参变分离转化为具体函数最值证明不等式; (4)不等式放缩证明不等式;(5)双变量不等式证明转化为单变量不等式证明。
2.常用不等式的生成在不等式“改造”或证明的过程中,可借助题目的已知结论、均值不等式、函数单调性、与e x 、ln x 有关的常用不等式等方法进行适当的放缩,再进行证明.下面着重谈谈与e x 、ln x 有关的常用不等式的生成. (1)生成一:利用曲线的切线进行放缩设e x y =上任一点P 的横坐标为m ,则过该点的切线方程为()e e m my x m -=-,即()e 1e m m y x m =+-,由此可得与e x 有关的不等式:()e e1e xmm x m ≥+-,其中x ∈R ,m ∈R ,等号当且仅当x m=时成立.特别地,当0m =时,有e 1x x ≥+;当1m =时,有e e x x ≥. 设ln y x =上任一点Q 的横坐标为n ,则过该点的切线方程为()1ln y n x n n -=-,即11ln y x n n=-+,由此可得与ln x 有关的不等式:1ln 1ln x x n n≤-+,其中0x >,0n >,等号当且仅当x n =时成立.特别地,当1n =时,有ln 1x x ≤-;当e n =时,有1ln ex x ≤.利用切线进行放缩,能实现以直代曲,化超越函数为一次函数. 生成二:利用曲线的相切曲线进行放缩由图1可得1ln x x x -≥;由图2可得1ln e x x≥-;由图3可得,()21ln 1x x x -≤+(01x <≤),()21ln 1x x x -≥+(1x ≥);由图4可得,11ln 2x x x ⎛⎫≥- ⎪⎝⎭(01x <≤),11ln 2x x x ⎛⎫≤- ⎪⎝⎭(1x ≥).综合上述两种生成,我们可得到下列与e x 、ln x 有关的常用不等式: 与e x 有关的常用不等式: (1)e 1x x ≥+(x ∈R ); (2)e e x x ≥(x ∈R ). 与ln x 有关的常用不等式:(1)1ln 1x x x x -≤≤-(0x >); (2)11ln e ex x x -≤≤(0x >);(3)()21ln 1x x x -≤+(01x <≤),()21ln 1x x x -≥+(1x ≥);(4)11ln 2x x x ⎛⎫≥- ⎪⎝⎭(01x <≤),11ln 2x x x ⎛⎫≤- ⎪⎝⎭(1x ≥).用1x +取代x 的位置,相应的可得到与()ln 1x +有关的常用不等式.【题型精讲】【题型一 构造单函数证明不等式】方法技巧 构造单函数证明不等式待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,有时对复杂的式子要进行变形,利用导数研究其单调性和最值,借助所构造函数的单调性和最值即可得证. 例1 (2022·山东济南历城二中高三月考)已知函数f (x )=ln x +ax 2+(2a +1)x . (1)讨论f (x )的单调性; (2)当a <0时,证明f (x )≤-34a-2. 【解析】(1)f ′(x )=2ax 2+(2a +1)x +1x =(2ax +1)(x +1)x .当a ≥0时,f ′(x )≥0,则f (x )在(0,+∞)单调递增.若a <0,则f (x )在⎝⎛⎭⎫0,-12a 单调递增,在⎝⎛⎭⎫-12a ,+∞单调递减. (2)第一次构造辅助函数g (x )=f (x )+34a+2. 要证原不等式成立,需证g (x )max ≤0,即证f (x )max +34a +2≤0.由(1)知,当a <0时,f (x )max =f ⎝⎛⎭⎫-12a .即证ln ⎝⎛⎭⎫-12a +12a+1≤0 不妨设t =-12a >0,则证ln t -t +1≤0,令h (t )=ln t -t +1,求导得h ′(t )=1t -1.h ′(t )>0时,t ∈(0,1);h ′(t )<0时,t ∈(1,+∞).所以h (t )在(0,1)单调递增,在(1,+∞)单调递减,则h (t )max =h (1)=0.故f (x )≤-34a -2.【题型精练】1.(2022·天津·崇化中学期末)已知函数()ln 1a x bf x x x=++,曲线()y f x =在点()()1,1f 处的切线方程为230x y +-=.(1)求a 、b 的值;(2)证明:当0x >,且1x ≠时,()ln 1xf x x >-. 【解析】(1)()()221ln 1x a x bx f x x x +⎛⎫- ⎪⎝⎭'=-+. 由于直线230x y +-=的斜率为12-,且过点()1,1,所以()()11112f f ⎧=⎪⎨'=-⎪⎩,即1122b a b =⎧⎪⎨-=-⎪⎩,解得1a =,1b =. (2)由(1)知()ln 11x f x x x =++,所以()ln ln 1ln 111x x xf x x x x x >⇔+>-+- ()222ln 12110ln 0112x H x x x x x x x ⎡⎤⎛⎫⇔+>⇔=--> ⎪⎢⎥--⎝⎭⎣⎦.构造函数()11ln 2h x x x x ⎛⎫=-- ⎪⎝⎭(0x >),则()()22211111022x h x x x x -⎛⎫'=-+=-≤ ⎪⎝⎭,于是()h x 在()0,+∞上递减.当01x <<时,()h x 递减,所以()()10h x h >=,于是()()2101H x h x x=>-;当1x >时,()h x 递减,所以()()10h x h <=,于是()()2101H x h x x=>-.综上所述,当0x >,且1x ≠时,()ln 1xf x x >-. 2. (2022·山东济南高三期末)设函数()f x alnx x=,a R ∈.(1)讨论函数()f x 的单调性;(2)当1a =且1x >时,证明:213()2x x f x -+>.【解析】解:(1)函数()f x alnx x=+,定义域为(0,)+∞,1()a x f x x x-'=,① 当a ≤0时,()0f x '<,则()f x 在(0,)+∞上单调递减; ②当0a >时,令()0f x '=,解得21x a =, 当21(0,)x a ∈时,()0f x '<, 当21(x a∈,)+∞时,()0f x '>, 所以()f x 的单调递增区间为21(a ,)+∞,递减区间为21(0,)a . 综上所述,当a ≤0时,()f x 的单调递减区间为(0,)+∞; 当0a >时,()f x 的单调递增区间为21(a ,)+∞,递减区间为21(0,)a . (2)证明:当1a =时,令21()3(1)2h x lnx x x x x =+-+->, 则2211(1)(1)()1x x x x xx x x x h x x x x xx xx x--+---'=--+==,因为1x >,则()0h x '<,所以()h x 在(1,)+∞上单调递减, 故()h x h <(1)102=-<,则21302lnx x x x +-+-<,故213()2x x f x -+>. 【题型二 构造双函数比较最值证明不等式】方法技巧 构造双函数比较最值证明不等式若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个函数,从而找到可以传递的中间量,达到证明的目标.本例中同时含ln x 与e x ,不能直接构造函数,把指数与对数分离两边,分别计算它们的最值,借助最值进行证明.例2(2022·山东青岛高三期末)设函数1()ln x xbe f x ae x x-=+,曲线()y f x =在点(1,(1))f 处的切线方程为(1) 2.y e x =-+(I )求,;a b (II )证明:() 1.f x >【解析】(1)因为()1e f '=,()12f =,而()()12e e e ln x x a x bx bf x a x x-+-'=+,所以()()1e e 12f a f b '⎧==⎪⎨==⎪⎩,解得1a =,2b =.(2)由(1)知,()12e e ln x xf x x x -=+,于是()12e 1e ln 1x xf x x x ->⇔+>,将不等式改造为2ln e ex x x x +>. 令()2ln e m x x x =+,则()1ln m x x '=+.由()0m x '>可得1e x >,由()0m x '<可得10ex <<,所以()m x 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,e⎛⎫+∞ ⎪⎝⎭上递增,所以()min11e em x m ⎛⎫⎡⎤== ⎪⎣⎦⎝⎭.令()e x x n x =,则()1ex xn x -'=.由()0n x '<可得1x >,由()0n x '> 可得01x <<,所以()n x 在()0,1上递增,在()1,+∞上递减,所以()()max11en x n ⎡⎤==⎣⎦. 两个函数的凸性相反.此时,我们可以寻找与两个曲线都相切的公切线1ey =,将两个函数进行隔离,又因为等号不能同时成立,所以2ln e e xx x x +>. 【题型精练】1.(2022·天津市南开中学月考)已知函数f (x )=a ln x +x . (1)讨论f (x )的单调性; (2)当a =1时,证明:xf (x )<e x .【解析】(1) f (x )的定义域为(0,+∞), f ′(x )=ax +1=x +a x .当a ≥0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增.当a <0时,若x ∈(-a ,+∞),则f ′(x )>0; 若x ∈(0,-a ),则f ′(x )<0.所以f (x )在(-a ,+∞)上单调递增,在(0,-a )上单调递减. 综上所述,当a ≥0时,f (x )在(0,+∞)上单调递增;当a <0时,f (x )在(-a ,+∞)上单调递增,在(0,-a )上单调递减. (2)当a =1时,要证xf (x )<e x , 即证x 2+x ln x <e x ,即证1+ln x x <e x x 2.令函数g (x )=1+ln x x,则g ′(x )=1-ln xx 2.令g ′(x )>0,得x ∈(0,e);令g ′(x )<0,得x ∈(e ,+∞).所以g (x )在(0,e)上单调递增,在(e ,+∞)上单调递减, 所以g (x )max =g (e)=1+1e ,令函数h (x )=e xx 2,则h ′(x )=e x (x -2)x 3.当x ∈(0,2)时,h ′(x )<0;当x ∈(2,+∞)时,h ′(x )>0. 所以h (x )在(0,2)上单调递减,在(2,+∞)上单调递增, 所以h (x )min =h (2)=e 24.因为e 24-⎝⎛⎭⎫1+1e >0,所以h (x )min >g (x )max ,即1+ln x x <e xx2,从而xf (x )<e x 得证.2. (2022·安徽省江淮名校期末)已知函数f (x )=eln x -ax (a ∈R ). (1)讨论函数f (x )的单调性;(2)当a =e 时,证明:xf (x )-e x +2e x ≤0. 【解析】(1)f ′(x )=ex-a (x >0),①若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增; ②若a >0,则当0<x <ea 时,f ′(x )>0;当x >ea时,f ′(x )<0.故f (x )在⎝⎛⎭⎫0,e a 上单调递增,在⎝⎛⎭⎫ea ,+∞上单调递减. (2)因为x >0,所以只需证f (x )≤e xx-2e ,当a =e 时,由(1)知,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减. 所以f (x )max =f (1)=-e.设g (x )=e xx -2e(x >0),则g ′(x )=(x -1)e x x 2,所以当0<x <1时,g ′(x )<0,g (x )单调递减; 当x >1时,g ′(x )>0,g (x )单调递增, 所以g (x )min =g (1)=-e. 综上,当x >0时,f (x )≤g (x ),即f (x )≤e xx-2e.故不等式xf (x )-e x +2e x ≤0得证. 【题型三 放缩法证明不等式】方法技巧 放缩法证明不等式导数方法证明不等式中,最常见的是e x 和ln x 与其他代数式结合的问题,对于这类问题,可以考虑先对e x 和ln x 进行放缩,使问题简化,简化后再构建函数进行证明.常见的放缩公式如下:(1)e x ≥1+x ,当且仅当x =0时取等号.(2)ln x ≤x -1,当且仅当x =1时取等号. 例3 (2022·河南高三期末)已知函数f (x )=a e x -1-ln x -1. (1)若a =1,求f (x )在(1,f (1))处的切线方程; (2)证明:当a ≥1时,f (x )≥0.【解析】(1)当a =1时,f (x )=e x -1-ln x -1(x >0), f ′(x )=e x -1-1x,k =f ′(1)=0,又f (1)=0,∴切点为(1,0).∴切线方程为y -0=0(x -1),即y =0. (2)∵a ≥1,∴a e x -1≥e x -1,∴f (x )≥e x -1-ln x -1. 方法一 令φ(x )=e x -1-ln x -1(x >0),∴φ′(x )=e x -1-1x ,令h (x )=e x -1-1x ,∴h ′(x )=e x -1+1x 2>0,∴φ′(x )在(0,+∞)上单调递增,又φ′(1)=0,∴当x ∈(0,1)时,φ′(x )<0;当x ∈(1,+∞)时,φ′(x )>0, ∴φ(x )在(0,1)上单调递减,在(1,+∞)上单调递增, ∴φ(x )min =φ(1)=0,∴φ(x )≥0,∴f (x )≥φ(x )≥0,即f (x )≥0. 方法二 令g (x )=e x -x -1,∴g ′(x )=e x -1.当x ∈(-∞,0)时,g ′(x )<0; 当x ∈(0,+∞)时,g ′(x )>0,∴g (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增, ∴g (x )min =g (0)=0,故e x ≥x +1,当且仅当x =0时取“=”. 同理可证ln x ≤x -1,当且仅当x =1时取“=”. 由e x ≥x +1⇒e x -1≥x (当且仅当x =1时取“=”), 由x -1≥ln x ⇒x ≥ln x +1(当且仅当x =1时取“=”), ∴e x -1≥x ≥ln x +1, 即e x -1≥ln x +1,即e x -1-ln x -1≥0(当且仅当x =1时取“=”),即f (x )≥0. 【题型精练】1.(2022·广东·高三期末)已知函数1()1x e f x lnx-=+.(1)求函数()f x 的单调区间; (2)解关于x 的不等式11()()2f x x x>+【解析】(1)函数1()1x e f x lnx -=+.定义域为:11(0,)(,)ee+∞. 121(1)()(1)x e lnx x f x lnx -+-'=+,f '(1)0=. 令1()1g x lnx x =+-,211()0g x x x'=+>, ∴函数()g x 在定义域上单调递增. ∴10x e <<,11x e<<.()0f x '<,函数()f x 单调递减.1x >时,()0f x '>,函数()f x 单调递增. (2)不等式11()()2f x x x>+,即111()12x e x lnx x ->++.10x e <<,()0f x <,舍去.当1x =时,不等式的左边=右边,舍去.1x e∴>,且1x ≠.①11x e <<时,由1x e x ->,要证不等式111()12x e x lnx x ->++.可以证明:11()12x x lnx x >++.等价于证明:22211x lnx x >++.令222()(1)1x F x lnx x =-++. 2222(1)()0(1)x F x x x --'=<+,∴函数()F x 在1(,1)e上单调递减,()F x F ∴>(1)0=. ②当1x >时,不等式⇔12211x e lnxx x -+>+. 令122()1x e h x x -=+,1()lnxu x x+=. 12222(1)()0(1)x e x h x x --'=>+,函数()h x 在(1,)+∞上单调递增, ()h x h ∴>(1)1=.由1lnx x <-,()1u x ∴<.∴不等式12211x e lnxx x-+>+成立. 综上可得:不等式11()()2f x x x >+的解集为:1(,1)(1,)e +∞.【题型四 双变量不等式证明】方法技巧 双变量不等式证明对于两个未知数的函数不等式问题,其关键在于将两个未知数化归为一个未知数,常见的证明方法有以下4种:方法1:利用换元法,化归为一个未知数方法2:利用未知数之间的关系消元,化归为一个未知数 方法3:分离未知数后构造函数,利用函数的单调性证明 方法4:利用主元法,构造函数证明例4 (2022·黑龙江工农·鹤岗一中高三期末)已知函数()1ln f x x a x x=-+. ⑴讨论()f x 的单调性;⑵若()f x 存在两个极值点1x ,2x ,证明:()()12122f x f x a x x -<--.【解析】(1)定义域为()0,+∞,()222111a x ax f x x x x -+'=--+=-. ①若0a ≤,则()0f x '<,()f x 在()0,+∞上递减.②若240a ∆=-≤,即02a <≤时,()0f x '≤,()f x 在()0,+∞上递减.③若240a ∆=->,即2a >时,由()0f x '>2244a a a a x --+-<,由()0f x '<,可得240a a x --<<或24a a x +->,所以()f x 在24a a ⎛-- ⎝⎭,24a a ⎫+-+∞⎪⎪⎝⎭上递减,在2244a a a a --+-⎝⎭上递增.综上所述,当2a ≤时,()f x 在()0,+∞上递减;当2a >时,()f x 在24a a ⎛-- ⎝⎭,24a a ⎫+-+∞⎪⎪⎝⎭上递减,在2244a a a a --+-⎝⎭上递增.【证明】(2)法1:由(1)知,()f x 存在两个极值点,则2a >.因为1x ,2x 是()f x 的两个极值点,所以1x ,2x 满足210x ax -+=,所以12x x a +=,121x x =,不妨设1201x x <<<.()()11221212121211ln ln x a x x a x f x f x x x x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪-⎝⎭⎝⎭==-- ()()()()21121212121212121212ln ln ln ln ln ln 112x x x x a x x a x x a x x x x x x x x x x x x ---+---=--+=-+---,于是()()()121212212121222ln ln ln ln 2ln 222111f x f x a x x x x x a a x x x x x x x x ----<-⇔-+<-⇔<⇔<⇔----22212ln 0x x x +-<.构造函数()12ln g x x x x =+-,1x >,由(1)知,()g x 在()1,+∞上递减,所以()()10g x g <=,不等式获证.法2:由(1)知,()f x 存在两个极值点,则2a >.因为1x ,2x 是()f x 的两个极值点,所以1x ,2x 满足210x ax -+=,不妨设1201x x <<<,则2214x x a --,121x x =.()()11221212121211ln ln x a x x a x f x f x x x x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪-⎝⎭⎝⎭==-- ()22111122122*********ln ln ln14124a a x x x x a x x a a x x x x a a x x x x x x a -----++-=--+=----,于是()()22212222124ln44222444a a a f x f x a a a a a a a x x a a a ---+-+-<-⇔-<-⇔----- 22222444ln 4ln 222a a a a a a ⎛-+--⇔-< ⎪⎝⎭.设242a t -=,则244a t +,构造函数())2ln1t t t tϕ=-+,0t >,则()22212111011t t t t t ϕ++'==->+++,所以()t ϕ在()0,+∞上递增,于是()()00t ϕϕ>=,命题获证.法3:仿照法1,可得()()12121212ln ln 21f x f x x x a x x x x --<-⇔<--,因为121x x =,所以1212121121212122211212ln ln ln ln 1ln ln ln x x x x x x xx x x x x x x x x x x x x --<⇔⇔->⇔>--令()120,1x t x =,构造函数()12ln h t t t t=+-,由(1)知,()h t 在()0,1上递减,所以()()10h t h >=,不等式获证.【题型精练】1.(2022·全国高三课时练习)已知函数f (x )=ln x -2(x -1)x +1,g (x )=x ln x -m (x 2-1)(m ∈R ). (1)若函数f (x ),g (x )在区间(0,1)上均单调且单调性相反,求实数m 的取值范围; (2)若0<a <b ,证明:ab <a -b ln a -ln b<a +b2.【解析】 (1)f ′(x )=1x -4(x +1)2=(x -1)2x (x +1)2>0,所以f (x )在(0,1)上单调递增.由已知f (x ),g (x )在(0,1)上均单调且单调性相反,得g (x )在(0,1)上单调递减. 所以g ′(x )=ln x +1-2mx ≤0在(0,1)上恒成立,即2m ≥ln x +1x,令φ(x )=ln x +1x (x ∈(0,1)),φ′(x )=-ln xx 2>0,所以φ(x )在(0,1)上单调递增,φ(x )<φ(1)=1,所以2m ≥1,即m ≥12.(2)由(1)f (x )=ln x -2(x -1)x +1在(0,1)上单调递增,f (x )=ln x -2(x -1)x +1<f (1)=0,即ln x <2(x -1)x +1,令x =a b ∈(0,1)得ln a b <2⎝⎛⎭⎫a b -1a b +1=2(a -b )a +b ,∵ln ab <0,∴a -b ln a -ln b<a +b 2.在(1)中,令m =12,由g (x )在(0,1)上均单调递减得g (x )>g (1)=0,所以x ln x -12(x 2-1)>0,即ln x >12⎝⎛⎭⎫x -1x , 取x =ab∈(0,1)得ln a b >12⎝⎛⎭⎫a b-b a ,即ln a -ln b >a -b ab, 由ln a -ln b <0得:ab <a -b ln a -ln b ,综上:ab <a -b ln a -ln b <a +b2.总结提升 两个正数a 和b 的对数平均定义:(),(, )ln ln ().a ba b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩(, )2a bab L a b +≤≤(此式记为对数平均不等式) 取等条件:当且仅当a b =时,等号成立.2. (2022·全国高三课时练习)已知函数f (x )=ax 2-x -ln 1x.(1)若f (x )的图象在点(1,f (1))处的切线与直线y =2x +1平行,求f (x )的图象在点(1,f (1))处的切线方程; (2)若函数f (x )在定义域内有两个极值点x 1,x 2,求证:f (x 1)+f (x 2)<2ln2-3.【解析】(1)∵f (x )=ax 2-x -ln 1x =ax 2-x +ln x ,x ∈(0,+∞),∴f ′(x )=2ax -1+1x ,∴k =f ′(1)=2a .∵f (x )的图象在点(1,f (1))处的切线与直线y =2x +1平行,∴2a =2,即a =1. ∴f (1)=0,故切点坐标为(1,0).∴切线方程为y =2x -2. (2)∵f ′(x )=2ax -1+1x =2ax 2-x +1x,∴由题意知方程2ax 2-x +1=0在(0,+∞)上有两个不等实根x 1,x 2, ∴Δ=1-8a >0,x 1+x 2=12a >0,x 1x 2=12a >0,∴0<a <18.f (x 1)+f (x 2)=ax 21+ax 22-(x 1+x 2)+ln x 1+ln x 2=a (x 21+x 22)-(x 1+x 2)+ln(x 1x 2)=a [(x 1+x 2)2-2x 1x 2]-(x 1+x 2)+ln(x 1x 2)=ln 12a -14a-1,令t =12a ,g (t )=ln t -t 2-1,则t ∈(4,+∞),g ′(t )=1t -12=2-t 2t<0,∴g (t )在(4,+∞)上单调递减.∴g (t )<ln4-3=2ln2-3,即f (x 1)+f (x 2)<2ln2-3. 【题型五 数列不等式证明】例5 (2022·辽宁省实验中学分校高三期末)已知函数()1ln f x x a x =--.(1)若()0f x ≥,求a 的值(2)设m 为整数,且对于任意正整数,2111111222n m ⎛⎫⎛⎫⎛⎫+++< ⎪⎪⎪⎝⎭⎝⎭⎝⎭,求m 的最小值. 【解析】(1)()f x 的定义域为()0,+∞. ①当1x =时,有()10f =,成立.②当1x >时,11ln 0ln x x a x a x ---≥⇔≤,令()1ln x h x x-=,则()21ln 1ln x x h x x -+'=,令()1ln 1k x x x=-+,则()210x k x x-'=>,所以()k x 在()1,+∞上递增,于是()()10k x k >=,所以()0h x '>,所以()h x 在()1,+∞上递增.由洛必达法则可得1111lim lim 11ln x x x x x++→→-==,所以1a ≤. ③当01x <<时,11ln 0ln x x a x a x ---≥⇔≥,令()1ln x h x x-=,仿照②可得()h x 在()0,1上递增.由洛必达法则可得1111lim lim 11ln x x x x x--→→-==,所以1a ≥. 综上所述,1a =. (2)当1a =时()1ln 0f x x x =--≥,即ln 1x x ≤-,则有()ln 1x x +≤,当且仅当0x =时等号成立,所以11ln 122k k ⎛⎫+< ⎪⎝⎭,*k ∈N ,于是2111ln 1ln 1ln 1222n ⎛⎫⎛⎫⎛⎫++++++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭21111112222n n+++=-<,所以2111111e222n ⎛⎫⎛⎫⎛⎫+++< ⎪⎪⎪⎝⎭⎝⎭⎝⎭.当3n =时,23111359135111222224864⎛⎫⎛⎫⎛⎫+++=⨯⨯=> ⎪⎪⎪⎝⎭⎝⎭⎝⎭,于是m 的最小值为3.【题型精练】1. (2022·江苏·昆山柏庐高级中学期末)设函数()()ln 1f x x =+,()()g x xf x '=,0x ≥,其中()f x '是()f x 的导函数. (1)若()()f x ag x ≥恒成立,求实数a 的取值范围;(2)设*n ∈N ,比较()()()12g g g n +++与()n f n -的大小,并加以证明.【解析】(1)()11f x x '=+,所以()1xg x x=+. 法1:(分离参数法)当0x =时,()()f x ag x ≥恒成立.当0x >时,()()f x ag x ≥在()0,+∞上恒成立()()()()()1ln 1f x x x a Fx g x x++⇔≤==在()0,+∞上恒成立.()()2ln 1x x F x x -+'=,令()()ln 1G x x x =-+,则()01xG x x'=>+,所以()G x 在()0,+∞上递增,于是()()00G x G >=,即()0F x '>,所以()F x 在()0,+∞上递增. 由洛必达法则,可得()()()001ln 11ln 1lim lim 11x x x x x x++→→++++==,所以1a ≤,于是实数a 的取值范围为(],1-∞.法2:(不猜想直接用最值法)令()()()()ln 11axh x f x ag x x x=-=+-+,则()()()()22111111a x ax x a h x x x x +--+'=-=+++,令()0h x '=,得1x a =-. ①当10a -≤,即1a ≤时,()0h x '≥在[)0,+∞上恒成立,所以()h x 在[)0,+∞上递增,所以()()00h x h >=,所以当1a ≤时,()0h x ≥在[)0,+∞上恒成立.②当10a ->,即1a >时,()h x 在()0,1a -上递减,在()1,a -+∞上递增,所以当1x a =-时()h x 取到最小值,于是()()1ln 1h x h a a a ≥-=-+.设()ln 1a a a ϕ=-+,1a >,则()110a aϕ'=-<,所以函数()a ϕ在()1,+∞上递减,所以()()10a ϕϕ<=,即()10h a -<,所以()0h x ≥不恒成立.综上所述,实数a 的取值范围为(],1-∞. (2)()()()1212231ng g g n n +++=++++,()()ln 1n f n n n -=-+,比较结果为:()()()()12g g g n n f n +++>-.证明如下.上述不等式等价于()111ln 1231n n +>++++.为证明该式子,我们首先证明11ln 1i i i +>+. 法1:在(1)中取1a =,可得()ln 11x x x +>+,令1x i =,可得11ln 1i i i +>+.令1,2,,i n =可得21ln 12>,31ln 23>,…,11ln 1n n n +>+,相加可得()111ln 1231n n +>++++,命题获证. 法2:令1t i =,则()11ln ln 111i t t i i t +>⇔+>++,构造函数()()ln 11tF t t t=+-+,01t <<,则()()()22110111t F t t t t '=-=>+++,于是()F t 在()0,1上递增,所以()()00F t F >=,于是11ln 1i i i +>+. 下同法1.。
导数证明不等式的几个方法在高等数学中,我们学习了很多种方法来证明不等式。
其中一种常见的方法是使用导数。
导数是用来描述函数变化率的概念,因此可以很好地用来证明不等式。
本文将介绍几种使用导数证明不等式的方法。
一、利用导数的正负性来证明不等式这种方法是最直接的方法之一、假设我们要证明一个函数f(x)在一个区间上大于等于0,我们可以先求出函数f(x)的导数f'(x),然后根据f'(x)的正负性来判断f(x)的增减情况。
如果f'(x)大于等于0,则说明f(x)在整个区间上是递增的;如果f'(x)小于等于0,则说明f(x)在整个区间上是递减的。
根据递增或递减的性质,我们可以得出f(x)大于等于0的结论。
例如,我们要证明函数f(x)=x^2在区间[0,∞)上大于等于0。
首先求出f(x)的导数f'(x)=2x。
然后我们发现在整个区间上,f'(x)大于等于0,说明f(x)是递增的。
由于f(0)=0,因此可以得出f(x)大于等于0的结论。
二、利用导数的单调性来证明不等式这种方法是一种延伸和推广。
与前一种方法类似,我们可以根据导数的单调性来判断函数f(x)的增减情况。
如果f'(x)在一个区间上是递增的,那么f(x)在该区间上是凸的;如果f'(x)在一个区间上是递减的,那么f(x)在该区间上是凹的。
利用这个性质,我们可以得出一些重要的结论。
例如,如果我们要证明一个凸函数在一个区间上大于等于一个常数c,那么只需要证明在这个区间的两个端点上的函数值大于等于c,同时导数在这个区间上是递增的。
三、利用导数的极值来证明不等式这种方法利用了导数的极值特性。
如果一个函数f(x)在一些点x0处的导数为0,并且在这个点的左右两侧的导数符号发生了改变,那么我们可以得出结论,在x0处取得极值。
如果f(x)在x0处取得最大值,那么在这个点的左侧函数值都小于等于f(x0),而在这个点的右侧函数值都大于等于f(x0);反之,如果f(x)在x0处取得最小值,那么在这个点的左侧函数值都大于等于f(x0),而在这个点的右侧函数值都小于等于f(x0)。
利用导数证明不等式的两种通法利用导数证明不等式是高考中的一个热点问题,利用导数证明不等式主要有两种通法,即函数类不等式证明和常数类不等式证明。
下面就有关的两种通法用列举的方式归纳和总结。
一、函数类不等式证明函数类不等式证明的通法可概括为:证明不等式()()f x g x >(()()f x g x <)的问题转化为证明()()0f x g x ->(()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-,然后利用导数证明函数()h x 的单调性或证明函数()h x 的最小值(最大值)大于或等于零(小于或等于零)。
例1 已知(0,)2x π∈,求证:sin tan x x x <<分析:欲证sin tan x x x <<,只需证函数()sin f x x x =-和()tan g x x x =-在(0,)2π上单调递减即可。
证明:令()sin f x x x =- ,其中(0,)2x π∈则/()cos 1f x x =-,而(0,)cos 1cos 102x x x π∈⇒<⇒-<所以()sin f x x x =-在(0,)2π上单调递减,即()sin (0)0f x x x f =-<=所以sin x x <;令()tan g x x x =- ,其中(0,)2x π∈则/221()1tan 0cos g x x x =-=-<,所以()tan g x x x =-在(0,)2π上单调递减, 即()tan (0)0g x x x g =-<=所以tan x x <。
综上所述,sin tan x x x <<评注:证明函数类不等式时,构造辅助函数比较容易,只需将不等式的其中一边变为0,然后另一边的函数作为辅助函数,并利用导数证明其单调性或其最值,进而构造我们所需的不等式的结构即可。
根据不等式的对称性,本例也可以构造辅助函数为在(0,)2π上是单调递增的函数(如:利用()sin h x x x =-在(0,)2π上是单调递增来证明不等式sin x x <),另外不等式证明时,区间端点值也可以不是我们所需要的最恰当的值(比如此例中的(0)f 也可以不是0,而是便于放大的正数也可以)。
因此例可变式为证明如下不等式问题:已知(0,)2x π∈,求证:sin 1tan 1x x x -<<+证明这个变式题可采用两种方法:第一种证法:运用本例完全相同的方法证明每个不等式以后再放缩或放大,即证明不等式 sin x x <以后,根据sin 1sin x x x -<<来证明不等式sin 1x x -<;第二种证法:直接构造辅助函数()sin 1f x x x =--和()tan 1g x x x =--,其中(0,)2x π∈然后证明各自的单调性后再放缩或放大(如:()sin 1(0)10f x x x f =--<=-<) 例2 求证:ln(1)x x +<分析:令()ln(1)f x x x =+-,经过求导易知,()f x 在其定义域(1,)-+∞上不单调,但可以利用最值证明不等式。
证明:令()ln(1)f x x x =+- 函数f(x)的定义域是(1,)-+∞,'f (x)=111-+x.令'f (x)=0,解得x=0, 当-1<x<0时, 'f (x)>0,当x>0时,'f (x)<0,又f(0)=0, 故当且仅当x=0时,f(x)取得最大值,最大值是0 所以()ln(1)(0)0f x x x f =+-<= 即ln(1)x x +<二、常数类不等式证明常数类不等式证明的通法可概括为:证明常数类不等式的问题等价转化为证明不等式()()f a f b <的问题,在根据,a b 的不等式关系和函数()f x 的单调性证明不等式。
例3已知0,,(1)(1)0m n a b R a b +>>∈--≠且 求证:()()nn mmm n a b a b +>+ 分析:()()ln()ln()ln()ln()n n m m m nn n m m m n n n m m a b a b a b a b m a b n a b +>+⇐+>+⇐+>+ ln()ln()()()n n m m a b a b n mf n f m ++⇐>⇐>ln()()0x x a b f x x⎧+=+∞⎪⇐⎨⎪⎩在(,)上是减函数m>n>0 证明:令ln()()(0)x x a b f x x x+=>则/22ln ln ln()(ln ln )()ln()()()x x x x x x x x x x x x x x a a b b x a b x a a b b a b a b a b f x x x a b +-++-+++==+22ln ln ln ln 0()()x x x x x x xx x xx x x x x x xxx x x xa b a b a b a b a b a b a b a b a b x a b x a b ++++++++=<=++ 所以,ln()()0x x a b f x x+=+∞在(,)上是减函数 又因为0m n >>,所以()()f n f m >即ln()ln()n n m m a b a b n m++>ln()ln()ln()ln()n n m m n n m m m nm a b n a b a b a b +>+⇒+>+即()()nn mmm na b a b +>+评注:利用导数证明常数类不等式的关键是经过适当的变形,将不等式证明的问题转化为函数单调性证明问题,其中关键是构造辅助函数,如何构造辅助函数也是这种通法运用的难点和关键所在。
通过本例,不难发现,构造辅助函数关键在于不等式转化为左右两边是相同结构的式子(本例经过转化后的不等式ln()ln()n n m m a b a b n m ++>的两边都是相同式子ln()x x a b x+的结构,所以可以构造辅助函数ln()()x x a b f x x +=),这样根据“相同结构”可以构造辅助函数。
例4 已知02παβ<<<,求证:tan tan 11tan tan ααβββα-<<+ 分析:欲证tan tan 11tan tan ααβββα-<<+,只需证tan tan tan tan ααβββα<<(不然没法构造辅助函数),即tan tan ,tan tan αβααββαβ<<,则需证函数tan (),()tan xf xg x x x x==都在函数区间(0,)2π上单调递增即可。
证明:设tan ()x f x x =,(0,)2x π∈ 则2/222sec tan sin cos ()cos x x x x x xf x x x x--==由例1知,(0,)sin sin cos sin cos 02x x x x x x x x π∈⇒>>⇒->即/()0f x >,所以tan ()x f x x =在(0,)2π上单调递增,而02παβ<<< 所以tan tan αβαβ<,即tan tan ααββ<,进而得到tan 1tan ααββ-< 设()tan g x x x =,(0,)2x π∈则/2()tan sec g x x x x =+,又因为(0,)2x π∈,所以/()0g x >,进而()tan g x x x =在(0,)2π上单调递增,而02παβ<<<所以tan tan ααββ<,即tan tan αββα<,进而得到tan 1tan αββα<+ 综上所述tan tan 11tan tan ααβββα-<<+ 三、同步练习题1.当1>x 时,求证:xx 132-> 2.已知a,b 为实数,并且e<a<b ,其中e 是自然对数的底,证明:baa b > 3.已知函数()()ln(1)10xf x e x x =-+-≥(1)求函数()f x 的最小值; (2)若0y x ≤<,求证:1ln(1)ln(1)x yex y -->+-+4.求证:()()ee ee e πππππ+>+ 参考答案: 1.证明:要证xx 132->,只要证)1()13(423>->x x x , 即证=--23)13(4x x ,0)(169423>=-+-x f x x x 则当1>x 时,0)1)(12(6)132(6)('3>--=+-=x x x x x f ,),1()(+∞∴在x f 上递增,0)1()(=>∴f x f 即0)(>x f 成立,原不等式得证2.证明:当e<a<b 时, 要证baa b >, 只要证ln ln b a a b >,即只要证b ba a ln ln >考虑函数)0(ln +∞<<=x xxy 。
因为当e x >时,,0ln 12<-='xx y 所以函数),(ln +∞=e x xy 在内是减函数 因为e<a<b ,所以bb a a ln ln >,即得b aa b > 3.(1)最小值为0(2)因为00y x x y ≤<⇒->,而由(1)知,对0x >,恒有()0f x >,所以不等式()0f x y ->恒成立 即ln(1)10x yex y ---+->所以1ln(1)x yex y -->-+又因为ln(1)ln[(1)(1)]ln(1)ln[(1)()]ln(1)ln(1)ln(1)(()0)x y y x y y x y x y y x y y x y -+=+-+-+=++--+>+-+->所以1ln(1)ln(1)x yex y -->+-+证明:设ln()()(0)x x e f x x xπ+=>, 则'2ln ln()()x x x x x xe x e ef x xππππ+-++= 2(ln )()ln()()x x x x x x x x x e e e x e πππππ+-++=+22ln ln ln ln 0()()xx x x x x xxxx x x x x x x x xx x x xe e e e e e e e e x e x e πππππππππππ++++++++=<=++ 所以函数ln()()x x e f x xπ+=在其定义域(0,)+∞单调递减所以()()f f e π<,即ln()ln()e e e e eπππππ++<根据对数的运算性质得,()()ee ee e πππππ+>+。