重庆市重庆一中2015-2016学年高一期中数学试卷
- 格式:doc
- 大小:628.00 KB
- 文档页数:8
重庆市第一中学2015-2016学年高一上学期期中考试数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1、已知集合{}15,M x x x N =<<∈,{}1,2,3S =,那么M S =( ) A 、{}1,2,3,4 B 、{}1,2,3,4,5 C 、{}2,3 D 、{}2,3,42、式子32log 2log 27的值为( )A 、2B 、3C 、13D 、-3 3、下列函数为奇函数的是( ) AB 、31x - CD 、21x -4、已知():lg 30p x -<,2:04x q x -<-,那么p 是q 的()条件 A 、充分不必要 B 、充要 C 、必要不充分 D 、既不充分也不必要5、已知幂函数()222a y a a x =--在实数集R 上单调,那么实数a =( )A 、一切实数B 、3或-1C 、-1D 、36、(原创)定义在实数集R 上的函数()y f x =满足121212()()0()f x f x x x x x ->≠-,若(5)1f =-,(7)0f =,那么(3)f -的值可以为( )A 、5B 、-5C 、0D 、-17、对于任意的1,1a b >>,以下不等式一定不成立的是( )A 、log 0a b >B 、1b a >C 、111ba ⎛⎫> ⎪⎝⎭ D 、log log 2ab b a +≥ 8、以下关于函数21()(3)3x f x x x -=≠-的叙述正确的是( ) A 、函数()f x 在定义域内有最值B 、函数()f x 在定义域内单调递增C 、函数()f x 的图象关于点()3,1对称D 、函数5y x=的图象朝右平移3个单位再朝上平移2个单位即得函数()f x 9、(原创)函数()f x 满足()(2),f x f x x R =-∈,且当1x ≤时,32()44f x x x x =--+,则方程()0f x =的所有实数根之和为( )A 、2B 、3C 、4D 、110、已知关于x 的方程2222320x ax a a -+-+=有两个不等的实数根12,x x ,那么()212x x -的取值范围是( )A 、()0,+∞B 、[]0,1C 、(]0,1D 、()0,1 11、(原创)已知函数2()log 32a f x x x ⎛⎫=+- ⎪⎝⎭在区间[)1,+∞上单调递增,那么实数a 的取值范围是( ) A 、()1,3- B 、(]1,3- C 、[]0,3 D 、[)0,3 12、对于任意x R ∈,函数2()2124f x x x x a x =------+的值非负,则实数a 的最小值为()A 、118-B 、-5C 、-3D 、-2第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13、将函数()2()log 321f x x =+-的图象向上平移1个单位,再向右平移2个单位后得到函数()g x ,那么()g x 的表达式为__________.14、(原创)已知[]{}21,562x R x x a ⊆∈-≤+,那么实数a 的最小值为_________. 15、函数32()f x ax bx cx d =+++是实数集R 上的偶函数,并且()0f x <的解为()2,2-,则d b 的值为__________.16、(原创)函数()2x f x =,25()22g x x kx =-+,若对于任意的[]1,2s ∈-,都存在[],21t k k ∈+,使得()()f s g t =成立,则实数k 的取值范围是__________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17、(12分)(原创)集合()1302A x x x ⎧⎫⎛⎫=--=⎨⎬ ⎪⎝⎭⎩⎭,29ln 04B x x ax a ⎧⎫⎛⎫=+++=⎨⎬ ⎪⎝⎭⎩⎭. (1)若集合B 只有一个元素,求实数a 的值;(2)若B 是A 的真子集,求实数a 的取值范围.18、(12分)函数22()()22x xx x f x x R ---=∈+. (1)判断并证明函数()f x 的奇偶性;(2)求不等式315()517f x ≤≤的解集. 19、(12分)如图,定义在[]1,2-上的函数()f x 的图象为折线段ACB .(1)求函数()f x 的解析式;(2)请用数形结合的方法求不等式()2()log 1f x x ≥+的解集,不需要证明.20、(12分)集合{}930,x x A x p q x R =+⋅+=∈,{}9310,x x B x q p x R =⋅+⋅+=∈,且实数0pq ≠.(1)证明:若0x A ∈,则0x B -∈;(2)是否存在实数p ,q 满足A B ≠∅且{}1R A B =ð?若存在,求出p ,q 的值,不存在说明理由.21、(12分)(原创)函数()()233()log 1log 32(0,)f x x a x a x a R =+-+->∈.(1)若函数()f x 的值域是[)2,+∞,求a 的值;(2)若3(3)log (9)0f x x +≤对于任意[]3,9x ∈恒成立,求a 的取值范围.22、(10分)已知函数(0)a y x a x =+>在区间(上单调递减,在区间)+∞上单调递增;函数3322111(),22h x x x x x x ⎛⎫⎛⎫⎛⎫⎡⎤=+++∈ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎝⎭. (1)请写出函数22()(0)a f x x a x =+>与函数()(0,,3)n n a g x x a n N n x=+>∈≥在()0,+∞的单调区间(只写结论,不证明);(2)求函数()h x 的最值;(3)讨论方程22()3()20(030)h x mh x m m -+=<≤实根的个数.:。
重庆市第一中学2015-2016学年高一数学下学期期末考试试卷(含解析)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)(1)已知集合{|(2)(3)0}A x x x =+-<,{1,0,1,2,3}B =-,则A B =I ( ) (A ){0,1} (B ){0,1,2} (C ){1,0,1}- (D ){1,0,1,2}- 【答案】D 【解析】试题分析:因}32|{<<-=x x A ,故}2,1,0,1{-=B A I ,选D. 考点:集合的运算.(2)设a =(2,)k k +,b =(3,1),若a ⊥b ,则实数k 的值等于( )(A )-32 (B )-53 (C )53(D )32【答案】A 【解析】试题分析:因b a ⊥,故063=++k k ,即64-=k ,也即23-=k ,选A. 考点:向量的乘法运算.(3)设等差数列{a n }的前n 项和为S n ,若a 5+a 14=10,则S 18等于( ) (A )20 (B )60 (C )90(D )100 【答案】C考点:等差数列的通项及前n 项和.(4)圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为( )(A )内切 (B )相交 (C )外切 (D )相离 【答案】B 【解析】试题分析:因两圆心距514=+=d ,而32<<d ,故两圆的位置关系相交,选B.考点:两圆的位置关系.(5)已知变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥+≤112y x y x y ,则z =3x +y 的最大值为( )(A )12 (B )11 (C )3 (D )-1 【答案】By=-3x+z考点:线性规划的知识及运用.(6)已知等比数列{a n }中,a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结果可化为( )(A )1-14n (B )1-12n (C )23(1-14n )(D )23(1-12n )【答案】C 【解析】试题分析:因1433221,,,,+⋅⋅⋅n n a a a a a a a a 成等比数列,且公比为42=q ,故1112141123414n n n T -⎛⎫==- ⎪⎝⎭-,选C. 考点:等比数列的通项及前n 项和的综合运用.(7)“m =1”是“直线20mx y +-=与直线10x my m ++-=平行”的( ) (A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件【答案】C 【解析】考点:充分必要条件.(8)阅读右面的程序框图,运行相应的程序,输出S 的值为( ) (A )15 (B )105 (C )245(D )945【答案】B 【解析】试题分析:依据算法流程图中提供的信息可以看出当3=i 时,就结束算法,所以105157=⨯=S ,选B.考点:算法流程图的识读.(9)现有两组卡片,第一组卡片上分别写有数字“2,3,4”,第二组卡片上分别写有数字“3,4,5”,现从每组卡片中各随机抽出一张,用抽取的第一组卡片上的数字减去抽取的第二组卡片上的数字,差为负数的概率为( )(A)1 3(B)49(C)59(D)23【答案】D【解析】考点:古典概型的计算公式及运用.(10)在平行四边形ABCD中,AD=2,∠BAD=60°,E为CD的中点,若AD→g BE→=1,则AB的长为()(A) 6 (B)4 (C)5(D)6【答案】A【解析】试题分析:因1)21(=+⋅=⋅,即1212=⋅-,也即6||2=AB,故6||=AB选A.考点:向量的几何运算.【易错点晴】本题设置的目的是综合考查向量的几何运算形式和向量数量积公式.求解时充分借助题设条件,运用向量的三角形法则,应用向量的数量积公式建立关于所求未知量AB的方程.解答本题的关键是如何运用已知向量合理表示,也是解答本题的难点.求解时容易出错的地方是不能合理地运用向量的相等和等价代换,从而陷入问题求解的困境.(11)(原创)已知函数221,1()221,1x xf xx mx m x-≤=-+-+>⎪⎩,且对于任意实数(0,1)a∈关于x 的方程()0f x a -=都有四个不相等的实根1234x x x x ,,,,则1234+x x x x ++的取值范围是( ) (A )(2,4](B )(,0][4,)-∞+∞U (C )[4+∞,)(D )(2+)∞,【答案】C 【解析】x 4x 3x 2x 1BA x=m-1y=a11Oyx考点:函数方程的关系及数形结合的数学思想的综合运用.【易错点晴】本题综合考察了函数的零点和函数的图象和性质等多个知识点,求解时充分借助题设条件,准确地画出函数的图象,依据题设和图像的有效信息,先算出抛物线的顶点到轴的距离,即2)1(-=m AB ,由于10<<a ,所以必须满足1)1(2≥-m ,解之得2≥m .也就是确定了参数m 的取值范围.又由于四个零点满足m x x x x =+=+2,024321,所以1234+x x x x ++m 2=,因此问题转化为求参数m 的取值范围.(12)(原创)已知集合{(,)|240}M x y x y =+-=,22{(,)|220}N x y x y mx ny =+++=,若M N φ≠I ,则22m n +的最小值( )(A )45 (B )34 (C )(6-25)(D )54【答案】A 【解析】考点:等价转化的数学思想和数形结合的思想.【易错点晴】本题以两个点集合的交集非空等有关知识为背景,设置了一道求的22m n +最值为目的的综合问题.解答时先将问题进行等价转化和化归,即转化为直线042=-+y x 与圆2222)()(n m n y m x +=+++有交点的前提下,求22m n +的最小值的问题.如果直接求解相当困难,在这里运用数形结合的数学思想进行求解.先考虑坐标原点到定直线的距离是定值54=OH .注意到动圆经过坐标原点O ,所以移动动圆C ,当圆心C 在OH 的中点时,既满足题设条件CO 又能取到最小值52,使得问题简捷巧妙获解.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每题5分,满分20分.)(13)某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高一年级抽取 名学生. 【答案】15 【解析】试题分析:应从高一年级学生中抽取1510350=⨯名学生,故应填15. 考点:分层抽样及运用.(14)(原创)在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若73,,cos 6a B A π===,则b =___________.【答案】2考点:正弦定理及运用.(15)已知点P ,Q 为圆C :x 2+y 2=25上的任意两点,且|PQ |<6,若PQ 中点组成的区域为M ,在圆C 内任取一点,则该点落在区域M 上的概率为__________ .【答案】259 【解析】试题分析:设PQ 的中点为M ,由于6||<PQ ,则由题设4||>OM ,即点M 在以O 为圆心,半径为4的圆外,已知圆内的区域,所以由几何概型的概率公式可得其概率为259251625=-=P ,故应填259. 考点:几何概型及运用.【易错点晴】本题是一道几何概型的计算问题.解答时,充分借助题设条件,巧妙地运用了这样一个结论:在平面上到一个定点距离等于定值的点的轨迹是以这个定点为圆心,定值为半径的圆.求解的过程中,依据弦长越小,则圆心距则越大这一事实很容易获得了4||>OM .其实是这样的:因416925)||21(||22==->-=PQ r OM ,然后算得ππππ25,91625==-=D d ,所以由几何概型的概率的计算公式可得其概率259251625=-=P .(16)(原创)点C 是线段..AB 上任意一点,O 是直线AB 外一点,OC xOA yOB =+u u u r u u u r u u u r,不等式 22(1)(2)(2)(1)x y y x k x y +++>++对满足条件的x ,y 恒成立,则实数k 的取值范围____. 【答案】1()4-∞, 【解析】考点:不等式恒成立的条件及判别式求最值和值域.【易错点晴】本题在解答时应用了一个平面向量中的一个重要结论:若点C 是线段AB 上的一点,O 是直线外一点且OC xOA yOB =+u u u r u u u r u u u r,则1=+y x .证明如下:由共线定理可得)10(<<=t t ,即)(t -=-,由此可得t t +=+)1(,即t t t +++=111,也即t t y t x +=+=1,11,所以1111=+++=+ttt y x .解答本题时,先将参数分离出来,再构造函数求其最小值.求最小值时运用的是判别式法,而且上述过程中的),(y x F F =.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) (17)(本小题满分10分)已知ABC ∆的面积是3,角,,A B C 所对边长分别为,,a b c ,4cos 5A =. (Ⅰ)求AB AC u u u r u u u r g ;(Ⅱ)若2b =,求a 的值. 【答案】(Ⅰ)8;(Ⅱ) 13a =【解析】考点:正弦定理余弦定理的综合运用. (18)(本小题满分12分)已知圆C :4)4()3(22=-+-y x ,直线l 过定点(1,0)A . (Ⅰ)若l 与圆C 相切,求直线l 的方程;(Ⅱ)若l 与圆C 相交于P 、Q 两点,且22PQ =,求直线l 的方程. 【答案】(Ⅰ)1x =或3430x y --=;(Ⅱ) 10x y --=或770x y --=. 【解析】 试题分析:(Ⅰ)对斜率的存在和不存在进行分类再运用点到直线的距离公式建立方程求解; (Ⅱ)借助题设条件运用点到直线的距离公式建立方程求解. 试题解析:(Ⅰ)当斜率不存在时,方程x=1满足条件; 当L 1斜率存在时,设其方程是y=k(x-1),则 214k 32=+--k k ,解得43=k , 所以所求方程是x =1和3x -4y -3=0;考点:直线与圆的位置关系及综合运用.【易错点晴】本题考查和检测是直线与圆的位置关系的基础知识和基本方法.求解时充分借助题设条件,运用了直线与圆相切的条件和直线与圆相交所截得的弦长的条件求出满足题设条件的直线的方程.需要强调的是:本题在设置时,特别注意到直线的点斜式的运用的条件问题,当直线的斜率k 存在时,可以运用直线的点斜式方程)(00x x k y y -=-;若直线的斜率k 不存在,则不能运用直线的点斜式方程,但直线的方程还是存在的,即是0x x =这是许多学生容易忽视的地方.(19)(本小题满分12分)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:40,50),50,60),…,90,100]后得到如图所示的频率分布直方图. (Ⅰ)若该校高一年级共有学生640名,试估计该校高一年级期中考试数学成绩不低于60分的人数;(Ⅱ)若从数学成绩在40,50)与90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.【答案】(Ⅰ)544;(Ⅱ)715. 【解析】试题分析:(Ⅰ)先求频率再依据频率频数的关系求解;(Ⅱ)借助题设条件运用列举法和古典概型公式求解.试题解析:(Ⅰ)根据频率分布直方图,成绩不低于60分的频率为1-10×(0.005+0.01)=0.85.由于该校高一年级共有学生640名,利用样本估计总体的思想,可估计该校高一年级期中考试数学成绩不低于60分的人数约为640×0.85=544.(Ⅱ)成绩在40,50)分数段内的人数为40×0.05=2,成绩在90,100]分数段内的人数为40×0.1=4,则记在40,50)分数段的两名同学为A 1,A 2,在90,100]分数段内的同学为B 1, B 2,B 3,B 4.若从这6名学生中随机抽取2人,则总的取法共有15种.如果2名学生的数学成绩都在40,50)分数段内或都在90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10;如果一个成绩在40,50)分数段内,另一个成绩在90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.则所取2名学生的数学成绩之差的绝对值不大于10的取法有(A 1,A 2),(B 1,B 2),(B 1,B 3),(B 1,B 4),(B 2,B 3),(B 2,B 4),(B 3,B 4)共7种取法,所以所求概率为P =715. 考点:频率的性质和古典概型公式的综合运用.(20)(本小题满分12分)已知数列{a n }满足111,n n a a a n -=-=(其中2n n N ≥∈且). (Ⅰ)求数列{a n }的通项公式; (Ⅱ)设24n n na b n =⨯,其前n 项和是T n ,求证:T n <79 . 【答案】(Ⅰ)2)1(+=n n a n ;(Ⅱ)证明见解析. 【解析】∴T n -14T n =24+214+314+…+14n -114n n ++ =14+11144114n ⎛⎫- ⎪⎝⎭--114n n ++=712-13734n n ++⨯, ∴T n =79-13794n n ++⨯<79.考点:等差数列和等比数列的知识的综合运用.(21)(原创)(本小题满分12分)已知动点(,)P x y 满足方程1(0)xy x =>.(Ⅰ)求动点P 到直线:220l x y +-=距离的最小值; (Ⅱ)设定点(,)A a a ,若点P A ,之间的最短距离为22,求满足条件的实数a 的取值. 【答案】(Ⅰ)10;(Ⅱ) 1-=a 或10. 【解析】试题分析:(Ⅱ)设点)1,(x x P (0>x ),则222222)1(2)1()1()(a x x a xx a x a x d ++-+=-+-= 设t x x =+1(2≥t ),则21222-=+t xx 2)(22-+-=a a t d ,设2)()(22-+-=a a t t f (2≥t )对称轴为a t =分两种情况:(1)2≤a 时,)(t f 在区间[)+∞,2上是单调增函数,故2=t 时,)(t f 取最小值∴222)2(22min =-+-=a a d ,∴0322=--a a ,∴1-=a (3=a 舍)(2)a >2时,∵)(t f 在区间[]a ,2上是单调减,在区间[)+∞,a 上是单调增,∴a t =时,)(t f 取最小值∴222)(22min=-+-=a a a d ,∴10=a (10-=a 舍)综上所述,1-=a 或10考点:函数的图象和性质或基本不等式的综合运用.(22)(本小题满分12分)已知函数2()ax b f x x +=为奇函数,且(1)1f =. (Ⅰ)求实数a 与b 的值; (Ⅱ)若函数1()()f x g x x -=,设{}n a 为正项数列,且当2n ≥时, 2112211[()()]n n n n n n n a a g a g a a q a a ---+-⋅+⋅=⋅,(其中2016q ≥),{}n a 的前n 项和为n S ,11n i n i iS b S +==∑,若 2017n b n ≥恒成立,求q 的最小值.【答案】(Ⅰ) 1a =,0b =;(Ⅱ) min 2017q =.【解析】由:231121111111n ni n n i i S q q q b S q q q ++=---==+++---∑L (2016)q ≥,Q 2017n b n ≥恒成立, 即:2312111111n n q q q q q q +---+++---L 2017n ≥恒成立,当2016q ≥时,1111111111n n n n n q q q q q q q+---==+---Q ,再 由复合函数单调性知,数列11{}1n n q q +--为单调递减数列,且n →∞时,111111n n n n q q q q q q+--=→--, 当2017q ≥时,11{}1n n q q +--中的每一项都大于2017,∴2312111111n nq q q q q q +---+++---L 2017n ≥恒成立; 当[2016,2017)q ∈时,数列11{}1n n q q+--为单调递减数列,且n →∞时,111,111n n n n q q q q q q+--=→--而 2017q <,说明数列11{}1n nq q +--在有限项后必定小于2017,设112017(1,2,3,,)1r r r q M r n q+-=+=-L ,且数列{}n M 也为单调递减数列,10M ≥。
秘密★启用前2013年重庆一中高2016级高一上期半期考试数 学 试 题 卷 2013.11一、选择题.( 本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知映射()():,3,3f x y x y x y →-+,在映射f 下()3,1-的原象是 ( ) (A) ()3,1- (B) ()5,7- (C) ()1,5 (D) 1,23⎛⎫- ⎪⎝⎭2.设集合{|,101},{|,||5}A x x Z x B x x Z x =∈-≤≤-=∈≤且且,则A B U 中的元素个数是 ( ) (A ) 15 (B ) 16 (C ) 10 (D ) 113.“12x -<成立”是“(3)0x x -<成立”的 ( ) (A)必要不充分条件 (B)充分不必要条件(C)充分必要条件 (D)既不充分也不必要条件4.下列函数中是奇函数的是 ( ) (A)2()f x x = (B)3()-f x x = (C)()=f x x (D)()+1f x x = 5.已知1,(1)()3,(1)x x f x x x +≤⎧=⎨-+>⎩,那么5[()]2f f 的值是( )(A )32 (B ) 52 (C ) 92 (D ) 12- 6. 函数()()ln 11f x x x =+-+在下列区间内一定有零点的是 ( )(A)[0,1] (B)[2,3] (C)[1,2] (D)[3,4]7.已知不等式|3||4|x x m -+-≥的解集为R ,则实数m 的取值范围( ) (A ) 1m < (B ) 1m ≤ (C ) 110m ≤(D ) 110m < 8.已知定义在R 上的函数()f x 的图象关于y 轴对称,且满足3()()2f x f x =-+,(1)1,(0)2f f -==-,则(1)(2)...(2015)f f f +++的值为 ( )(A )1 (B )2 (C ) 1- (D )2-9(原创).已知函数lg ,010y ()16,102x x f x x x ⎧<≤⎪==⎨-+>⎪⎩若a,b,c 互不相等,且)()()(c f b f a f ==,则abc 的取值范围是 ( ) (A )(1,10) (B )(5,6) (C )(10,12) (D )(20,24) 10. (原创)若关于x 的方程24xkx x =+有四个不同的实数解,则k 的取值范围为 (A )(0,1) (B )(14,1) (C )(14,+∞) (D )(1, +∞)二.填空题(每小题5分,共25分)11.已知{1,2,3,4,5,6},{1,3,4}I A ==,则I C A = . 12.函数22()2x x f x -+=的单调递增区间为 .13.函数()f x =R ,那么a 的取值范围是________ 14.已知53()8f x ax bx cx =++-,且(2)20f -=,则(2)f =15.(原创)设定义在[],(4)a b a ≥-上的单调函数()f x,若函数())g x f m =与()f x 的定义域与值域都相同,则实数m 的取值范围为_________三.解答题.( 本大题共6小题,共75分.) 16.(13分) 计算: (1)3log 5333322log 2log log 839-+- (2)()04130.7533642162---⎛⎡⎤--+-+ ⎣⎦⎝⎭17.(13分)已知集合222{|560},{|180},{|280}A x x x B x x ax C x x x =-+==-+==+-=,若A B ≠∅I ,B C =∅I ,(1)用列举法表示集合A 和集合C (2)试求a 的值。
重庆市第一中学2016-2017学年高一数学上学期期中试题共4页,满分150分,考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
第I 卷(选择题,共60分) 一、选择题:(本大题共12个小题,每小题5分,共60分)在每小题给出的四个选项中,只有一项是符合题目要求的;各题答案必须答在答题卡上相应的位置.1. 设全集{}4,3,2,1=U ,集合{}{}4,2,4,3,1==B A ,则()U C A B ⋂=( ) A .{}2B .{}4,2C .{}4,2,1 D .φ2. 函数()()1011≠>-=-a a a x f x 且的图象必经过定点( )A .()1,0-B .()1,1-C .()0,1-D .()0,13. 在0到π2范围内,与角34π-终边相同的角是( ) A .6π B .3π C .32π D .34π4. 函数()()2lg 231++-=x xx f 的定义域是( )A .⎪⎭⎫ ⎝⎛-232, B .⎥⎦⎤ ⎝⎛-232, C .()∞+-,2 D .⎪⎭⎫ ⎝⎛∞+,23 5. 已知3.0log 24.053.01.2===c b a ,,,则( ) A .b a c << B .c b a << C .a b c << D .bc a <<6. 函数()xx x f 1ln -=的零点所在的大致区间是( ) A .⎪⎭⎫ ⎝⎛1,1eB .()e ,1C .()2,e e D .()32,e e7. 已知函数()(),03)0(log 2⎩⎨⎧≤>=x x x x f x则⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛81f f 的值是( ) A .27-B .271-C .27D .2718. 函数xx y xe ⋅=的图像的大致形状是( )A B C D9. 已知函数()()53log 221+-=ax x x f 在[)∞+-,1上是减函数,则实数a 的取值范围是( ) A .(]6,-∞- B .[)68,- C .(]68--,D .[)+∞-,8 10. (原创)已知关于x 的方程12=-m x 有两个不等实根,则实数m 的取值范围是( )A . (]1,-∞-B .()1,-∞-C .[)∞+,1 D .()∞+,1 11.(原创)已知函数()()()1011ln2≠>-+++=a a a a x x x f xx且,若()()313log lg 2=f ,则()()=2log lg 3f ( )A .0B .31C .32D . 1 12. 设函数()a x e x f x-+=2(e R a ,∈为自然对数的底数),若存在实数[]1,0∈b 使()()b b f f =成立,则实数a 的取值范围是( )A .[]e ,0B .[]e 1,1+C . []e +2,1D .[]1,0第II 卷(非选择题,共90分)二、填空题:(本大题共4个小题,每小题5分,共20分)各题答案必须填写在答题卡相应的位置上. 13. 幂函数()()3221-+--=m mx m m x f 在()∞+,0上为增函数,则实数m =______. 14. 扇形的周长为8cm ,圆心角为2弧度,则该扇形的面积为____2cm .15. 已知函数()x f 是定义在R 上的奇函数,且当0≥x 时,()x x x f 22+=,则当0<x 时,()x f =__________.16. 已知函数()3||log )(31+-=x x f 的定义域是[]b a ,()Z b a ∈,,值域是[]0,1-,则满足条件的整数对()b a ,有________对.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(10分)(原创)化简:(1)()7112log 4231123log 743π⎛⎫--++ ⎪⎝⎭;(2)()5262512lg 20lg 5lg 2--+++⋅.18.(12分)(原创)已知集合A 为函数()[]2,1,122∈-+=x x x x f 的值域,集合⎭⎬⎫⎩⎨⎧≤--=014x x xB ,则(1)求A B I ;(2)若集合{}1+<<=a x a x C ,C C A =⋂,求实数a 的取值范围.19. (12分)(原创)已知函数()x f y =为二次函数,()40=f ,且关于x 的不等式()02<-x f 解集为{}21<<x x ,(1)求函数()x f 的解析式;(2)若关于x 的方程()0=-a x f 有一实根大于1,一实根小于1,求实数a 的取值范围.20. (12分)(原创)已知函数()xx xx a x f --+⋅-=2222是定义在R 上的奇函数.(1)求实数a 的值,并求函数()x f 的值域;(2)判断函数()x f y =的单调性(不需要说明理由),并解关于x 的不等式()03125≥-+x f .21. (12分)(原创)已知函数()⎪⎪⎩⎪⎪⎨⎧>+-≤⎪⎭⎫⎝⎛-=0,1210,2122x x x x x f x,(1)画出函数()x f 的草图并由图像写出该函数的单调区间;(2)若()a x g xx -=-23,对于任意的[]1,11-∈x ,存在[]1,12-∈x ,使得()()21x g x f ≤成立,求实数a的取值范围.22. (12分)对于在区间],[n m 上有意义的函数)(x f ,若满足对任意的21,x x ],[n m ∈,有|)()(|21x f x f -1≤恒成立,则称)(x f 在],[n m 上是“友好”的,否则就称)(x f 在],[n m 上是“不友好”的.现有函数()xaxx f +=1log 3, (1)若函数)(x f 在区间]1,[+m m ()21≤≤m 上是 “友好”的,求实数a 的取值范围; (2)若关于x 的方程()[]1423log )(3=-+-a x a x f 的解集中有且只有一个元素,求实数a 的取值范围.2016年重庆一中高2019级高一上期半期考试数 学 答 案2016.12一、选择题:(本大题共12个小题,每小题5分,共60分) ADCAA BDBCD CB二、填空题:(本大题共4个小题,每小题5分,共20分) 13. 2 14.4 15. x x 22+- 16.5三、解答题:解答应写出文字说明、证明过程或演算步骤。
重庆一中初2016届2015-2016学年(下)期中考试物理试题(考试时间:与化学共用120分钟 满分:80分)一、选择题(每小题只有一个选项符合题意,每小题3分,共24分。
) 1. 根据你对生活中物理量的认识,你认为下列数据最符合实际情况的是( ) A .歌乐山山顶的大气压约为1.5×105Pa B .正常人眨眼一次的时间约5s C .一节新干电池的电压为1.5VD .中考专用的2B 铅笔的长度约为1.8×103mm2.如图1所示,木块竖立在小车上,随小车一起向右做加速直线运动(不考虑空气阻力)。
下列分析正确的是( )A .木块没有受到小车对它的摩擦力B .当小车受到阻力而停下时,木块将向右倾倒C .小车运动速度越大,其惯性也越大D .木块对小车的压力与小车对木块的支持力是一对平衡力3.如图2所示,用滑轮组将重50N 的物体匀速提升0.2m ,所用时间为2s ,作用在绳子末端的拉力F 为30N (不计绳重和绳与滑轮间的摩擦),下列计算结果正确的是( )A .动滑轮自重20NB .所做的有用功为12JC .拉力F 做功的功率为0.3WD .该滑轮组的机械效率约为83.3%4.占地3300亩的重庆园博园,是一个集自然景观和人文景观为一体的超大型城市生态公园。
在如图3所示的中国古典石桥风景中,有关游船的分析正确的是( )A .游船的重力越大,船底受到水的压强越大B .游船转弯时受到的是平衡力C .游船受到的浮力与重力是一对相互作用力D .游船在途中又上来几名游客,但游船所受浮力依然不变5. 为避免超高车辆闯入隧道造成事故,小明设计了警示电路,使用时闭合开关S 。
导线EF 横置于隧道口上沿前方,一旦被驶来的车辆撞断,红灯L 亮且电动机转动放下栏杆。
灯和电动机中,即使其中之一断路,另一个也能正常工作。
图4电路中符合要求的是( )图3 图1图26.有关压强知识的应用,下列说法错误的是( ) A .用吸盘挂钩挂衣服,利用了大气压强的作用B .飞机的机翼能获得向上的升力,是应用了流速越大流体的压强越大的原理C .坐沙发比坐木凳舒服,利用了增大受力面积减小压强的道理D .三峡大坝的下部比上部建造的宽,是由于水对坝的压强随深度的增加而增大7. 如图5所示,水平桌面上放有甲、乙、丙、丁四个完全相同的圆柱形容器。
2015-2016学年重庆一中高一(上)期末数学试卷一、选择题:(本大题12个小题,每小题5分,共60分)在每小题给出的四个选项中,只有一项是符合题目要求的;各题答案必须填涂在答题卡上相应位置.1.已知集合A={2,3,4},B={2,4,6},则A∩B=()A.{2} B.{2,4} C.{2,4,6}D.{2,3,4,6}2.已知扇形的中心角为,半径为2,则其面积为()A.B.C.D.3.已知,则=()A.B. C.D.4.三个数a=0.32,b=log20.3,c=20。
3之间的大小关系是()A.a<c<b B.a<b<c C.b<a<c D.b<c<a5.已知在映射f下,(x,y)的象是(x+y,x﹣y),其中x∈R,y∈R.则元素(3,1)的原象为()A.(1,2) B.(2,1)C.(﹣1,2) D.(﹣2,﹣1)6.已知函数y=2sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则此函数的解析式为()A.B.C.D.7.已知幂函数f(x)=x m﹣1(m∈Z,其中Z为整数集)是奇函数.则“m=4”是“f(x)在(0,+∞)上为单调递增函数”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分又不必要条件8.函数x+sinx﹣2在区间上的零点个数为()A.4 B.3 C.2 D.19.已知f(x)是定义在R上的偶函数,对任意x∈R都有f(x+4)=f(x)+2f(2),且f(0)=3,则f(﹣8)的值为()A.1 B.2 C.3 D.410.已知函数f(x)=Acos(ωx+φ)(A>0,ω>0)的图象与直线y=m(﹣A<m<0)的三个相邻交点的横坐标分别是3,5,9,则f(x)的单调递增区间是()A.[6kπ+1,6kπ+4],k∈Z B.[6k﹣2,6k+1],k∈ZC.[6k+1,6k+4],k∈Z D.[6kπ﹣2,6kπ+1],k∈Z11.函数f(x)=|x2﹣2x﹣1|,设a>b>1且f(a)=f(b),则(a﹣b)(a+b﹣2)的取值范围是()A.(0,4)B.[0,4)C.[1,3)D.(1,3)12.已知正实数m,n,设a=m+n,b=.若以a,b为某个三角形的两边长,设其第三条边长为c,且c满足c2=k•mn,则实数k的取值范围为()A.(1,6)B.(2,36)C.(4,20)D.(4,36)二、填空题:(本大题4个小题,每小题5分,共20分)各题答案必须填写在答题卡相应位置上,只填结果,不要过程).13.则f(f(2))的值为.14.已知,则(1+tanA)(1+tanB)=.15.的值等于.16.已知函数y=f(x)的定义域是R,函数g(x)=f(x+5)+f(1﹣x),若方程g(x)=0有且仅有7个不同的实数解,则这7个实数解之和为.三、解答题:(本大题6个小题,共70分)各题解答必须答在答题卷上相应题目指定的方框内(必须写出必要的文字说明、演算步骤或推理过程).17.(1)求值:(其中e为自然对数的底数);(2)已知cosα=,求cosβ的值.18.已知函数,g(x)=log2(2x﹣2).(1)求f(x)的定义域;(2)求不等式f(x)>g(x)的解集.19.已知函数f(x)=,(ω>0),其最小正周期为.(1)求f(x)的表达式;(2)将函数f(x)的图象向右平移个单位,再将图象上各点的横坐标伸长到原来的4倍(纵坐标不变),得到函数y=g(x)的图象,若关于x的方程g(x)+m=0在区间上有且只有一个实数解,求实数m的取值范围.20.已知函数f(x)=(a﹣1)(a x﹣a﹣x)(0<a<1).(1)判断f(x)的奇偶性并证明;(2)用定义证明f(x)为R上的增函数;(3)若f(2at2﹣a2﹣a)+f(6at﹣1)≤0对任意恒成立,求a的取值范围.21.已知函数f(x)=4sin2(+)•sinx+(cosx+sinx)(cosx﹣sinx)﹣1.(1)化简f(x);(2)常数ω>0,若函数y=f(ωx)在区间上是增函数,求ω的取值范围;(3)若函数g(x)=在的最大值为2,求实数a的值.22.定义在R上的函数f(x)满足:①f(x+y)+f(x﹣y)=2f(x)cosy;②.(1)求的值;(2)若函数g(x)=,求函数g(x)的最大值.2015—2016学年重庆一中高一(上)期末数学试卷参考答案与试题解析一、选择题:(本大题12个小题,每小题5分,共60分)在每小题给出的四个选项中,只有一项是符合题目要求的;各题答案必须填涂在答题卡上相应位置.1.已知集合A={2,3,4},B={2,4,6},则A∩B=()A.{2} B.{2,4}C.{2,4,6} D.{2,3,4,6}【考点】交集及其运算.【专题】计算题;集合思想;集合.【分析】由A与B,求出两集合的交集即可.【解答】解:∵A={2,3,4},B={2,4,6},∴A∩B={2,4},故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.已知扇形的中心角为,半径为2,则其面积为()A.B.C.D.【考点】扇形面积公式.【专题】计算题;三角函数的求值.【分析】利用扇形的面积计算公式S=αr2即可得出.【解答】解:此扇形的面积S=lr=αr2=××22=.故选:D.【点评】本题主要考查了扇形面积公式的应用,熟练掌握扇形的面积计算公式是解题的关键.3.已知,则=()A.B. C.D.【考点】同角三角函数基本关系的运用.【专题】计算题;转化思想;综合法;三角函数的求值.【分析】由条件利用同角三角函数的基本关系,求得要求式子的值.【解答】解:∵已知,则=1﹣2tan2α=1﹣=,故选:A.【点评】本题主要考查同角三角函数的基本关系,属于基础题.4.三个数a=0。
重庆一中2015届高三上学期期中数学试卷(文科)一、选择题(每题5分,共10题)1.(5分)已知全集U={1,2,3,4,5,6},A={2,3,6},则∁U A=()A.{1,4,5} B.{2,3,6} C.{1,4,6} D.{4,5,6} 2.(5分)函数f(x)=的定义域为()A.B.C. D.(1)求函数g(x)的极值;(2)若f(x)﹣g(x)在重庆一中2015届高三上学期期中数学试卷(文科)参考答案与试题解析一、选择题(每题5分,共10题)1.(5分)已知全集U={1,2,3,4,5,6},A={2,3,6},则∁U A=()A.{1,4,5} B.{2,3,6} C.{1,4,6} D.{4,5,6}考点:补集及其运算.专题:集合.分析:由全集U及A,求出A的补集即可.解答:解:∵全集U={1,2,3,4,5,6},A={2,3,6},∴∁U A={1,4,5},故选:A.点评:此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.2.(5分)函数f(x)=的定义域为()A.B.C. D.考点:程序框图.专题:图表型;算法和程序框图.分析:x=4满足条件x>1,则执行y=log24,从而求出最后的y值即可.解答:解:∵x=4满足条件x>1,∴执行y=log24=2.∴输出结果为2.故选C.点评:本题主要考查了条件结构,解题的关键是读懂程序框图.4.(5分)函数y=sinxsin的最小正周期是()A.B.πC.2πD.4π考点:二倍角的正弦;三角函数的周期性及其求法.专题:计算题;三角函数的图像与性质.分析:利用诱导公式、二倍角公式对已知函数进行化简,然后代入周期公式即可求解解答:解:∵y=sinxsin=sinxcosx=sin2x∴T=π故选B点评:本题主要考查了诱导公式、二倍角的正弦公式及周期公式的简单应用,属于基础试题5.(5分)直线l1:(a﹣1)x+y﹣1=0和l2:3x+ay+2=0垂直,则实数a的值为()A.B.C.D.考点:直线的一般式方程与直线的垂直关系.专题:直线与圆.分析:由已知得3(a﹣1)+a=0,由此能求出结果.解答:解:∵直线l1:(a﹣1)x+y﹣1=0和l2:3x+ay+2=0垂直,∴3(a﹣1)+a=0,解得a=.故选:D.点评:本题考查实数值的求法,是基础题,解题时要认真审题,注意直线垂直的性质的合理运用.6.(5分)甲、乙、丙、丁四人参加国际奥林匹克数学竞赛选拔赛,四人的平均成绩和方差如下表:甲乙丙丁平均成绩86 89 89 85方差S2 2.1 3.5 2.1 5.6从这四人中选择一人参加国际奥林匹克数学竞赛,最佳人选是()A.甲B.乙C.丙D.丁考点:极差、方差与标准差;众数、中位数、平均数.专题:概率与统计.分析:直接由图表看出四人中乙和丙的平均成绩最好,然后看方差,方差小的发挥稳定.解答:解:乙,丙的平均成绩最好,且丙的方差小于乙的方差,丙的发挥较稳定,故选C.点评:本题考查方差和标准差,对于一组数据,通常要求的是这组数据的众数,中位数,平均数,在平均数相差不大的前提下,方差越小说明数据越稳定,这样的问题可以出现在选择题或填空题中.考查最基本的知识点.7.(5分)直线x+y﹣2=0与圆(x﹣1)2+(y﹣2)2=1相交于A,B两点,则弦|AB|=()A.B.C.D.考点:直线与圆的位置关系.专题:直线与圆.分析:利用点到直线的距离公式可得:圆心到直线x﹣y﹣1=0的距离d,即可得出弦长|AB|.解答:解:由圆(x﹣1)2+(y﹣2)2=1,可得圆心M(1,2),半径r=1.∴圆心到直线x+y﹣2=0的距离d==.∴弦长|AB|=2=2×=.故选:D.点评:本题考查了直线与圆的位置关系、点到直线的距离公式,属于基础题.8.(5分)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()cm3A.πB.2πC.3πD.4π考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由三视图可知:此几何体为圆锥的一半,即可得出.解答:解:由三视图可知:此几何体为圆锥的一半,∴此几何体的体积==2π.故选:B.点评:本题考查了由三视图恢复原几何体的体积计算,属于基础题.9.(5分)设实数x和y满足约束条件,且z=ax+y取得最小值的最优解仅为点A(1,2),则实数a的取值范围是()A.B.C.D.考点:简单线性规划.专题:不等式的解法及应用.分析:作出约束条件所对应的可行域,变形目标函数可得y=﹣ax+z,其中直线斜率为﹣a,截距为z,由题意可得﹣a<,解不等式可得.解答:解:作出约束条件所对应的可行域(如图阴影),变形目标函数可得y=﹣ax+z,其中直线斜率为﹣a,截距为z,∵z=ax+y取得最小值的最优解仅为点A(1,2),∴直线的斜率﹣a<,(﹣为直线x+3y﹣7=0的斜率)解不等式可得a>,即实数a的取值范围为(,+∞)故选:C点评:本题考查简单线性规划,准确作图是解决问题的关键,属中档题.10.(5分)已知正数a,b,c满足a+b=ab,a+b+c=abc,则c的取值范围是()A.B.C.D.考点:基本不等式.专题:不等式的解法及应用.分析:由正数a,b,c满足a+b=ab利用基本不等式的性质可得ab≥4.a+b+c=abc,化为c(ab﹣1)=ab,即.利用函数与不等式的性质即可得出.解答:解:∵正数a,b,c满足a+b=ab≥,∴ab≥4.∴a+b+c=abc,化为c(ab﹣1)=ab,即.∴.故选:D.点评:本题考查了函数与不等式的性质、基本不等式的性质,属于基础题.二、填空题(每题5分,共5题)11.(5分)命题“∀x∈R,2x>0”的否定是∃x∈R,2x≤0.考点:命题的否定.专题:简易逻辑.分析:直接利用全称命题的否定是特称命题写出结果即可.解答:解:因为全称命题的否定是特称命题,所以命题“∀x∈R,2x>0”的否定是:∃x∈R,2x≤0.故答案为:∃x∈R,2x≤0.点评:本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.12.(5分)已知复数z=(2+i)(x﹣i)为纯虚数,其中i为虚数单位,则实数x的值为﹣.考点:复数的基本概念.专题:数系的扩充和复数.分析:直接由复数代数形式的乘法运算化简复数z,又复数z为纯虚数,则实部为0,虚部不等于0,即可求出实数x的值.解答:解:∵z=(2+i)(x﹣i)=2x﹣2i+xi﹣i2=2x+1+(x﹣2)i,又复数z为纯虚数,∴,解得:.故答案为:.点评:本题考查了复数的基本概念,是基础题.13.(5分)若向量、的夹角为150°,||=,||=4,则|2+|=2.考点:数量积表示两个向量的夹角;向量的模.专题:计算题.分析:本题考查的知识点是向量的模及平面向量数量积运算,由向量、的夹角为150°,||=,||=4,我们易得的值,故要求|2+|我们,可以利用平方法解决.解答:解:|2+|====2.故答案为:2点评:求常用的方法有:①若已知,则=;②若已知表示的有向线段的两端点A、B坐标,则=|AB|=③构造关于的方程,解方程求.14.(5分)在数列{a n}中,a1=1,a n+1=a n+(n∈N*),则a n=.考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:根据数列的递推关系,利用累加法和裂项法即可得到结论.解答:解:∵a1=1,a n+1=a n+(n∈N*),∴a n+1﹣a n==﹣,(n∈N*),则a2﹣a1=1﹣,a3﹣a2=,…a n﹣a n﹣1=﹣,等式两边同时相加得a n﹣a1=1﹣,故a n=,故答案为:点评:本题主要考查数列项的求解,根据数列的递推关系,以及利用累加法和裂项法是解决本题的关键.15.(5分)设n为正整数,,计算得,f(4)>2,,f(16)>3,观察上述结果,可推测一般的结论为f(2n)≥(n∈N*).考点:归纳推理.专题:探究型.分析:根据已知中的等式:,f(4)>2,,f(16)>3,…,我们分析等式左边数的变化规律及等式两边数的关系,归纳推断后,即可得到答案.解答:解:观察已知中等式:得,f(4)>2,,f(16)>3,…,则f(2n)≥(n∈N*)故答案为:f(2n)≥(n∈N*).点评:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想)三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算过程)16.(13分)已知等差数列{a n}满足:a5=5,a2+a6=8.(1)求{a n}的通项公式;(2)若b n=a n+2an,求数列{b n}的前n项和S n.考点:数列的求和.专题:等差数列与等比数列.分析:(1)直接根据已知条件建立方程组求得首项和公差,进一步求得通项公式.(2)利用(1)的结论,根据等差和等比数列的前n项和公式求的结果.解答:解:(1)由条件a5=5,a2+a6=8.得知:,解得:,故{a n}的通项公式为:a n=n.(2),故S n=b1+b2+…+b n,.点评:本题考查的知识要点:等差数列通项公式的应用,等差数列和等比数列的前n项和公式的应用.属于基础题型.17.(13分)从2015届高三学生中抽取n名学生参加数学竞赛,成绩(单位:分)的分组及各数据绘制的频率分布直方图如图所示,已知成绩的范围是区间又B为三角形内角,∴B=;(2)∵向量=(cos2A+1,3cosA﹣4),=(5,4),且⊥,∴•=0,即5(cos2A+1)+4(3cosA﹣4)=0,整理得:5cos2A+6cosA﹣8=0,解得:cosA=或cosA=﹣2(舍去),又0<A<π,∴A为锐角,∴sinA=,tanA=,则tan(+A)==7.点评:此题考查了正弦、余弦定理,三平面向量的数量积运算,熟练掌握定理是解本题的关键.19.(12分)如图,已知DE⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB=2,且F 是CD的中点.(1)求证:AF∥平面BCE;(2)求四棱锥C﹣ABED的全面积.考点:棱柱、棱锥、棱台的侧面积和表面积;直线与平面平行的判定.专题:空间位置关系与距离.分析:(1)取CE中点P,连结FP,BP,证明ABPF为平行四边形,然后利用直线余平面平行的判定定理证明AF∥平面BCE.(2)求出S ABED,,S△CDE,S△ABC,S△BCW,然后求出全面积.解答:解:(1)证明:取CE中点P,连结FP,BP∵F为CD的中点,∴又∴∴ABPF为平行四边形,∴AF∥BP又∵AF⊄平面BCE,BP⊂平面BCE,∴AF∥平面BCE.(2)S ABED==3,,S△CDE==2,S△ABC==1,S△BCE===S全=6+.点评:本题考查直线与平面平行的判定定理的应用,几何体的表面积的求法,考查计算能力.20.(12分)已知函数g(x)=+lnx,f(x)=mx﹣﹣lnx,m∈R.(1)求函数g(x)的极值;(2)若f(x)﹣g(x)在mx2﹣2x+m≥0等价于m(1+x2)≥2x,即,而.∴mx2﹣2x+m≤0等价于m(1+x2)≤2x,即在∪∴==当即t2=1时,∴又∴∴点评:求圆锥曲线的方程的一般方法是利用待定系数法;解决直线与圆锥曲线的位置关系一般是将直线的方程与圆锥曲线的方程联立,消去一个未知数得到关于一个未知数的二次方程,利用韦达定理找突破口.。
2015-2016学年度第二学期期中六校联考高一数学答案一、选择题二、填空题9.34 10.3+ 11.12.1- 13.5|32x x orx ⎧⎫≤>⎨⎬⎩⎭14.2⎤⎥⎝⎦ 15.(本小题满分12分)解:(1)由b sin A =3a cos B 及正弦定理a sin A =b sin B, 得sin B =3cos B ,…………2分所以tan B =3,…………4分所以B =π3.…………6分 (2)由sin C =2sin A 及a sin A =c sin C,得c =2a . …………8分 由b =3及余弦定理b 2=a 2+c 2-2ac cos B ,得9=a 2+c 2-ac . …………10分所以a =3, c =23.…………12分16.(本小题满分12分)(Ⅰ)解:在ABC ∆中,由题意知,sin A ==.…………2分 又因为2B A π=+,所以sin sin 2B A π⎛⎫=+ ⎪⎝⎭cos A ==…………4分由正弦定理可得,sin sin a B b A===.…………6分 (Ⅱ)由2B A π=+得cos cos 2B A π⎛⎫=+ ⎪⎝⎭sin A =-=.…………8分 由A B C π++=,得()C A B π=-+,…………9分所以sin C =()sin A B π-+⎡⎤⎣⎦()sin A B =+sin cos cos sin A B A B =+⎛= ⎝13=.…………11分 因此ABC ∆的面积1sin 2S ab C=11323=⨯⨯=.…………12分 17. (本小题满分12分) (1)设b n =,所以b 1==2, …………1分则b n+1-b n =- =·[(a n+1-2a n )+1] =[(2n+1-1)+1]=1. …………3分 所以数列是首项为2,公差为1的等差数列. …………4分(2)由(1)知,=2+(n-1)×1,所以a n =(n+1)·2n +1. …………6分因为S n =(2·21+1)+(3·22+1)+…+(n·2n-1+1)+[(n+1)·2n +1]=2·21+3·22+…+n·2n-1+(n+1)·2n +n.设T n =2·21+3·22+…+n·2n-1+(n+1)·2n , ①2T n =2·22+3·23+…+n·2n +(n+1)·2n+1, ②②-①,得T n =-2·21-(22+23+…+2n )+(n+1)·2n+1=-4-+(n+1)·2n+1=n·2n+1…………11分所以S n =n·2n+1+n=n·(2n+1+1). …………12分18.(本小题满分14分)解: (1)不等式()0f x >的解集为}12|{<>x x x 或所以与之对应的二次方程220ax bx -+=的两个根为1,2由根与系数关系的1,3a b ==…………4分(2){}1(2)()011,|2211,|221,|22x x aa x x a a x x a a x x --≤⎧⎫>≤≤⎨⎬⎩⎭⎧⎫<≤≤⎨⎬⎩⎭==若解集是若0<解集是若解集是 …………10分(3)令2()(2)2g a a x x x =--+则(1)01x=|2x=0(2)02g x x x g >⎧⎧⎫><⎨⎨⎬>⎩⎭⎩或0解得或或 …………14分(19)解:(1) a S n n -=+62a S n n -=+-512 (+∈≥N n n 且2)…………1分∴ 512+-=-=n n n n S S a …………2分经检验1=n 时也成立∴ 52+=n n a …………3分 6411==S a =a n -+6264=∴a …………4分(2))121111(4)12)(11(411+-+=++=+n n n n b b n n ……………………6分 其前n 项和)121111...141131131121(4+-+++-+-=n n T n =)121121(4+-n …………8分 (3)解:方法一:)5...321(1n n nb n +++++= =211+n …………9分 562211112n n n n a n b n ++==++ …………10分 ()()7617612112(12)221211(12)11n n n n n n n n n n a a b b n n n n +++++++-+-=-=++++ ()()62222(12)(12)11n n n n n ++-+⎡⎤⎣⎦=++ ()()62100(12)11n n n n ++=>++…………12分 ∴⎭⎬⎫⎩⎨⎧n n b a 在其定义域上单调递增…………13分∴⎭⎬⎫⎩⎨⎧n n b a min 11b a =332= …………14分 方法二、)5...321(1n n nb n +++++==211+n …………9分 562211112n n n n a n b n ++==++ …………10分 )1211(212)11(2211221225611+-=++=++=++++n n n n n b ab a n n n n n …………12分即nn n n b ab a 11++>1 又 0>nn b a ∴⎭⎬⎫⎩⎨⎧n n b a 在其定义域上单调递增…………13分∴⎭⎬⎫⎩⎨⎧n n b a min 11b a =332= …………14分。
高中一年级第二学期期末质量检测数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 的值是A. B. C. D.【答案】B2. 已知等差数列中,,则A. B. C. D.【答案】C【解析】等差数列中,.,所以.故选C.3. 直线的倾斜角为A. B. C. D.【答案】C【解析】试题分析:由题意,得,所以,故选C.考点:直线的倾斜角.4. 已知直线与直线平行,则的值为A. B. C. 或 D. 或【答案】A【解析】直线与直线平行.所以,解得检验时两直线不重合,故选A.5. 已知平面向量,,若,则实数的值为A. B.C. D.【答案】D【解析】若,则若.平面向量,,所以,所以.故选D.6. 已知,则的值分别为A. B.C. D.【答案】D【解析】.所以.故选D.7. 若实数满足,则的最小值为A. B.C. D.【答案】B【解析】因为,所以.,即,所以.当且仅当时,的最小值为4.故选B.点睛:在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.8. 已知圆的圆心在轴上,点在圆上,圆心到直线的距离为,则圆的方程为A. B.C. D.【答案】D【解析】由题意设圆的方程为(x−a)2+y2=r2(a>0),........................得,解得a=2,r=3.∴圆C的方程为:.故选D.9. 如图,一辆汽车在一条水平的公路上向正西行驶,到处测得公路北侧一山顶在西偏北(即)的方向上;行驶后到达处,测得此山顶在西偏北(即)的方向上,且仰角为.则此山的高度=A. mB. mC. mD. m【答案】A【解析】设此山高h(m),则BC=h,在△ABC中,∠BAC=30∘,∠CBA=105∘,∠BCA=45∘,AB=600.根据正弦定理得=,解得h=(m)故选:A.10. 已知数列满足,且,则A. B.C. D.【答案】A【解析】∵数列是公比为2的等比数列,∴{}是以为公比的等比数列,又,,所以则.故选:A.11. 若平面区域夹在两条斜率为的平行直线之间,则这两平行直线间的距离的最小值为A. B.C. D.【答案】C【解析】作出平面区域如图所示:,∴当直线分别经过A,B时,平行线间的距离相等。
秘密★启用前2015年重庆一中高2018级高一上期半期考试数 学 试 题 卷 2015.12一,选择题(每题5分,共60分)1. 已知集合{15,},{1,2,3}M x x x N S =<<∈=,那么M S ⋃=( ) A {1,2,3,4} B {1,2,3,4,5} C {2,3} D {2,3,4}2. 式子 32log 2log 27的值为( )A 2B 3C 13D 3- 3. 下列函数为奇函数的是( )A+ B 31x -C D 21x-4. 已知:lg(3)0p x -<,2:04x q x -<-,那么p 是q 的( )条件. A 充分不必要 B 充要 C 必要不充分 D 既不充分也不必要 5. 已知幂函数2(22)ay a a x =--在实数集R 上单调,那么实数a =( ) A 一切实数 B 3或1- C 1- D 3 6.(原创)定义在实数集R 上的函数()y f x =满足1212()()0f x f x x x ->-12()x x ≠,若(5)1,f =-(7)0f =,那么(3)f -的值可以为( )A 5B 5-C 0D 1- 7.对于任意的1,1a b >>,以下不等式一定不成立的是( )A 0log >b aB 1>ba C 1)1(1>b aD 2log log ≥+a b b a8. 以下关于函数21()(3)3x f x x x -=≠-的叙述正确的是( ) A 函数()f x 在定义域内有最值 B 函数()f x 在定义域内单调递增 C 函数()f x 的图像关于点(3,1) 对称 D 函数5y x=的图像朝右平移3个单位再朝上平移2个单位即得函数()f x9. (原创)函数()f x 满足()(2),f x f x x R =-∈,且当1x ≤时,32()44f x x x x =--+,则方程()0f x =的所有实数根之和为( )A 2B 3C 4D 110. 已知关于x 的方程2222320x ax a a -+-+=有两个不等的实数根12,x x ,那么212()x x -的取值范围是( )A (0,)+∞B [0,1]C (0,1]D (0,1) 11. (原创)已知函数2()log (32)af x x x=+-在区间[1,)+∞上单调递增,那么实数a 的取值范围是( )A (1,3)-B (1,3]-C [0,3]D [0,3) 12. 对于任意,x R ∈函数2()2124f x x x x a x =------+的值非负,则实数a 的最小值为( ) A 118-B 5-C 3-D 2- 二,填空题(每题5分,共20分)13. 将函数2()log (32)1f x x =+- 的图像向上平移1个单位,再向右平移2个单位后得到函数()g x ,那么()g x 的表达式为14. (原创)已知[1,5]}{262x R x x a ⊆∈-≤+,那么实数a 的最小值为 15. 函数32()f x ax bx cx d =+++是实数集R 上的偶函数,并且()0f x <的解为(2,2)-,则db的值为 16. (原创)函数()2xf x =,25()22g x x kx =-+,若对于任意的[1,2]s ∈-,都存在[,21]t k k ∈+,使得()()f s g t =成立,则实数k 的取值范围是三,解答题(共计70分)17.(12分)(原创)集合{{219()(3)0,ln()024A x x xB x x ax a ⎫⎫=--==+++=⎬⎬⎭⎭(1)若集合B 只有一个元素,求实数a 的值; (2)若B 是A 的真子集,求实数a 的取值范围.18.(12分)函数22()()22x xx xf x x R ---=∈+(1)判断并证明函数()f x 的奇偶性; (2)求不等式315()517f x ≤≤的解集.19.(12分)如图,定义在[1,2]-上的函数()f x 的图象为 折线段ACB ,(1)求函数()f x 的解析式;(2)请用数形结合的方法求不等式()()2log 1f x x +≥的解集,不需要证明.20.(12分)集合{}930,=+⋅+=∈xxA x p q x R ,{}9310,=⋅+⋅+=∈xxB x q p x R ,且实数0pq ≠(1)证明:若0x A ∈,则0x B -∈;(2)是否存在实数,p q 满足A B ⋂≠∅且{1}R A C B ⋂=?若存在,求出,p q 的值,不存在说明理由.21.(12分)(原创)函数233()(log )(1)log 32(0,)f x x a x a x a R =+-+->∈ (1)若函数()f x 的值域是[2,)+∞,求a 的值;(2)若3(3)log (9)0f x x +≤对于任意[3,9]x ∈恒成立,求a 的取值范围.22.(10分)已知函数(0)ay x a x =+>在区间上单调递减,在区间)+∞上单调递增;函数2332111()()()([,2])2h x x x x x x =+++∈(1)请写出函数22()(0)a f x x a x =+>与函数()(0,,3)n n ag x x a n N n x=+>∈≥在(0,)+∞的单调区间(只写结论,不证明); (2)求函数()h x 的最值;(3)讨论方程22()3()20(030)h x mh x m m -+=<≤实根的个数.命题人:廖 桦 审题人:陈永旺2015年重庆一中高2018级高一上期半期考试数 学 答 案 2015.12一,选择题(每题5分,共60分)ABCAD BCDBC BD二,填空题(每题5分,共20分)13. 2log (34)x - 14. -7 15. 4- 16. )+∞ 三,解答题(70分) 17.(12分)解:(1)根据集合B 有2504x ax a +++=有两个相等的实数根,所以 254()054a a a ∆=-+=⇒=或1-;(2)根据条件,1{,3}2A =,B 是A 的真子集,所以当B =∅时,254()0154a a a ∆=-+<⇒-<<;当B ≠∅时,根据(1)将5,1a =-分别代入集合B 检验,当5,a =5{}2B =-,不满足条件,舍去;当1a =-,1{}2B =,满足条件; 综上,实数a 的取值范围是[1,5)-18(12分)解:(1)函数()f x 是定义域R 上的奇函数,证明如下,任取x R ∈,222222(),()()222222x x x x x xx x x x x xf x f x f x ---------=-==-=-+++,所以()f x 是R 上的奇函数;又33(1)(1)55f f =≠-=-,所以()f x 不是偶函数. (2)2222 2.22()1222241x x x x x x x x x x f x ------+-===-+++,易得()f x 在R 上单增,又315(1),(2)517f f ==,所以不等式不等式315()517f x ≤≤的解集为[1,2] 19.(12分)解:(1)根据图像可知点(1,0),(0,2),(2,0)A B C - ,所以()22,(10)2,(02)x x f x x x +-≤≤⎧=⎨-+<≤⎩(2)根据(1)可得函数()f x 的图像经过点(1,1),而函数2log (1)x + 也过点(1,1), 函数2log (1)x +的图像可以由2log x 左移1个单位而来,如图所示,所以根据图像可得不等式()()2log 1f x x +≥的解集是(1,1]-.20.(12分)证明:(1)若0x A ∈,则00930,xxp q ++=可得001390,x x p q --++=即0x -是方程9310x x q p ++=的实数根,即0x B ∈.(2)假设存在,则根据A B ⋂≠∅,{1}R A C B ⋂=,易知集合,A B 有且仅有一个公共元素,设{}A B s ⋂=,根据条件以及(1)有{1,}A s =,{1,}B s =--,显然 1s ≠-,则有0s s s =-⇒=,那么{0,1},{0,1}A B ==-,代入方程有10,p q ++=390p q ++=,联立解得43p q =-⎧⎨=⎩,所以存在43p q =-⎧⎨=⎩满足A B ⋂≠∅且{1}R A C B ⋂=21.(12分)解:(1)2223331(1)()(log )(1)log 32(log )3224a a f x x a x a x a --=+-+-=++--,又3(0,),log ,x x R ∈+∞∴∈∴ 231(log )[0,)2a x -+∈+∞, ()f x ∴的值域为2(1)[32,)4a a ---+∞,根据条件()f x 的值域为[2,)+∞,∴2(1)322,74a a a ---=∴=± (2)23333(3)log (9)(log 1)(1)(log 1)32log 2f x x x a x a x +=++-++-++,整理得2333(3)log (9)(log )(2)log 4f x x x a x a +=+++,令3log ,x t =当[3,9]x ∈时,[1,2]t ∈,那么3(3)log (9)0f x x +≤对于任意[3,9]x ∈恒成立2(2)40t a t a ⇔+++≤对于任意[1,2]t ∈恒成立,根据实根分布2(2)40t a t a +++=的二实根,一根小于等于1,一根大于等于2 1(2)40442(2)403a a a a a +++≤⎧⇒≤-⎨+++≤⎩ 22.(10分)解:(1)根据条件,22()(0)af x x a x=+> 的单调递减区间是,单调递增区间是)+∞函数()n n ag x x x =+的单调递减区间是(0,,单调递增区间是[)+∞;(2)233211()()()h x x x x x =+++636311()4()6x x x x =++++由(1)可知,661x x +与3314()x x +均在1[,1]2单调递减,在[1,2]上单调递增,则有函数()h x 在1[,1]2单调递减,在[1,2]上单调递增,所以min (1)16,h h ==33max 1996561()(2)()()22464h h h ===+=(3)由22()3()20h x mh x m -+=可得(())(()2)0h x m h x m --=,所以有()h x m =或()2h x m =,又函数()h x 在1[,1]2单调递减,在[1,2]单调递增,而16561(1)16,()(2)264h h h ===, 所以当021608m m <<⇒<<时,方程无实数根;当2168m m =⇒=时,有一个实数根;当016,m <<且60216m >>即816m <<,方程有两个实数根; 当16,232m m ==,方程有三个实数根; 当65611630,26064m m <≤≤<时,方程有四个实数根. 综上,①当08m <<时,方程实根个数为0; ②当8m =时,方程实根个数为1;③当816m <<时,方程实根个数为2; ④当16,232m m ==时,方程实根个数为3; ⑤当1630m <≤时,方程实根个数为4.。