ANSYSACPTutorialex1复合材料分析官方实例1
- 格式:pdf
- 大小:3.65 MB
- 文档页数:33
ANSYS复合材料仿真分析在ANSYS 中可以定义多种材料属性:主菜单-> preprocesser -> Material Prop -> Material Models -> 打开Define Material Model Behavior 对话框-> 顶部菜单中:Material -> New Model ... -> 弹出Define Material ID 对话框-> 定义更多的材料ANSYS复合材料仿真分析2009-05-23 23:31复合材料,是由两种或两种以上性质不同的材料组成。
主要组分是增强材料和基体材料。
复合材料不仅保持了增强材料和基体材料本身的优点,而且通过各相组分性能的互补和关联,获得优异的性能。
复合材料具有比强度大、比刚度高、抗疲劳性能好、各向异性、以及材料性能可设计的特点,应用于航空领域中,可以获得显著的减重效益,并改善结构性能。
目前,复合材料技术已成为影响飞机发展的关键技术之一,逐渐应用于飞机等结构的主承力构件中,西方先进战斗机上复合材料使用量已达结构总重量的25%以上。
飞机结构中,复合材料最常见的结构形式有板壳、实体、夹层、杆梁等结构。
板壳结构如机翼蒙皮,实体结构如结构连接件,夹层结构如某些薄翼型和楔型结构,杆梁结构如梁、肋、壁板。
此外,采用缠绕工艺制造的筒身结构也可视为层合结构的一种形式。
一.复合材料设计分析与有限元方法复合材料层合结构的设计,就是对铺层层数、铺层厚度及铺层角的设计。
采用传统的等代设计(等刚度、等强度)、准网络设计等设计方法,复合材料的优异性能难以充分发挥。
在复合材料结构分析中,已经广泛采用有限元数值仿真分析,其基本原理在本质上与各向同性材料相同,只是离散方法和本构矩阵不同。
复合材料有限元法中的离散化是双重的,包括了对结构的离散和每一铺层的离散。
这样的离散可以使铺层的力学性能、铺层方向、铺层形式直接体现在刚度矩阵中。
Ansys复合材料结构分析操作指导书Any10.0复合材料结构第一章概述复合材料是两种或两种以上物理或化学性质不同的材料复合在一起而形成的一种多相固体材料,具有很高的比刚度和比强度(刚度和强度与密度的比值),因而应用相当广泛,其应用即涉及航空、航天等高科技领域,也包括游艇、风电叶片等诸多民用领域。
由于复合材料结构复杂,材料性质特殊,对其结构进行分析需要借助数值模拟的方法,众多数值模拟软件中Any是个不错的选择。
1、有限元分析方法应用简介有限元法(FiniteElementMethod,简称FEM)是建立在严格数学分析理论上的一种数值分析方法。
该方法的基本思想是离散化模型,将求解目标离散成有限个单元(Element),并在每个单元上指定有限个节点(Node),单元通过节点相连构成整个有限元模型,用该模型代替实际结构进行结构分析。
在对结构离散后,要求解的基本未知量就转变为各个节点位移(Any中称之为DOF(DegreeOfFreedom),试想一下,节点的位移包括沿某,y,z轴的平动和转动,也就是节点的自由度),节点位移通过求解一系列代数方程组得到,在求得节点位移后,利用节点位移和应力、应变之间的关系矩阵就可以求出各个节点上的应力、应变,应用线性插值便可以获得单元内任意位置的位移、应力、应变等信息。
2、Any软件的发展近况Any软件目前已发展到AnyV12版本,从V10开始Any加入了一个新的工作环境Workbench,原先的Any被称为Any(claic),虽然操作界面不同,但两者的求解器是一样的。
Any(claic)的前处理功能相对较弱(主要是建模方面),因而往往需要借助第三方软件,如CAD软件。
也许是迫于另一个有限元分析软件ABQUS的竞争压力,Any推出了新的Workbench工作环境,Workbench在建模、划分网格、求解和后处理上都作了改进,尤其在建模和划分网格方面有了巨大进步,建模方面与传统CAD软件一样采用图形界面,极大地提高了图形的可视性,划分网格采用了AnyICEMCFD 的功能,使划分的网格更加易控,最重要的是免去了从第三方软件导入模型、网格过程中可能存在的各种问题,实现了真正的“无缝”连接。
ANSYS Composite PrepPost Modeling Composites the Simple Way安世亚太科技股份有限公司演讲人:刘程伟复合材料简介ANSYS复合材料分析技术 ACP介绍ACP特色功能ACP新功能复合材料简介ANSYS复合材料分析技术 ACP介绍ACP特色功能ACP新功能•复合材料(Composite materials),是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。
•各种材料在性能上取长补短复合材料的分类A.颗粒增强复合材料B.纤维增强复合材料•短纤维增强•长纤维增强复合材料薄片- 由基体和增强体组成的单层结构。
材料属性采用等效的方式。
基体- 一般采用各向同性材料,起到包裹增强体的作用。
纤维增强体- 被基体材料包裹,是复合材料各向异性力学行为的主要原因。
LT叠层组合- 多组复合材料薄片组成,纤维的方向一般不同应用领域•航空航天•风能•运动和娱乐•建筑行业•汽车行业•船舶行业•国防领域•……目录复合材料简介ANSYS复合材料分析技术 ACP介绍ACP特色功能ACP新功能ANSYS 复合材料分析技术•复合材料单元:•Mechanical APDL包含多种复合单元•不同截面属性的3D 梁单元–BEAM188, BEAM189, ELBOW290 elements•2D 轴对称壳单元–SHELL208, SHELL209 elements•3D 铺层壳单元–SHELL181, SHELL281 elements (SHELL131 and SHELL132 are thermal shells)•3D 铺层实体单元–SOLID185, SOLID186, SOLSH190,SOLID278,SOLID279 elementsANSYS 复合材料分析技术•厚度方向仅采用一个单元,模拟复合材料的铺层力学性能–不需要单独的对每层划分网格•可以采用多种失效准则,对复合材料的强度进行评估–最大应变准则–最大应力准则–Tsai-Wu 准则–用户自定义准则•更多的内容参看ANSYS–“Mechanical APDL (formerly ANSYS) > Structural Analysis Guide > Ch. 13 Composites”–“Mechanical APDL (formerly ANSYS) > Structural Analysis Guide > Ch. 16 Beam Analysis and Cross Sections”–“Mechanical APDL (formerly ANSYS) > Structural Analysis Guide > Ch. 17 Shell Analysis and Cross Sections”ET,1,SHELL181! LAYERS PROPERTIESSECTYPE,1,SHELL,,MON_STRATIFIE SECDATA,0.025,1, 0SECDATA,0.500,1, 45SECDATA,0.500,1, -45 SECDATA,0.025,1, 0! ORTHOTROPIC MATERIAL PROPERTIES MP,EX,1,25E6MP,EY,1,1E6MP,EZ,1,1E6MP,GXY,1,5E5MP,GYZ,1,2E5MP,GXZ,1,5E5MP,PRXY,1,0.25MP,PRYZ,1,0.01 SECPLOT,1 (or LAYPLOT command)/PSYMB,ESYS,1THETA = Angle (in degrees) withrespect to element coordinatesystem (ESYS)/ESHAPE,1/EFACET,2EPLOTANSYS 复合材料分析技术目录复合材料简介ANSYS复合材料分析技术 ACP介绍ACP特色功能ACP新功能ANSYS Composite PrepPost介绍ANSYS ACP的主要功能•创建各种形式的复合材料模型•定义复合材料的铺层设置•定义复合材料的纤维方向•对复合材料结构进行评估•评估每层的应力情况•计算复合材料的失效ANSYS ACP分析流程建立几何模型施加边界条件ACP复合材料前处理:铺层信息定义(每层材料属性、厚度、铺层方向角等)ANSYS求解ACP后处理为复合材料加工制作提供必要数据ACP与ANSYS数据传递ANSYS WorkbenchSOLVER定义几何以及边界条件定义铺层信息Write an acp.cdbFileRead the acp.cdbFileImport the results (rstfiles) for postprocessingWrite a *.cdb file withdefined lay-upsLaunch solver其他方式后处理ANSYS Mechanical APDL前处理后处理求解定义材料属性•材料属性的定义同样在ANSYS材料库中进行•定义材料属性的过程中需要考虑纤维的影响•必须的材料属性设置•x, y, z三个方向的杨氏模型•xy, yz, xz三个方向的剪切模量•xy, yz, xz三个方向的泊松比1, x 2, y3, z•失效准则需要定义应力极限值和应变极限值•应力极限值和应变极限值在拉伸和压缩方向一般是不同的应力极限应变极限拉伸X, Y 和 Z 拉伸X, Y 和 Z压缩X, Y 和 Z 压缩X, Y 和 Z剪切XY, YZ 和 XZ 剪切XY, YZ 和 XZ定义材料属性•网格划分过程与普通静力学通用•Mesh中所有的尺寸和选项控制都可以使用•复合材料的建模分析,以面体的网格为起点•ACP同样能够进行实体复合材料的分析•单元集通过Named Selections进行定义•基于Named Selections定义复合材料的铺层•更改几何模型时候需要检查Named Selections的定义单元集Named SelectionsANSYS Composite PrepPost 分析过程•开始复合材料的分析ANSYS Composite PrepPost 界面标准视图模式和视图设置模型树后处理显示设置铺层设置•复合材料铺层设置•采用的纤维层(fabric)•确定需要铺层的位置•铺层的参考方向•增强纤维的方向Static Structural 分析求解ACP (Post) 后处理•失效准则•Max. Strain & Max. Stress •Tsai-Wu•Tsai-Hill•Hashin•Puck•LaRC•Cuntze•Face Sheet Wrinkling•Core Failure•可以在后处理中查看•失效准则•失效模式•关键层•临界载荷步s2t(5) s2t(5)s2t(5)s2t(5)ACP基本功能总结•完全集成于WorkBench平台•直观的创建复合材料铺层•依据制造的过程创建模型•简单高效的修改铺层设置•包含目前通用的失效准则•高效的后处理过程目录复合材料简介ANSYS复合材料分析技术 ACP介绍ACP特色功能ACP新功能Oriented Element Sets利用“方向化单元集”来定义复杂的铺层方向(OES :Oriented Element Sets) the OES normal the OES reference direction the ply angle直观的铺层定义(Build the laminate lay-up)铺层材料铺层方向角铺层数量查看铺层截面,确认铺层正确无误提供复合材料“Draping”功能Draping coefficients提供多种失效模式定义复合材料失效通常有以下两种:●层间失效(由于剪切或拉伸力作用引起)●层内的纤维或基体破坏失效failure patternout-of-phase micro buckling in-phasemicro bucklingshear failurefiber tensionfiber compression fiber ruptureεm > εfmatrix failureεf > εmtransverse crack interfacial failureshear failure with fiber rupture shear w/o fiber rupturematrix tension matrix compressionACP 强大的后处理功能 Agarwal/Broutman (1990) Agarwal/Broutman (1990) delaminationmatrix crack fiber rupturedebondingmicro-buckling / shear failure实体模型•复合材料模型通常是薄壳类结构•壳体厚度方向应力为零实体模型•壳体厚度方向应力不为零•厚度方向应力产生的效果与垂直于纤维方向应力效果相同,很小的应力会造成复合材料的失效•以下情况建议采用实体复合材料模型•多层复合材料•大变形•厚度方向存在载荷•实体模型的分析流程•实体复合材料模型创建过程类似于制造过程。
01简单框架问题及梁板复合计算(ANSYS) ANSYS 9.0版本启动的时候首先出现如下图所示的对话框,其中第一页提示用户选择需要的ANSYS功能模块,用户需要根据其购买的ANSYS模块和计算的问题内容来选择。
选择功能模块选择启动对话框的第二个页面,这里ANSYS提示用户给出操作所在的文件夹以及相应的任务名称。
而后ANSYS的计算过程及结果都存放在该文件夹中,一般都以任务命作为文件名,以扩展名表示文件的类型。
例如,在本次分析中,任务名为Case01,那么ANSYS的计算结果,一般会以Case01.rst文件的形式存放在D:\AnsysWork\Book\case01\文件夹中文件夹及任务名称以上设置好后点击“Run”按钮,就进入ANSYS的主操作界面,ANSYS操作界面主要包括以下4部分:(1)ANSYS窗口顶部菜单,提供一些常用功能开关选项;(2)ANSYS窗口顶部工具栏,提供一些常用功能件,比如打开文件、保存文件等;(3)在工具栏右侧为命令输入栏,ANSYS的所有操作都可以通过输入一定格式的命令来完成,ANSYS称其这套命令体系为APDL语言;(4)ANSYS窗口中央左侧为ANSYS的主菜单,ANSYS图形界面分析(GUI)的大部分功能都由这部分菜单完成。
主菜单中最常用的几个模块为前处理模块(Preprocessor),求解模块(Solution),通用后处理模块(General Postproc)和时程后处理模块(TimeHist Postproc);(5)ANSYS窗口中央右侧为ANSYS的显示窗口,GUI界面的各种操作和结果都在该窗口显示顶部菜单顶部工具栏命令输入栏主菜单显示窗口首先要选择分析所用的单元类型。
在本次分析中,我们将用到在土木工程中最常用的两种单元:三维梁单元Beam 188 和三维壳单元Shell 63。
一般结构中梁柱可以用梁单元模拟,而剪力墙和楼板则可以用壳单元模拟。
ANSYS ACP复合材料案例详解-1该算例为简单层合板分析,描述了从几何模型到后处理的基本操作流程。
1.前处理部分1〉打开ANSYS Workbench,直接拖拽ACP(Pre)到工作界面:2〉双击打开Engineering Data,分别创建单向纤维增强复合材料UD_T700与中心层材料Corecell_A550,详细定义如下:3〉返回Project,打开DesignModeler界面,设置单位制:4〉创建草图:5〉生成surface:6〉双击Model,打开Mechanical界面,设置厚度(此处厚度设置与铺层厚度无关):7〉网格设置,生成网格:8〉更新流程:9〉双击或者右键-Edit打开ACP,可以看到,Engineering Data中的材料已经自动导入ACP:10〉注意单位设置,另外,ACP操作的每一步都需点击update图标才能更新:11〉创建层板与厚度(Fabrics):12〉创建Stackups:13〉创建子层合板Sub Laminate:14〉创建铺层参考方向Rosetts:15〉定义Oriented Selection Sets,Point选择几何上的任一点即可,带[]部分,点击[],再点击左侧相关项,即可自动导入;其中三Resetts代表的是铺层材料的0°方向,16〉查看参考方向,铺层零度方向,以及法向等可点击工具栏图标,如下:17〉右键点击Modeling Groups,创建三个层组,命名如下:18〉在sandwich_bottom下进行第一个层设置,命名为bottom_1,如下:19〉在sandwich_core下进行第二个层设置,命名为core_2,如下:20〉在sandwich_top下进行第三个层设置,命名为top_3,如下:21〉更新,层定义应该如下图所示:22〉返回workbench主界面,更新ACP流程:拖拽Static Structural流程到界面,将ACP的A5连接到Static Structural的B4,选择传递壳数据,连接好的流程见下图:23〉更新结构分析流程,双击打开Mechanical界面,四条边固定支撑,面上施加0.1Mpa压力,边界条件设置如图:2.求解,点击Solve直接求解3.后处理1〉拖拽ACP(Post)流程到ACP(Pre)上,连接效果如下:2〉将Static Structural的结果Solution与ACP后处理的Results部分连接,求解结果文件将被读入到后处理模块,如图:3〉更新流程,保证静态分析与ACP前处理流程上都是绿色对勾标志,刷新ACP后处理的Results部分:4〉双击打开ACP(Post),在Solution分支下查看变形结果,设置如下:5〉变形结果云图:6〉接下来,配置组合失效准则,创建复合材料结构的失效结果图,两种材料的强度极限最初在Engineer Data中已经定义好。