122同角三角函数的基本关系第一课时(教学设计...
- 格式:doc
- 大小:148.50 KB
- 文档页数:9
同角三角函数的基本关系优秀教学设计教学设计:同角三角函数的基本关系一、教学目标1.知识目标:了解同角三角函数的定义和基本关系;2.能力目标:掌握同角三角函数之间的基本关系,并能够熟练地应用到问题中去;3.情感目标:培养学生的数学兴趣,提高他们的数学思维能力和解决实际问题的能力。
二、教学重难点1.教学重点:同角三角函数的定义和基本关系;2.教学难点:能够正确应用同角三角函数的基本关系解决实际问题。
三、教学过程(一)引入新知识1.引发学生兴趣:老师可以给学生出几个有关三角函数的问题,激发学生上进心,引导他们思考解决问题的方法;2.导入新知识:通过问题引出同角三角函数的定义,并向学生解释为什么需要同角三角函数。
(二)同角三角函数的定义1.以单位圆为基础,向学生解释正弦、余弦和正切的定义,并引导他们画出单位圆上对应角的直角三角形;2.带领学生找出同一角度的正弦、余弦和正切的关系,并总结出同角三角函数的基本关系。
(三)同角三角函数的基本关系1.利用同角三角函数之间的基本关系,导出余切、正割和余割的定义;2.引导学生运用基本关系,相互转换同角三角函数的值,并通过例题进行巩固。
(四)同角三角函数的应用1.结合实际问题,引导学生分析问题中是否存在同角三角函数,如船的航向角、山坡的斜率等;2.解决一些实际问题的例题,如计算船移动的水平距离,计算山坡的高度等。
(五)反思与总结1.引导学生反思本节课学到了什么,解决了什么问题;2.简要总结同角三角函数的基本关系,巩固学生的理解。
四、教学方法1.教学方法:讲述法、演示法、示例法、问题解决法等;2.学习方法:归纳法、演绎法、实践法、探究法等。
五、教学资源与评价1.教学资源:黑板、书籍、投影仪等;2.教学评价:通过课堂练习、小组合作、个人展示等方式进行评价。
六、教学反思在本节课中,我通过引发学生兴趣,引导他们思考解决问题的方法,达到了引入新知识的目的。
在同角三角函数的定义环节,我用示例法引导学生自己找出同一角度的正弦、余弦和正切的关系,并总结出同角三角函数的基本关系。
同角三角函数的基本关系教学设计一、引言同角三角函数是初中数学中的重要内容,也是高中数学和大学数学的基础。
本文将介绍同角三角函数的基本关系教学设计。
二、教学目标1. 理解同角三角函数的定义及其意义;2. 掌握正弦、余弦、正切、余切四种同角三角函数的基本关系;3. 能够运用同角三角函数解决实际问题。
三、教学过程1. 同角三角函数的定义及其意义1.1 定义:对于任意一个锐角∠A,其正弦值sinA等于∠A所在直角三角形中对边与斜边之比,余弦值cosA等于邻边与斜边之比,正切值tanA等于对边与邻边之比,余切值cotA等于邻边与对边之比。
1.2 意义:同一锐角所对应的四个函数值互相依赖,其中一个确定时其他三个也随之确定。
因此,在求解某些几何问题时可以通过已知一个函数值来求出其他函数值。
2. 正弦、余弦、正切、余切四种同角三角函数的基本关系2.1 正弦和余弦:sin²A + cos²A = 1证明:根据勾股定理可得sin²A + cos²A = 1 - sin²A,即sin²A + sin²A = 1,故sin²A + cos²A = 1。
2.2 正切和余切:tan A × cot A = 1证明:tan A × cot A = (sin A / cos A) × (cos A / sin A) = 1。
2.3 正弦和余切:sin A × cot A = cos A证明:sin A × cot A = sin A × (cos A / sin A) = cos A。
2.4 余弦和正切:cos A × tan A = sin A证明:cos A × tan A = cos A × (sin A / cos A) = sin A。
3. 运用同角三角函数解决实际问题3.1 求解直角三角形的边长对于一个已知锐角∠A及其对边a或邻边b,可以通过正弦、余弦、正切、余切四种函数求出其他两个未知量。
《1.2.2同角三角函数的基本关系(第一课时)》教学设计贵阳第十中学杨亮一、指导思想与理论依据以学生为本,学生是学习的主体。
核心素养就是一个人在复杂情境中解决问题的能力和品质,是学习个体在与情境的互动中不断解决问题、产生新问题的过程中逐步养成的,在教学中以知识为载体,以学生发展为目标,精心设计系列探究活动,给学生更多尝试、探究发现机会,从学生数学知识发生发展过程的合理性,从学生思维过程的合理性上思考,从学生已有的知识出发,以新旧知识的连接点为教学起点,感受学习数学的乐趣,落实学科素养。
二、教学背景分析1.本课在教材中的地位本课是《普通高中课程标准实验教材A版▪必修4》第一章第二节的内容。
同角三角函数是学生学习了任意角和弧度值,任意角的三角函数后,继续深入学习的内容,是求三角函数值、化简三角函数式、证明三角恒等式的基本工具,是整个三角函数的基础,在教材中起着承上启下的作用。
同时,它体现的数学思想与方法在整个中学数学学习中都有着重要的作用。
所以本节课的重点是同角三角函数基本关系式及在求值、证明中的应用上。
2.学生学情学生从认知角度上看,已经比较熟练的掌握了三角函数定义的两种推导方法,从方法上看,学生已经对数形结合,猜想证明有所了解。
从学习情感方面看,大部分学生愿意主动学习。
从能力上看,学生主动学习能力、合作探究的能力较弱。
三、教学目标的确定及依据1.知识与技能目标:通过观察猜想出两个公式,运用数形结合的思想让学生掌握公式的推导过程,理解同角三角函数的基本关系式,掌握基本关系式在两个方面的应用:(1)已知一个角的一个三角函数值能求这个角的其他三角函数值;(2)证明简单的三角恒等式。
2.过程与方法:培养学生观察——猜想——证明的科学思维方式;通过公式的推导过程培养学生用旧知识解决新问题的思想;通过求值、证明来培养学生逻辑推理能力;通过例题与练习提高学生动手能力、分析问题解决问题的能力以及其知识迁移能力。
《同角三角函数的基本关系》教学设计第一课时
一、课时教学目标:
1.了解同角三角函数的概念和构成;
2.掌握同角三角函数的基本关系。
二、教学重点和难点:
教学重点:了解同角三角函数的基本关系;
教学难点:数学归纳法、定理的推理证明。
三、教学过程:
1.热身准备:温故知新与归纳--分享教学经验
同学们可以带着疑问参与讨论,可以用联想、前面的知识与新的知识的结合的方式把内容消化;本节课的内容主要讲授同角三角函数的基本关系,经过热身准备后,全班学生可以更清楚地了解此课程。
2.教学正文:讲解、练习、检欣
(1)定义:首先向学生介绍同角三角函数的概念,让学生明确它的定义,它由6个函数:正弦、余弦、正切、余切、正割、余割组成,将它们概括成一组函数称为同角三角函数。
(2)公式:展示同角三角函数的基本关系,由于其中相互独立,性质相同,所以可以及时形成基本关系,来更好地理解它们之间的互动,内容有三角函数的基本定义、五公式、勾股定理、基本性质、反函数定义等内容。
(3)运用:对于容易难以理解的同角三角函数,可以采用定理的运用、列公式、归纳法等方式来讲解,分析和解决例题,并重点实现它们之
间的性质,比如正弦、余弦和正切的性质。
3.课后反馈:收获与反思
首先,让学生作自我反思,然后在集体中参与讨论,有针对性的讨论,请回答问题,将学生所学的内容检欣,形成反思性思维,最后通过总
结来得出本节课所学内容,做好课下复习整理,为下一节课做准备。
《同角三角函数的基本关系》教学设计方案(第一课时)一、教学目标1. 知识与技能:学生能理解同角三角函数的基本关系,并能够正确应用它们进行简单的三角函数计算。
2. 过程与方法:通过探索和讨论,培养学生的逻辑思维和团队合作精神。
3. 情感态度价值观:增强学生对数学的兴趣和热爱,提高他们解决问题的能力。
二、教学重难点1. 教学重点:学生理解和掌握同角三角函数的基本关系式。
2. 教学难点:如何引导学生运用基本关系解决实际问题。
三、教学准备1. 准备教学用具:黑板、白板、笔、尺子等。
2. 准备教学材料:同角三角函数的例题和习题。
3. 安排教学内容和时间,确保第一课时能够完成教学任务。
4. 提前与学生沟通,了解学生的学习情况和问题,以便更好地组织教学。
四、教学过程:1. 引入课题可以从生活实例出发,例如在运动场上,我们常常需要用勾股定理来确定两个同学之间的距离。
此外,还可以用以前学过的知识来引入,如三角函数线。
让学生明白同角三角函数的基本关系在解决实际问题和数学问题中都有重要作用。
2. 讲解同角三角函数的基本关系(1) 定义:在一个三角形中,三个角的正弦、余弦和正切之间存在基本关系。
(2) 公式推导:通过三角函数的诱导公式,可以推导出同角三角函数的基本关系。
3. 课堂互动让学生自己动手画三角形,并根据画出的三角形求出各角的正弦、余弦和正切值,通过自己的实践来理解同角三角函数的基本关系。
同时,教师也可以提出一些问题,引导学生思考和讨论,加深学生对同角三角函数基本关系的理解。
4. 案例分析给出一些实际问题的案例,如测量建筑物的高度、确定船只在水中的位置等,让学生运用同角三角函数的基本关系来解决这些问题。
通过案例分析,让学生更好地理解同角三角函数的基本关系在实际问题中的应用。
5. 课堂小结回顾本节课所讲的主要内容,包括同角三角函数的基本定义、公式的推导、课堂互动和案例分析的收获等。
同时,也要强调同角三角函数的基本关系在解决实际问题中的重要作用。
1.2.2同角三角函数的基本关系三维目标:一. 知识与技能:理解并掌握同角三角函数的基本关系式平方关系:1cos sin 22=+αα;商数关系:αααcos sin tan =,准确使用同角三角函数的基本关系式实行三角函数的求值;二. 过程与方法:通过提出问题,从而对特殊角的三角函数值的计算观察,找出规律,并利用几何画板软件用大量的实验数据说明这个规律的普遍存有性,进而尝试用三角函数的定义给出证明,最终得到同角三角函数的两个基本关系式;这表达了由特殊到一般的认知规律,由感性理解升华到理性思考的数学过程;完全符合提出问题、分析问题、解决问题的科学方法的要求;三. 情感、态度与价值观:通过本节内容的学习探究,让学生体会到发现数学、感知数学、研究数学、利用数学并处理数学问题的愉悦;培养学生科学地研究问题的习惯,融会贯通前后数学知识的水平,进一步挖掘知识、感受数学的内在美.教学重点:同角三角函数的基本关系式的发现、推导及其应用。
教学难点:已知一个三角函数值(但不知角的范围)求出其它三角函数值(结果不惟一时的分类讨论)。
教学过程:一、知识回顾:1.任意角的三角函数的定义: 比值ry 叫做α的正弦, 记作:r y =αsin ;比值r x叫做α的余弦, 记作:r x=αcos ; 比值x y叫做α的正切, 记作:x y=αtan 。
2.已知角的象限确定三角函数值的符号及三角函数的定义域.二、问题情境:当角α确定后,α的正弦、余弦、正切值也随之确定了,他们之间究竟有何关系呢?三、学生活动:1.求值:(1)22sin 30cos 30+= (2)22sin 45cos 45+=(3)22sin 60cos 60+= (4)22sin 90cos 90+=你能猜想出αsin 与αcos 之间的关系吗?2.求值:(1) sin 6cos 6ππ= ,tan 6π= (2)sin 4cos 4ππ= ,tan 4π=(3) sin 3cos 3ππ= ,tan 3π= (4)3sin43cos 4ππ= ,3tan 4π=你能猜想出sin α,cos α与αtan 之间的关系吗?四、数学建构:1.猜想:1cos sin 22=+αα,α=ααtan cos sin 。
同角三角函数的基本关系 第一课时(一)复习:1.同角三角函数的基本关系式。
(1)倒数关系:sin csc 1αα⋅=,cos sec 1αα⋅=,tan cot 1αα⋅=.(2)商数关系:sin tan cos ααα=,coscot sin ααα=.(3)平方关系:22sin cos 1αα+=,221tan sec αα+=,221cot csc αα+=.(练习)已知tan α43=,求cos α. 例1440. 2(36080)1sin 80+=-2cos 80cos80==.例240cos40. 240cos 402sin 40cos40+-240cos40)|cos40sin 40|cos40sin 40-=-=-.例3=1sin 1sin |cos |ααα+-+=2sin |cos |αα.2tan α=-,∴2sin |cos |αα2sin 0cos αα+=, 即得sin 0α=或|cos |cos 0αα=-≠.所以,角的集合为:{|k ααπ=或322,}22k k k Z πππαπ+<<+∈.例4.化简(1cot csc )(1tan sec )αααα-+-+.解:原式=cos 1sin 1(1)(1)sin sin cos cos αααααα-+-+ 2sin cos 1cos sin 11(sin cos )sin cos sin cos αααααααααα-+-+--=⋅=⋅112sin cos 2sin cos αααα-+⋅==⋅. 说明:化简后的简单三角函数式应尽量满足以下几点:(1)所含三角函数的种类最少;(2)能求值(指准确值)尽量求值;(3)不含特殊角的三角函数值。
例5.求证:cos 1sin 1sin cos x x x x+=-. 证法一:由题义知cos 0x ≠,所以1sin 0,1sin 0x x +≠-≠.例6.求证:22sin tan cos cot 2sin cos tan cot x x x x x x x x ⋅+⋅+⋅=+.证明:左边22sin 1sin cos 2sin cos cos tan x x x x x x x⋅+⋅+⋅ 32sin cos cos 2sin cos cos sin x x x x x x x+⋅+⋅ 4422sin cos 2sin cos sin cos x x x x x x ++=⋅222(sin cos )1sin cos sin cos x x x x x x+=, 右边22sin cos sin cos 1cos sin sin cos sin cos x x x x x x x x x x+=+==. 所以,原式成立。
数学《同角三角函数的基本关系》教案教案:同角三角函数的基本关系一、教学目标:1.理解同角三角函数的概念及意义。
2.掌握正弦、余弦和正切函数之间的基本关系。
3.能够在给定角度范围内计算同角三角函数的值。
二、教学重点与难点:1.理解同角三角函数的概念及意义。
2.掌握正弦、余弦和正切函数之间的基本关系。
三、教学准备:1.教材、课件、黑板、粉笔。
2.学生课前复习笔记。
四、教学过程:1.引入(10分钟)教师可通过提问的方式引导学生复习和回忆上节课所学的三角函数概念及性质,例如:“什么是三角函数?它们有什么特点?”2.概念讲解(10分钟)教师介绍同角三角函数的概念和意义,同角三角函数是以角度的大小和方向为自变量,以比值为因变量的一类函数。
其中,正弦函数、余弦函数和正切函数是最常用和基础的三角函数。
通过图示的方式向学生展示正弦函数、余弦函数和正切函数的形象及它们之间的关系。
3.基本关系的推导(15分钟)3.1正弦函数与余弦函数的基本关系:教师指导学生通过绘制各象限内角度相同的锐角三角形,并利用其定义推导出正弦函数和余弦函数的基本关系:sin^2θ + cos^2θ = 13.2正切函数与正弦函数、余弦函数的基本关系:教师指导学生通过绘制直角三角形,利用其定义推导出正切函数、正弦函数和余弦函数的基本关系:tanθ = sinθ / cosθ。
4.同角三角函数的计算及性质(25分钟)4.1计算角度对应的三角函数值:教师引导学生通过练习,掌握计算给定角度对应的正弦、余弦和正切函数值的方法和技巧。
4.2使用同角三角函数的性质:教师讲解同角三角函数的周期性和奇偶性,并指导学生根据这些性质简化计算,例如,sin(180° + θ) = -sinθ,cos(π + θ) = -cosθ,等等。
5.练习与巩固(20分钟)教师提供一系列基础练习题,让学生在课堂上进行计算和解答,以巩固所学的同角三角函数的基本关系和计算方法。
同角三角函数的基本关系教学设计教学设计:同角三角函数的基本关系一、教学目标:1.学生能够理解同角三角函数的概念及其在数学中的意义;2.学生能够掌握正弦函数、余弦函数和正切函数的基本关系;3.学生能够熟练运用同角三角函数的基本关系解题。
二、教学重点:1.同角三角函数的概念及基本关系;2.正弦函数、余弦函数和正切函数的图像特征。
三、教学难点:1.正弦函数、余弦函数和正切函数的图像特征;2.同角三角函数的应用解题。
四、教学准备:1.教师准备:教学课件、教学素材PPT;2.学生准备:教材、笔记、计算器。
五、教学过程:Step 1:导入新课1.教师打开课件,介绍本节课的主题:同角三角函数的基本关系;2.教师和学生一起回顾三角函数的概念,回顾正弦函数、余弦函数和正切函数的定义。
Step 2:正弦函数与余弦函数的关系1.教师让学生观察并比较正弦函数与余弦函数的图像,引导学生发现它们之间的关系;2.教师引导学生思考,正弦函数与余弦函数的图像是否关于y轴对称?这两个函数的最大值和最小值又有怎样的关系?3. 教师讲解正弦函数与余弦函数的关系:sin(x) = cos(x - 90°);4.教师通过具体的数值计算和计算器演示,验证正弦函数与余弦函数的关系。
Step 3:正切函数与余弦函数的关系1.教师让学生观察并比较正切函数与余弦函数的图像,引导学生发现它们之间的关系;2.教师引导学生思考,正切函数与余弦函数的图像之间是否有什么特殊的关系?它们的零点位置有什么规律?3. 教师讲解正切函数与余弦函数的关系:tan(x) = sin(x) /cos(x);4.教师通过具体的数值计算和计算器演示,验证正切函数与余弦函数的关系。
Step 4:同角三角函数的应用解题1.教师提供一些应用题,如角度的边长比例问题、太阳高度角问题等,并引导学生运用同角三角函数的基本关系解答;2.教师讲解解题思路和步骤,帮助学生理解问题的意义和解题的方法;3.教师与学生互动,共同解答一个或多个应用题;4.学生独立或小组合作解答剩下的应用题,教师巡视指导。
1.2.2《同角三角函数的基本关系》——第一课时(教学设计)
一、教材分析
1、教材的地位和作用:
《同角三角函数的基本关系》是高中新教材人教A版必修4第1章1.2.2的内容,本节内容是学习了三角函数定义后,安排的一节继续深入学习的内容,是求三角函数值、化简三角函数式、证明三角恒等式的基本工具,是整个三角函数的基础,在教材中起承上启下的作用。
同时,它体现的数学思想与方法在整个中学数学学习中起重要作用。
2、教学目标
根据大纲要求,考虑到学生的接受能力和课容量,确定了本次课的教学目标:
A、知识与技能目标:通过观察猜想出两个公式,运用数形结合的思想让学生掌握公式的推导过程,理解同角三角函数的基本关系式,掌握基本关系式在两个方面的应用:1)已知一个角的一个三角函数值能求这个角的其他三角函数值;2)证明简单的三角恒等式。
B、过程与方法:培养学生观察——猜想——证明的科学思维方式;通过公式的推导过程培养学生数形结合的思想;通过求值、证明来培养学生逻辑推理能力;通过例题与练习提高学生动手能力、分析问题解决问题的能力以及其知识迁移能力。
C、情感、态度与价值观:经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。
3、教学重点和难点
根据《课程标准》,我将本节课的教学重点确立为:
重点:同角三角函数基本关系式的推导及应用。
教学上结合我校学生真实情况我将本节课的教学难点确立为:
难点:1)对于“同角”的理解;
2)角α
3
二、教学流程
本节的教学流程由以下几个环节构成
三:教学设计:
四、教法分析
在前节课的学习中,学生已经理解了任意角三角函数的定义,并且从图像与公式上应该有所发现,这节内容则是对他们直观感觉上的理解进行系统的研究,在这节课上我主要采用了以下的教法:
(1)“引导—探究式”教学方法。
在引入公式方面,我通过几个特殊角三角函数值之间的关系,引导学生逐步猜想出公式,进而形成认识。
再从理论出发,结合图像与定义,证明两个公式的正确性,培养了学生观察——猜想——证明的科学分析方法。
(2)采用讲练结合,从例题出发强调本节难点,让学生自行操作熟悉公式的运用。
(3)对于证明题,则在给出书中证明的同时,引导学生进一步分析,拓展学生对于证明简单三角恒等式的方法,提高其使用公式、处理问题的能力。
五、学法指导
对于高中的学生已经具备一定的自主探究和合作能力。
教学中,安排学生以小组为单位讨论交流,对两个公式抽象概括,指导学生动手操作对公式进行证明,在处理了例题的基础上,让学生自行处理练习,培养他们运用知识的能力。
从中体现出学生活跃的思维、浓厚的兴趣、强烈的参与意识和自主探究能力。
六、板书设计
在板书中突出本节重点,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。