2013年重庆市酉阳一中高2015级高一下期中理科数学卷(含答案)
- 格式:doc
- 大小:561.00 KB
- 文档页数:6
2013年普通高等学校夏季招生全国统一考试数学理工农医类(重庆卷)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(2013重庆,理1)已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则U(A ∪B )=( ).A .{1,3,4}B .{3,4}C .{3}D .{4}2.(2013重庆,理2)命题“对任意x ∈R ,都有x 2≥0”的否定为( ).A .对任意x ∈R ,都有x2<0B .不存在x ∈R ,使得x2<0C .存在x0∈R ,使得x02≥0D .存在x0∈R ,使得x02<0 3.(2013重庆,理-6≤a ≤3)的最大值为( ).A .9B .92C .3 D.24.(2013重庆,理4)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( ).A .2,5B .5,5C .5,8D .8,85.(2013重庆,理5)某几何体的三视图如图所示,则该几何体的体积为( ).A .5603B .5803C .200D .2406.(2013重庆,理6)若a <b <c ,则函数f (x )=(x -a )·(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( ).A .(a ,b)和(b ,c)内B .(-∞,a)和(a ,b)内C .(b ,c)和(c ,+∞)内D .(-∞,a)和(c ,+∞)内7.(2013重庆,理7)已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( ).A.4 B1 C.6-8.(2013重庆,理8)执行如图所示的程序框图,如果输出s =3,那么判断框内应填入的条件是( ).A .k≤6B .k≤7C .k≤8D .k≤9 9.(2013重庆,理9)4cos 50°-tan 40°=( ).A.2 C .3 D .221-10.(2013重庆,理10)在平面上,1AB ⊥2AB ,|1OB |=|2OB |=1,AP =1AB +2AB .若|OP|<12,则|OA |的取值范围是( ).A.⎛ ⎝⎦ B.⎝⎦ C.⎝ D .⎝ 二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.(2013重庆,理11)已知复数5i12iz =+(i 是虚数单位),则|z |=__________.12.(2013重庆,理12)已知{an}是等差数列,a1=1,公差d≠0,Sn为其前n项和,若a1,a2,a5成等比数列,则S8=__________.13.(2013重庆,理13)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是__________(用数字作答).14.(2013重庆,理14)如图,在△ABC中,∠C=90°,∠A=60°,AB=20,过C作△ABC的外接圆的切线CD,BD⊥CD,BD与外接圆交于点E,则DE的长为__________.15.(2013重庆,理15)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线23,x ty t⎧=⎨=⎩(t为参数)相交于A,B两点,则|AB|=__________.16.(2013重庆,理16)若关于实数x的不等式|x-5|+|x+3|<a无解,则实数a的取值范围是________.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(2013重庆,理17)(本小题满分13分,(1)小问6分,(2)小问7分.)设f(x)=a(x-5)2+6ln x,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).(1)确定a的值;(2)求函数f(x)的单调区间与极值.18.(2013重庆,理18)(本小题满分13分,(1)小问5分,(2)小问8分.)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球.根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:其余情况无奖且每次摸奖最多只能获得一个奖级.(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额X的分布列与期望E(X).2⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=π3,F为PC的中点,AF⊥PB.(1)求PA的长;(2)求二面角B-AF-D的正弦值.20.(2013重庆,理20)(本小题满分12分,(1)小问4分,(2)小问8分.)在△ABC中,内角A,B,C的对边分别是a,b,c,且a2+b2=c2.(1)求C;(2)设cos A cos B=5,2cos()cos()cos5A Bααα++=,求tan α的值.2013 重庆理科数学第3页长轴在x轴上,离心率2e ,过左焦点F1作x轴的垂线交椭圆于A,A′两点,|AA′|=4.(1)求该椭圆的标准方程;(2)取垂直于x轴的直线与椭圆相交于不同的两点P,P′,过P,P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.若PQ⊥P′Q,求圆Q的标准方程.42013 重庆理科数学 第5页22.(2013重庆,理22)(本小题满分12分,(1)小问4分,(2)小问8分.)对正整数n ,记I n ={1,2,…,n },,n n n P I k I ⎫=∈∈⎬⎭. (1)求集合P 7中元素的个数;(2)若P n 的子集A 中任意两个元素之和不是..整数的平方,则称A 为“稀疏集”.求n 的最大值,使P n 能分成两个不相交的稀疏集的并.2013年普通高等学校夏季招生全国统一考试数学理工农医类(重庆卷)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.答案:D解析:∵A∪B={1,2,3},而U={1,2,3,4},故U(A∪B)={4},故选D.2.答案:D解析:全称命题的否定是一个特称命题(存在性命题),故选D.3.答案:B解析:=a≤3,所以当32a=-92=.方法二:∵-6≤a≤3,∴3-a≥0,a+6≥0.而(3-a)+(a+6)=9,由基本不等式得:(3-a)+(a-6)≥即9≥92≤,当且仅当3-a=a+6,即32a=-时取等号.4.答案:C解析:由甲组数据中位数为15,可得x=5;而乙组数据的平均数91510182416.85y++(+)++=,可解得y=8.故选C.5.答案:C解析:由几何体的三视图可得,该几何体是一个横放的直棱柱,棱柱底面为梯形,梯形两底长分别为2和8,高为4,棱柱的高为10,故该几何体体积V=12×(2+8)×4×10=200,故选C.6.答案:A解析:由题意a<b<c,可得f(a)=(a-b)(a-c)>0,f(b)=(b-c)(b-a)<0,f(c)=(c-a)(c-b)>0.显然f(a)·f(b)<0,f(b)·f(c)<0,所以该函数在(a,b)和(b,c)上均有零点,故选A.7.答案:A解析:圆C1,C2的圆心分别为C1,C2,由题意知|PM|≥|PC1|-1,|PN|≥|PC2|-3,∴|PM|+|PN|≥|PC1|+|PC2|-4,故所求值为|PC1|+|PC2|-4的最小值.又C1关于x轴对称的点为C3(2,-3),所以|PC1|+|PC2|-4的最小值为|C3C2|-444=,故选A.8.62013 重庆理科数学 第7页答案:B 解析:由程序框图可知,输出的结果为s =log 23×log 34×…×log k (k +1)=log 2(k +1).由s =3,即log 2(k +1)=3,解得k =7.又∵不满足判断框内的条件时才能输出s ,∴条件应为k ≤7. 9. 答案:C解析:4cos 50°-tan 40°=4sin40cos40sin40cos40︒︒-︒︒=2sin 80sin 402sin100sin 40cos 40cos 40︒-︒︒-︒=︒︒=2sin(6040)sin40cos40︒+︒-︒︒=12cos402sin40sin4022cos40⨯︒+⨯︒-︒=︒10. 答案:D解析:因为1AB ⊥2AB ,所以可以A 为原点,分别以1AB ,2AB 所在直线为x 轴,y 轴建立平面直角坐标系.设B 1(a,0),B 2(0,b ),O (x ,y ), 则AP =1AB +2AB =(a ,b ),即P (a ,b ).由|1OB |=|2OB |=1,得(x -a )2+y 2=x 2+(y -b )2=1. 所以(x -a )2=1-y 2≥0,(y -b )2=1-x 2≥0.由|OP |<12,得(x -a )2+(y -b )2<14, 即0≤1-x 2+1-y 2<14.所以74<x 2+y 2<≤所以|OA |的取值范围是⎝,故选D . 二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.解析:5i 5i(12i)2i 12i (12i)(12i)z -===+++-,∴||z ==12.答案:64解析:由a 1=1且a 1,a 2,a 5成等比数列,得a 1(a 1+4d )=(a 1+d )2,解得d =2,故S 8=8a 1+872⨯d =64. 13.答案:590解析:方法一:从12名医生中任选5名,不同选法有512C 792=种.不满足条件的有:只去骨科和脑外科两科医生的选法有57C 21=种,只去骨科和内科两科医生的选法有5585C C 55-=种,只去脑外科和内科两科医生的选法有5595C C 125-=种,只去内科一科医生的选法有55C 1=种,故符合条件的选法有:792-21-55-125-1=590种.方法二:设选骨科医生x 名,脑外科医生y 名, 则需选内科医生(5-x -y )人.8(1)当x =y =1时,有113345C C C 120⋅⋅=种不同选法;(2)当x =1,y =2时,有122345C C C 180⋅⋅=种不同选法; (3)当x =1,y =3时,有131345C C C 60⋅⋅=种不同选法; (4)当x =2,y =1时,有212345C C C 120⋅⋅=种不同选法;(5)当x =2,y =2时,有221345C C C 90⋅⋅=种不同选法; (6)当x =3,y =1时,有311345C C C 20⋅⋅=种不同选法.所以不同的选法共有120+180+60+120+90+20=590种.考生注意:(14)、(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分.14.答案:5解析:在Rt △ABC 中,∠A =60°,AB =20,可得BC=由弦切角定理,可得∠BCD =∠A =60°.在Rt △BCD 中,可求得CD=BD =15.又由切割线定理,可得CD 2=DE ·DB ,可求得DE =5. 15.答案:16解析:由极坐标方程ρcos θ=4,化为直角坐标方程可得x =4,而由曲线参数方程消参得x 3=y 2,∴y 2=43=64,即y =±8, ∴|AB |=|8-(-8)|=16. 16.答案:(-∞,8]解析:方法一:设f (x )=|x -5|+|x +3|=22,5,8,35,22,3,x x x x x -≥⎧⎪-<<⎨⎪-+≤-⎩可求得f (x )的值域为[8,+∞),因为原不等式无解,只需a ≤8,故a 的取值范围是(-∞,8].方法二:由绝对值不等式,得|x -5|+|x +3|≥|(x -5)-(x +3)|=8, ∴不等式|x -5|+|x +3|<a 无解时,a 的取值范围为(-∞,8].三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.解:(1)因f (x )=a (x -5)2+6ln x , 故f ′(x )=2a (x -5)+6x. 令x =1,得f (1)=16a ,f ′(1)=6-8a , 所以曲线y =f (x )在点(1,f (1))处的切线方程为y -16a =(6-8a )(x -1),由点(0,6)在切线上可得6-16a=8a -6,故12a =. (2)由(1)知,f (x )=12(x -5)2+6ln x (x >0),f ′(x )=x -5+6x =23x x x(-)(-).令f ′(x )=0,解得x 1=2,x 2=3.当0<x <2或x >3时,f ′(x )>0,故f (x )在(0,2),(3,+∞)上为增函数;当2<x <3时,f ′(x )<0,故f (x )在(2,3)上为减函数.由此可知f (x )在x =2处取得极大值f (2)=92+6ln 2,在x =3处取得极小值f (3)=2+6ln 3. 18.解:设A i 表示摸到i 个红球,B j 表示摸到j 个蓝球, 则A i (i =0,1,2,3)与B j (j =0,1)独立. (1)恰好摸到1个红球的概率为2013 重庆理科数学 第9页P (A 1)=123437C C 18C 35=.(2)X 的所有可能值为0,10,50,200,且P (X =200)=P (A 3B 1)=P (A 3)P (B 1)=3337C 11C 3105⋅=, P (X =50)=P (A 3B 0)=P (A 3)P (B 0)=3337C 22C 3105⋅=, P (X =10)=P (A 2B 1)=P (A 2)P (B 1)=213437C C 1124C 310535⋅==,P (X =0)=12461105105357---=. 综上知X 的分布列为从而有E (X )=0×67+10×435+50×105+200×105=4(元).19.解:(1)如图,连接BD 交AC 于O ,因为BC =CD ,即△BCD 为等腰三角形.又AC 平分∠BCD ,故AC ⊥BD .以O 为坐标原点,OB ,OC ,AP 的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz ,则OC =CD πcos3=1,而AC =4,得AO =AC -OC =3,又OD =CD πsin 3故A (0,-3,0),B 0,0),C (0,1,0),D (0,0).因PA ⊥底面ABCD ,可设P (0,-3,z ),由F 为PC 边中点,F 0,1,2z ⎛⎫- ⎪⎝⎭. 又AF =0,2,2z ⎛⎫⎪⎝⎭,PB =3,-z ),因AF ⊥PB ,故AF ·PB =0,即6-22z =0,z =舍去-),所以|PA |=23.(2)由(1)知AD =(3,0),AB =3,0),AF =(0,2,设平面FAD 的法向量为n 1=(x 1,y 1,z 1),平面FAB 的法向量为n 2=(x 2,y 2,z 2),由n 1·AD =0,n 1·AF =0,得111130,20,y y ⎧+=⎪⎨=⎪⎩因此可取n 1=(32).10由n 2·AB =0,n 2·AF =0,得222230,20,y y +==⎪⎩故可取n 2=(3,2). 从而法向量n 1,n 2的夹角的余弦值为 cos 〈n 1,n 2〉=12121||||8⋅=⋅n n n n ,故二面角B -AF -D20.解:(1)因为a 2+b 2=c 2,由余弦定理有cos C=222222a b c ab ab +-==-, 故3π4C =.(2)由题意得2(sin sin cos cos )(sin sin cos cos )cos A A B B ααααα--=5.因此(tan αsin A -cos A )(tan αsin B -cos B )=5, tan 2αsin A sin B -tan α(sin A cos B +cos A sin B )+cos A cos B, tan 2αsin A sin B -tan αsin(A +B )+cos A cos B=5.① 因为3π4C =,A +B =π4, 所以sin(A +B )=2,因为cos(A +B )=cos A cos B -sin A sin B ,sin A sin B解得sin A sin B=由①得tan 2α-5tan α+4=0,解得tan α=1或tan α=4. 21.解:(1)由题意知点A (-c,2)在椭圆上,则222221c a b(-)+=. 从而e 2+24b=1.由e =22481b e ==-,2013 重庆理科数学 第11页 从而222161b a e ==-. 故该椭圆的标准方程为221168x y +=. (2)由椭圆的对称性,可设Q (x 0,0).又设M (x ,y )是椭圆上任意一点, 则|QM |2=(x -x 0)2+y 2=x 2-2x 0x +x 02+28116x ⎛⎫- ⎪⎝⎭=12(x -2x 0)2-x 02+8(x ∈[-4,4]). 设P (x 1,y 1),由题意,P 是椭圆上到Q 的距离最小的点,因此,上式当x =x 1时取最小值,又因x 1∈(-4,4),所以上式当x =2x 0时取最小值,从而x 1=2x 0,且|QP |2=8-x 02.因为PQ ⊥P ′Q ,且P ′(x 1,-y 1),所以QP QP ⋅'=(x 1-x 0,y 1)·(x 1-x 0,-y 1)=0,即(x 1-x 0)2-y 12=0.由椭圆方程及x 1=2x 0得22111810416x x ⎛⎫--= ⎪⎝⎭,解得1x =,102x x ==. 从而|QP |2=8-x 02=163.故这样的圆有两个,其标准方程分别为22163x y ⎛+= ⎝⎭,22163x y ⎛+= ⎝⎭. 22.解:(1)当k =4时,7I ⎫∈⎬⎭中有3个数与I 7中的3个数重复,因此P 7中元素的个数为7×7-3=46.(2)先证:当n ≥15时,P n 不能分成两个不相交的稀疏集的并.若不然,设A ,B 为不相交的稀疏集,使A∪B =P n ⊇I n ,不妨设1∈A ,则因1+3=22,故3∉A ,即3∈B .同理6∈A,10∈B ,又推得15∈A ,但1+15=42,这与A 为稀疏集矛盾.再证P 14符合要求,当k =1时,1414I I ⎫∈=⎬⎭可分成两个稀疏集之并,事实上,只要取A 1={1,2,4,6,9,11,13},B 1={3,5,7,8,10,12,14},则A 1,B 1为稀疏集,且A 1∪B 1=I 14. 当k =4时,集14I ⎫∈⎬⎭中除整数外剩下的数组成集13513,,,,2222⎧⎫⎨⎬⎩⎭,可分解为下面两稀疏集的并:12 215911,,,2222A ⎧⎫=⎨⎬⎩⎭,23713,,222B ⎧⎫=⎨⎬⎩⎭. 当k =9时,集14I ⎫∈⎬⎭中除正整数外剩下的数组成集12451314,,,,,,333333⎧⎫⎨⎬⎩⎭,可分解为下面两稀疏集的并:31451013,,,,33333A ⎧⎫=⎨⎬⎩⎭,32781114,,,,33333B ⎧⎫=⎨⎬⎩⎭. 最后,集1414,,1,4,9C I k I k ⎫=∈∈≠⎬⎭且中的数的分母均为无理数,它与P 14中的任何其他数之和都不是整数,因此,令A =A 1∪A 2∪A 3∪C ,B =B 1∪B 2∪B 3,则A 和B 是不相交的稀疏集,且A ∪B =P 14. 综上,所求n 的最大值为14.注:对P 14的分拆方法不是唯一的.。
≤≥12013年某某一中高2015级高一下期期末考试数 学 试 题 卷2013.7一.选择题:(共10小题,每题5分,共50分.请将唯一正确的选项选出来,并涂在机读卡上的相应位置)1.已知直线的倾斜角为45°,在y 轴上的截距为2,则此直线方程为( ) A .y x =+2. B .y x =-2C .y x =-+2D .y x =--2 解:∵直线的倾斜角为45°,∴直线的斜率为k=tan45°=1,由斜截式可得方程为:y=x+2, 故选A2.下面四个条件中,使a b >成立的充分而不必要的条件是( ) A .1a b >- B .1a b >+ C .22a b > D .33a b >解:a >b+1⇒a >b ;反之,例如a=2,b=1满足a >b ,但a=b+1即a >b 推不出a >b+1 故a >b+1是a >b 成立的充分而不必要的条件 故选B3.直线2=-y x 被圆22(4)4x y -+=所截得的弦长为( ) A .2B .22C .42 D .44.左图是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到14次的考试成绩依次记为1214,,,.A A A 右图是统计茎叶图中成绩在一定X 围内考试次数的一个算法流程图.那么算法流程图输出的结果是( )A .7B .8C .9D .10解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加14次考试成绩超过90分的人数;根据茎叶图的含义可得超过90分的人数为10个,故选D树茎 树叶 7 8 9 10 119 638 3988415 31 45.三个数20.90.9,ln 0.9,2a b c ===之间的大小关系是( )A.b c a <<.B.c b a <<C.c a b << D .a c b <<故选答案C6.公比为32等比数列{}n a 的各项都是正数,且5916a a =,则216log a =( ) A.4 B.5 C.6D.77. 若20,AB BC AB ABC ⋅+=∆则是 ( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形8.直线10(,0)ax by a b ++=>过圆228210x y x y ++++=的圆心,则14a b+的最小值为( )A .8B .12C .16D .209. 设等差数列{}n a 的前n 项和为n S 且满足,0,01615<>S S 则3151212315,,,,S S S S a a a a 中最大的项为( ) A.66a S B.77a S C.88a S D.99a S10.(原创) 已知直线166(1)()22m x n y ++++=与圆22(3)(6)5x y -+-=相切,若对任意的,m n R +∈均有不等式2m n k +≥成立,那么正整数k 的最大值是( ) A.3 B.5 C.7 D.9二.填空题:(共5小题,每题5分,共25分.请将最简答案填在答题卷相应的位置) 11.若,14b =,a 与b 的夹角为30,则a b ⋅=. 12.设ABC ∆的内角,,A B C 所对的边分别为,,a b c .若2,3,120a b B ===︒,则角A =.13.人体血液中胆固醇正常值的X 围在,若长期胆固醇过高容易导致心血管疾病.某医院心脏内科随机地抽查了该院治疗过的100名病员血液的胆固醇含量情况,得到频率分布直方图如下图,由于不慎将部分数据丢失,只知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,胆固醇含量在4.6到5.1之间的病员人数为b ,则a b +=.14.设,x y 满足约束条件1020210x y x x y -≥⎧⎪-≥⎨⎪+≤⎩,向量(2,),(1,1)a y x m b =-=-,且//a b 则m 的最小值为.15.(原创)已知直线41y kx k =-+21(1)|1|2x y --=--恰有一个公共点,则实数k 的取值X 围是.三.解答题:(共6小题,其中16~18每小题13分,19~21每小题12分,共75分.请将每题的解答过程写在答题卷相应的答题框内)16.(本题满分13分)已知直线1l :310ax y ++=,2l :(2)0x a y a +-+=. (Ⅰ)若12l l ⊥,某某数a 的值;(2)当12//l l 时,求直线1l 与2l 之间的距离. 解:(1)由12l l ⊥知3(2)0a a +-=,解得32a =;………………………………………………………6分 (Ⅱ)当12//l l 时,有(2)303(2)0a a a a --=⎧⎨--≠⎩解得3a = ………………………………………………………9分1l :3310x y ++=, 2l :30x y ++=即3390x y ++=,距离为3d ==3分 17.(本题满分13分)设ABC ∆的三个内角分别为,,A B C .向量3(1,cos )(3sin cos ,)2222C C C m n ==+与共线.(Ⅰ)求角C 的大小;(Ⅱ)设角,,A B C 的对边分别是,,a b c ,且满足2cos 2a C c b +=,试判断∆ABC 的形状.解:(本题满分13分)解:(Ⅰ)∵m 与n 共线 ∴)2cos 2sin 3(2cos 23C C C +=1π1(1cos )sin()262C C C =++=++………………………3分πsin()16C +=∴C=3π…………………………………………………………………………6分 (Ⅱ)由已知2a c b += 根据余弦定理可得:222c a b ab =+-……………………………………8分联立解得:()0b b a -=0,,b b a >∴=3C π=,所以△ABC 为等边三角形, …………………………………………12分18.(本题满分13分)已知,a b 满足||||1a b ==,且a 与b 之间有关系式3ka b +=a kb -,其中0k >.(Ⅰ)用k 表示a b ⋅;(Ⅱ)求a b ⋅的最小值,并求此时a 与b 的夹角θ的大小. 解:(本题满分13分)解:(Ⅰ)223ka ba kb+=-,241b k ka ⋅=+,214k b ka +⋅=…………6分;(Ⅱ)211111()4442k b k k k a +⋅==+≥=,当且仅当1k =时取“=” 故ba ⋅的最小值为12……………………………………………………………………………………10分||cos 1||2,11cos ,b b a a b a b a ⋅=<>=⨯=⨯<>,1cos ,2a b <>=,,60a b <>=︒………13分.19.(本题满分12分)已知已知圆C 经过(2,4)A 、(3,5)B 两点,且圆心C 在直线220x y --=上.(Ⅰ)求圆C 的方程;(Ⅱ)若直线3y kx =+与圆C 总有公共点,某某数k 的取值X 围.解:(1)由于AB 的中点为59(,)22D ,1AB k =,则线段AB 的垂直平分线方程为7y x =-+,而圆心C 是直线7y x =-+与直线220x y --=的交点,由7220y x x y =-+⎧⎨--=⎩解得34x y =⎧⎨=⎩,即圆心(3,4)C ,又半径为1CA ==,故圆C 的方程为22(3)(4)1x y -+-=………6分;(2)圆心(3,4)C 到直线3y kx=+的距离1d =≤得2430k k -≤,解得304k ≤≤.………………………………………………………………………12分20.(本题满分12分)(原创)已知函数()f x 是二次函数,不等式()0f x ≥的解集为{|23}x x -≤≤,且()f x 在区间[1,1]-上的最小值是4.(Ⅰ)求()f x 的解析式;(Ⅱ)设()5()g x x f x =+-,若对任意的3,4x ⎛⎤∈-∞- ⎥⎝⎦,2()(1)4()()x g g x m g x g m m⎡⎤--≤+⎣⎦均成立,某某数m 的取值X 围. 解:(Ⅰ)()0f x ≥解集为{|23}x x -≤≤,设2()(2)(3)(6)f x a x x a x x =+-=--,且0a <对称轴012x =,开口向下,min ()(1)44f x f a =-=-=,解得1a =-,2()6f x x x =-++;……5分(Ⅱ)22()561g x x x x x =++--=-,2()(1)4()()x g g x m g x g m m⎡⎤--≤+⎣⎦恒成立即2222221(1)14(1)1x x m x m m ⎡⎤---+≤-+-⎣⎦对3,4x ⎛⎤∈-∞- ⎥⎝⎦恒成立 化简22221(4)23m x x x m -≤--,即2214m m -≤2321x x --+对3,4x ⎛⎤∈-∞- ⎥⎝⎦恒成立……8分 令2321y x x =--+,记14,03t x ⎡⎫=∈-⎪⎢⎣⎭,则2321y t t =--+, 二次函数开口向下,对称轴为013t =-,当43t =-时min 53y =-,故221543m m -≤-………………10分 22(31)(43)0m m +-≥,解得2m ≤-或2m ≥……………………………………………………12分 21.(本题满分12分)(原创)设数列{}n b 的前n 项和为n S ,对任意的*n N ∈,都有0n b >,且233123n n S b b b =++;数列{}n a 满足22*111,(1cos )sin ,22n n n n b b a a a n N ππ+==++∈. (Ⅰ)求12,b b 的值及数列{}n b 的通项公式; (Ⅱ)求证:2624132151912n n a a a a a a a n a -+<+++对一切n N +∈成立. 解:(1)121,2b b ==;23333233121211,n n n n S b b b b S b b --=++++=,相减得:23121212)(()n n n b b b b b b b -+-=+++++31212(2)2n n n n b b b b b b -=++++,即2112222n n n b b b b b -=++++(2n ≥)同理21121222n n n b b b b b ++=++++,两式再减112211n n n n n n b b b b b b +++=+⇒--=,n b n =……5分(2)22*111,(1cos )sin ,22n n n n a a a n N ππ+==++∈, 21(10)12a a =++=,32(11)04a a =++=,43(10)15a a =++=一般地,2122212,1m m m m a a a a +-==+,则212122m m a a +-=+有212122(2)m m a a +-+=+,2121222m m a a +-+=+,数列21{2}m a -+是公比为2的等比数列,12112(2)2m m a a --+=+得:1*21232()m m a m N --=-+⋅∈,1*2211132()2m m m a a m N -+==-+⋅∈所以:11212232132n n nn a n +--⎧-+⋅⎪=⎨⎪-+⋅⎩为奇数为偶数 令111112132232111112322322322(132)n n n n n n n c -------+⋅-+⋅+===+=+-+⋅-+⋅-+⋅-+⋅而当2n ≥时,2132n --+⋅2≥,故2101132n -<<-+⋅,则22211120132(132)132n n n ---+<<=-+⋅-+⋅+⋅,从而212(132)n -<-+⋅2132n -⋅*21411(2,)3232n n nc n n N -<+=+≥∈⋅⋅,624152132nn n a a a a a a a a T -=+++32114414182(1)(1)(1)1(1)14323243212n n n T n -<+++++⋅⋅⋅++=+++⋅-⋅⋅- 2111194191(1)432123212n n n n n -=+++-=+-<+⋅…………………………………………………12分。
数学试卷 第1页(共24页) 数学试卷 第2页(共24页)绝密★启用前2013年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类)数学试题卷(理工农医类)共4页.满分150分.考试时间120分钟. 注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,将试题卷和答题卡一并交回. 特别提醒:14、15、16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分. 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4}U =,集合={1,2}A ,={2,3}B ,则()U AB =ð( ) A .{1,3,4}B .{3,4}C .{3}D .{4} 2.命题“对任意x ∈R ,都有20x ≥”的否定为( )A .对任意x ∈R ,都有20x <B .不存在x ∈R ,使得20x <C .存在0x ∈R ,使得20x ≥ D .存在0x ∈R ,使得20x < 3(63)a -≤≤的最大值为 ( )A .9B .92C .3D4.(单位:分).7424已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为( ) A .2,5B .5,5C .5,8D .8,85.某几何体的三视图如图所示,则该几何体的体积为( )A .5603 B .5803C .200D .2406.若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间( )A .(,)a b 和(,)b c 内B .(,)a -∞和(,)a b 内C .(,)b c 和(,)c +∞内D .(,)a -∞和(,)c +∞内7.已知圆1C :22(2)(3)1x y -+-=,圆2C :22(3)(4)9x y -+-=,M ,N 分别是圆1C ,2C 上的动点,P 为x 轴上的动点,则||||PM PN +的最小值为( ) A .4 B 1 C .6-D 8.执行如图所示的程序框图,如果输出3s =,那么判断框内应填入的条件是( )A .6k ≤ B .7k ≤ C .8k ≤D .9k ≤9.4cos50tan 40-=( ) ABC D .1 姓名________________ 准考证号_____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共24页) 数学试卷 第4页(共24页)10.在平面上,12AB AB ⊥,12||||1OB OB ==,12AP AB AB =+.若1||2OP <,则||OA 的取值范围是( ) A. B. C. D. 二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.已知复数5i12iz =+(i 是虚数单位),则||z = . 12.已知{}n a 是等差数列,11a =,公差0d ≠,n S 为其前n 项和,若1a ,2a ,5a 成等比数列,则8S = .13.从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是 (用数字作答).考生注意:14、15、16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分. 14.(几何证明选讲)如图所示,在ABC △中,90C ∠=,60A ∠=,20AB =,过C 作ABC △的外接圆的切线CD ,BD CD ⊥,BD 与外接圆交于点E ,则DE 的长为 . 15.(坐标系与参数方程)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为cos 4ρθ=的直线与曲线23,,x t y t ⎧=⎨=⎩(t 为参数)相交于A ,B 两点,则||AB = .16.(不等式选讲)若关于实数x 的不等式|5||3|x x a -++<无解,则实数a 的取值范围是 . 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分)设2()(5)6ln f x a x x =-+,其中a ∈R ,曲线()y f x =在点(1,(1))f 处的切线与y 轴相交于点(0,6). (Ⅰ)确定a 的值;(Ⅱ)求函数()f x 的单调区间与极值.18.(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1其余情况无奖且每次摸奖最多只能获得一个奖级. (Ⅰ)求一次摸球恰好摸到1个红球的概率;(Ⅱ)求摸奖者在一次摸奖中获奖金额X 的分布列与期望()E X . 19.(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分)如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,BC CD=2=,4AC =,π3ACB ACD ∠=∠=,F 为PC 的中点,AF PB ⊥.(Ⅰ)求PA 的长;(Ⅱ)求二面角B AF D --的正弦值.20.(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)在ABC △中,内角A ,B ,C 的对边分别是a ,b ,c ,且222a b c +=. (Ⅰ)求C ;(Ⅱ)设cos cos A B =,2cos()cos()cos A B ααα++=求tan α的值. 21.(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)如图,椭圆的中心为原点O ,长轴在x 轴上,离心率e =过左焦点1F 作x 轴的垂线交椭圆于A ,A '两点,||4AA '=. (Ⅰ)求该椭圆的标准方程;(Ⅱ)取垂直于x 轴的直线与椭圆相交于不同的两点P ,P ',过P ,P '作圆心为Q的圆,使椭圆上的其余点均在圆Q 外.若PQ P Q '⊥,求圆Q 的标准方程.22.(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)对正整数n ,记{1,2,,}n I n =⋅⋅⋅,|,k }n n n P m I I =∈∈. (Ⅰ)求集合7P 中元素的个数; (Ⅱ)若n P 的子集A 中任意两个元素之和不是整数的平方,则称A 为“稀疏集”.求n 的最大值,使n P 能分成两个不相交的稀疏集的并.2013年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类)答案解析A B=){4}{1,2,3}A B=求出两集合的并集,由全集U,找出不属于并集的元素,即可求出所求的集合.- 3 - / 12()())0()0cf b f b f<<,,所以该函数在【提示】由函数零点存在判定定理可知:在区间数,最多有两个零点,即可判断出.log(k k⨯⨯,又∵不满足判断框内的条件时才能输出- 4 -- 5 - / 12D【解析】因为AB AB ⊥,所以可以为原点,分别以AB ,AB 所在直线为(,0)a ,2(0,)B b ,则2(,)AP AB AB a b =+=即||||1OB OB ==,得)1b -= 所以()1x a y -=-1||OP <,得所以24x <+||OA 的取值范围是【提示】建立坐标系,将向量条件用等式与不等式表示,利用向量模的计算公式,即可得到结论.DE DB,可求得的边角关系即可得出CD,BD DE DB,即可得出- 6 -3 3 3113105=- 7 - / 12- 8 -333223105=141123105C ==【解析】(Ⅰ)如图,连接BD 交AC 于O ,因为BC CD =,BD OB OC AP ,,的方向分别为而4AC =,得- 9 - / 12又(0,2,2AF =,(3,3,PB =故0AF PB =,即602-=因此,(3,3,PA =||23PA =(Ⅱ)由(Ⅰ)知(3,3,0)AD =-,(3,3,0)AB =,(0,2,AF =的法向量为1(,)n x y =,平面FAB 的法向量为(,n x =由10n AD =,10n AF =,得⎧-⎪⎨,因此可取(3,3,n =-由20n AB =,20n AF =,得,因此可取(3,n =-从而法向量n n 的夹角的余弦值为1221,8||||n n n n n n ==.AF D --的正弦值为,从而得到(3,3,PA =(Ⅱ)由(Ⅰ)的计算,得(3,3,0)AD =-,(3,3,0)AB =,(0,2,AF =的方法建立方程组,解出1(3,n =和2(3,n =-分别为平面用空间向量的夹角公式算出1n n 夹角的余弦,结合同角三角函数的平方关系即可算出二面角- 10 -- 11 - / 12所以101101(,)(,)0QP QP x x y x x y '=---=由椭圆方程及102x x =得2211181416x x ⎛⎫--= ⎪⎝⎭n A B P =⊇,即3B ∈.- 12 - 1114=B I .14I ⎫∈⎬⎭中除整数外剩下的数组成集合13,,2⎫⎬⎭,可分解为下面两稀疏集的1314,,,33⎫⎬⎭123A A C ,123B B B =.是不相交的稀疏集,且14A B P =.的最大值为14.(注:对14P 的分拆方法不是唯一的)4时,根据。
2015年重庆一中高2017级高一下期半期考试数 学 试 题 卷 2015.5数学试题共4页,共21个小题.满分150分.考试时间120分钟.注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.一、选择题.(共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.已知等差数列满足,则( )A.3B.6C. 8D. 122.已知向量,若,则实数的值是( )A. 6B.C.D.3.实数满足,则的最大值为( )A.2B.C. 7D.84.若,则的最小值是( )A. B. C. D.5.(原创)在圆内随机任取一点,则取到的点恰好落在该圆的内接正方形内的概率是( )A. B. C. D.6.(原创)有些同学考试时总是很粗心. 某数学老师为了研究他所教两个班学生的细心情况,在某次数学考试后,从他所教的甲、乙两个班级里各随机抽取了五份答卷并对解答题第16题(满分13分)的得分进行统计,得到对应的甲、乙两组数据,其茎叶图如下图所示,其中,已知甲组数据的中位数比乙组数据 的平均数多,则的值为( )A. B. C. D.7.(原创)为非零实数,已知且,则下列不等式不一定...成立的是( ) A. B. C. D.8.(原创)执行如图所示的程序框图,若输出,则判断框内应填入的条件是( )A. B. C. D.9.(原创)已知的三个内角满足,则( )A. B. C. D.结束 ,0=s 1=n输出s80 90 100 110 120 130 0.0300.025 0.020 0.015 0.010 底部周长 cm(第12题图)10.(原创)已知平面向量满足,且与的夹角为,则的最小值是( ).A. B. C. D.二.填空题.(本大题共5 小题,共25分,将正确答案填写在答题卡上的相应位置)11.运行下面的伪代码,输出的的值为 ;12.对大量底部周长(单位:cm )的树木进行研究,从中随机抽出200株树木并测出其底部周长,得到频率分布直方图如上图所示,则在抽测的200株树木中,有 株树木的底部周长小于100cm ;13.(原创)“丁香”和“小花”是好朋友,她们相约本周末去爬歌乐山,并约定周日早上8:00至8:30之间(假定她们在这一时间段内任一时刻等可能的到达)在歌乐山健身步道起点处会合. 若“丁香”先到,则她最多等待“小花”15分钟;若“小花”先到,则她最多等待“丁香”10分钟,若在等待时间内对方到达,则她俩就一起快乐地爬山,否则超过等待时间后她们均不再等候对方而孤独地爬山,则“丁香”和“小花”快乐地一起爬歌乐山的概率是 (用数字作答);14.(原创)已知且,若不等式对任意恒成立,则实数的取值范围是 ;15.(原创)已知,将数列的项依次按如图的规律“蛇形排列”成一个金字塔状的三角形数阵,其中第行有个项,记第行从左到右....的第个数为,如, 则 (结果用表示).三.解答题.(共6小题,共75分,解答须写出文字说明、证明过程和演算步骤.)16.(13分)(原创)学生“如花姐”是2015年我校高一年级“校园歌手大赛”的热门参赛选手之一,经统计,网络投票环节中大众对“如花姐”的投票情况是:喜爱程度 非常喜欢 一般 不喜欢人数 500 200 100现采用分层抽样的方法从所有参与对“如花姐”投票的800名观众中抽取一个容量为A B C D NM 的样本,若从不喜欢“如花姐”的100名观众中抽取的人数是5人.(1)求的值;(2)若从不喜欢“如花姐”的观众中抽取的5人中恰有3名男生(记为)2名女生(记为),现将此5人看成一个总体,从中随机选出2人,列出所有可能的结果;(3)在(2)的条件下,求选出的2人中至少有1名女生的概率.17.(13分)(原创)若数列的前项和,数列是等比数列,且.(1)求及;(2)记,求数列的前项和.18.(13分)(原创)如图,已知菱形的边长为2,,分别为上的点,,记.(1) 当时,求;(2)若,求的值.19.(12分)(原创)中,内角的对边分别为,若边,且. (1)若,求的面积;(2)记边的中点为,求的最大值,并说明理由.20.(12分)(原创)已知二次函数. (1)是否存在使得对任意恒成立?若存在,求出相应的的值;若不存在,请说明理由.(2)当时,若关于的方程的两根满足,试求的取值范围.21.(12分)(原创)已知数列的前项和为,满足,,且,数列满足.(1)证明:数列是等比数列;(2) 求证:(是自然对数的底数,).命题人:黄正卫审题人:王中苏2015年重庆一中高2017级高一下期半期考试数 学 参 考 答 案 2015.5一、选择题:ACDBA DBCDA提示:10题:记,,则的夹角为,且配凑可得:令,则上式.二.填空题:6 ,80 ,,,.三.解答题.16.(13分)解:(1)抽样比例为,故;(2),共10种可能的结果;(3)记事件“选出的2人中至少有1名女生”为,则,其含有7种结果,故(或解:表示两个都是男生,包含3个结果,)17.(13分)解:(1)时,,又满足此式,故,于是,而等比,故;(2),由错位相减法,有:………………………①…………②两式相减,得:,因此.18.(13分)解:(1)当时,分别为的中点,于是;(2),故.19.(12分)解:因为,故,由余弦定理可得;(1),即或当时,,,,当时,为等边三角形,;(2因为,故由余弦定理知,于是而,故,故,(当且仅当)时取等.因为,故由余弦定理知,故,(当且仅当)时取等.20.(12分)解:(1)中令得故,于是,对恒成立则必有,而,于是只有,进而上面的不等式组变为:对恒成立,显然有且只有才行,此时故存在满足题意;,整理得,又对恒成立,故必有而,于是,而故,此时,,显然满足对恒成立,故存在满足题意;(2)当时,方程,令,其两个零点为,则而令,在约束条件下,由线性规划知识易求得故,也即:.21.(12分)解:(1)由,且其首项,故等比,公比为;(2)先求,由(1)知等比,其首项为,公比为,于是;(或用特征根法求得)由题可得,由于, 故)1(1111)11()11()11()11(143322121+⋅+⋅⋅+⋅+⋅⋅+=+⋅⋅+⋅+-n nn n a a a a a a a a a a a a )111(2)111(52)111(52212122114332n n n n nn b b b b b b b b b b b b b b b b b +++=+++⋅⋅=⎥⎦⎤⎢⎣⎡+++⋅⋅⋅⋅⋅-因此所证,而时,,保留前两项不动,从第三项开始利用上面的放缩公式,有: 121511)311(12151131313121511111213221++<-⋅++=⎥⎦⎤⎢⎣⎡+++⋅++≤+++--n n n b b b , 而,over 了.。
重庆酉阳一中高2015级高一下期第三次月考文史类数学试题一.选择题:本大题共10小题;每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数12+=-x a y 恒过点P ,则P 点的坐标是( )A.(0,1)B. (1,0)C.(2,2)D.(1,2) 2. 在等差数列{}n a 中,1910a a +=,则5a 的值为( )A.5B. 6C.8D.103. 某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解健康情况,用分层抽样的方法从中抽取样本.若样本中的中年职工为5人,则样本容量为( )A.7B.15C.25D.35 4.如右图的程序框图描述的算法的运行结果是:( )A .-5B .5C .-1D .-2 5. 已知{a n }为等差数列,{b n }为正项等比数列,公比q≠1,若a 1=b 1,a 11=b 11,则( )A .66b a ≤B .a 6>b 6C .a 6<b 6D .66b a ≥6. 设数列{}n a 的前n 项和2n S n =,则8a 的值为( )A .15B .16C . 49D .64 7. 在)2,0(π内,使x x cos sin >成立的x 的取值范围为( ) A .)45,()2,4(ππππ⋃ B .),4(ππ C .)45,4(ππ D .)23,45(),4(ππππ⋃8.某校五四演讲比赛中,七位评委为一选手打出的分数如下:90,86,90,97,93,94,93;去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( )A. 92,2B. 92,2.8C. 93,2D. 93,2.8 9.在△ABC 中,若2cos sin sin 2AC B =,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形D .等腰直角三角形10.设a a b +-113和是的等比中项,则a +3b 的最大值为( ) A .1B .2C .3D .4二.填空题:本大题共5个小题,共25分,将答案填写在答题卡中相应题号的横线上.11. 设{}02|,2>-==x x x M R U ,则。
重庆市重庆一中2013-2014学年高一下学期期中考试数学试卷(带解析)1.已知向量()()2,,,1m b m a ==,若b a //,则实数m 等于( )A .0 【答案】C 【解析】试题分析:∵//a b ,∴2120,m m ⋅-== 考点:平面向量共线的坐标表示. 2.不等式1213-≤--x x 的解集是( ) A .324xx ⎧⎫≤≤⎨⎬⎩⎭ B .324x x ⎧⎫≤<⎨⎬⎩⎭ C .324x x x ⎧⎫>≤⎨⎬⎩⎭或 D .{}2x x < 【答案】B 【解析】试题分析:∵1213-≤--x x ,∴31102x x -+≤-,即(43)(2)043022x x x x x --≤⎧-≤⇒⎨≠-⎩,∴不等式的解集为324xx ⎧⎫≤<⎨⎬⎩⎭. 考点:分式不等式转化为一元二次不等式.3.执行如图所示的程序框图,如果输入2a =,那么输出的a 值为( )A .4B .16C .256D .3log 16 【答案】C 【解析】试题分析:根据程序框图的描述,是求使*3log 4,2()n a a n N >=∈成立的最小a 值,故选C .考点:程序框图.4.等腰直角三角形ABC 中,D 是斜边BC 的中点,若2=AB ,则AD BA ⋅=( ) A .2- B .2 C .3 D .3- 【答案】A 【解析】试题分析:如图建立平面直角坐标系,则A(0,0),B(2,0),C(0,2),又∵D 是BC 的中点,∴D(1,1),∴(2,0),(1,1),21012BA AD BA AD =-=⋅=-⋅+⋅=-.考点:平面向量数量积的坐标表示. 5.下列命题正确的是( ) A .ac bc a b <⇒< B .ba ab b a ><<则若,0 C .当0x >且1x ≠时,1lg lg x x+2≥D a b < 【答案】D 【解析】 试题分析:A:当c<0时,错误;B :22()()()(),00b a b a b a b a b a b a a b a b ab ab ab-+-+--==<<∴<,,∴b aa b<;C:当01x <<即lg 1x <时不成立;D :正确. 考点:不等式的性质.6.若变量x ,y 满足约束条件82400x y y x x y +≤⎧⎪-≤⎪⎨≥⎪⎪≥⎩,则z =5y -x 的最大值是( )A .16B .30C .24D .8【答案】A 【解析】试题分析:画出如下图可行域,易得A(4,4),B(0,2),C(8,0),又∵z=5y-x ,即55x z y =+,∴问题等价于求直线55x zy =+在可行域内在y 轴上的最大截距,显然当x=4,y=4时,max 54416z =⋅-=.考点:线性规划求目标函数最值.7.设△ABC 的内角A, B, C 所对的边分别为a, b, c, 若cos cos sin b C c B a A +=, 则△ABC 的形状是 ( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定 【答案】B 【解析】试题分析:∵cos cos sin b C c B a A +=,由正弦定理,∴2sin cos sin cos sin B C C B A +=,即2sin()sin B C A +=,又∵A B C π++=,∴2sin sin ,sin 1A A A ==,∴△ABC 是直角三角形.考点:1、正弦定理;2、三角恒等变形.8.已知2121,,,b b a a 均为非零实数,不等式011<+b x a 与不等式022<+b x a 的解集分别为集合M 和集合N ,那么“2121b b a a =”是“N M =”的 ( ) A .充分非必要条件 B .既非充分又非必要条件 C .充要条件 D .必要非充分条件 【答案】D 【解析】试题分析:取11221,1a b a b ====-,则可得M=(,1)-∞-,N=(1,)-+∞,因此不是充分条件,而由M=N,显然可以得到2121b b a a =,∴是必要条件. 考点:1、不等式的基本性质;2、简易逻辑.9.在c b a ABC ,,,中∆分别是角A 、B 、C 的对边,若b c C a 2cos 2,1=+=且,则ABC ∆的周长的取值范围是( )A .(]3,1 B .[2,4] C .(]3,2 D .[3,5] 【答案】C 【解析】试题分析:∵222221cos 22a b c b c C ab b +-+-==,∴221222b c c b b +-⋅+=,化简后可得:22()()13134b c b c bc ++=+≤+⋅,∴2b c +≤,又∵1b c a +>=,∴23a b c <++≤,即周长的范围为(]3,2.考点:1、余弦定理;2、基本不等式.10.对任意正数x ,y 不等式xy ky x k 221≥+⎪⎭⎫⎝⎛-恒成立,则实数k 的最小值是 ( )A .1B .2C .3D .4 【答案】A 【解析】试题分析:∵xyky x k 221≥+⎪⎭⎫⎝⎛-1()2k -≥,要使不等式恒成立,则12k >,min 1[()2k -==≥,∴1k ≥,∴k 的最小值是1.考点:基本不等式.11.已知等差数列{}n a 前15项的和15S =30,则1815a a a ++=___________. 【答案】6 【解析】试题分析:∵等差数列{}n a 的前15项的和1530S =,∴1151151530,42a a a a +⋅=+=,而1158818152,2,6a a a a a a a +=∴=++=.考点:等差数列的性质.12.下面框图所给的程序运行结果为S =28,如果判断框中应填入的条件是 “a k >”,则整数=a _______.【答案】7 【解析】试题分析:∵程序运行结果为S=28,而1+10+9+8=28,∴程序应该运行到k=7的时候停止,因此整数a=7. 考点:程序框图.13.已知非零向量b a,满足a b a b a 332=-=+,则向量b a +与b a -的夹角为 . 【答案】3π 【解析】试题分析:∵||||a b a b +=-,∴22()()0a b a b a b +=-⇒⋅=,又∵23||||3a b a +=,∴22233()||||a b a b a +=⇒=,∴222222()()||||||3a b a b a b a b a +⋅-=-=-=,∴2222342||||cos (||)cos ||cos ||33a b a b a a a θθθ+⋅-⋅=⋅=⋅=,∴1cos ,23πθθ==.考点:平面向量的数量积.14.已知数集},,,,{321n a a a a A =,记和)1(n j i a a j i ≤<≤+中所有不同值的个数为)(A M .如当}4,3,2,1{=A 时,由321=+,431=+,53241=+=+,642=+,743=+,得5)(=A M .若{1,2,3,,}A n =, 则)(A M = .【答案】2n-3【解析】试题分析:根据题意分析,A 中最小的两个不同元素的和为1+2=3,最大的为n-1+n=2n-1,显然可以取遍从3到2n-1的所有整数,∴M(A)=2N-3. 考点:新定义问题15.设实数d c b a ,,,满足:1001≤≤≤≤≤d c b a ,则dcb a +取得最小值时,=+++dc b a .【答案】121 【解析】 试题分析:∵1001≤≤≤≤≤d c b a ,∴111122005a c ab b d b bdd+≥++≥⋅=≥=, 上述等号成立的条件依次为:2,1,,100b c a d b d ====,∴a=1,b=c=10,d=100,a+b+c+d=121.考点:1、基本不等式;2、不等式的放缩.16.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足53cos =A ,3AB AC ⋅=. (1)求ABC ∆的面积;(2)若6b c +=,求a 的值.【答案】(1)=2ABC S △;(2)a = 【解析】试题分析:(1)根据满足53cos =A ,3AB AC ⋅=,可以求得bc=5,sinA=45,利用三角形的面积计算公式可得1=sin 22ABC S bc A =△;(2)由(1),bc=5,结合b+c=6,易得b=1,c=5或b=5,c=1,从而根据余弦定理2222cos 20a b c bc A =+-=,即可求得a =.(1)∵53c o s =A ,∴54cos 1sin 2=-=A A , 又由3A BA C ⋅=,得cos 3,bc A =5bc ∴=,1sin 22ABC S bc A ∆∴==;(2)对于5bc =,又6b c +=,5,1b c ∴==或1,5b c ==,由余弦定理得2222cos 20a b c bc A =+-=,a ∴=.考点:1、平面向量的数量积;2、三角形面积计算;3、余弦定理.17.已知关于x 的不等式0232>+-x ax 的解集为{}b x x x ><或1|.(1).求实数a ,b 的值; (2).解关于x 的不等式0>--bax cx (c 为常数). 【答案】(1)a=1,b=2;(2)当c>2时解集为{x|x>c 或x<2};当c =2时解集为{x|x≠2,x ∈R};当c<2时解集为{x|x>2或x<c}. 【解析】 试题分析:(1)根据一元二次方程与一元二次不等式的关系,根据题意可以得到1,b 为方程2320ax x -+=的两根且a>0,根据韦达定理可以得到方程组231b a b a ⎧=⎪⎪⎨⎪+=⎪⎩,从而求得a=1,b=2;(2)原不等式等价于(x -c)(x -2)>0,根据一元二次不等式的解法,对c 进行分类讨论,即可得到当c>2时解集为{x|x>c 或x<2};当c =2时解集为{x|x≠2,x ∈R};当c<2时解集为{x|x>2或x<c}.(1)由题知1,b 为方程2320ax x -+=的两根且a>0,即231b a b a ⎧=⎪⎪⎨⎪+=⎪⎩, ∴a =1,b =2;(2)不等式等价于(x -c)(x -2)>0,∴当c>2时解集为{x|x>c 或x<2};当c =2时解集为{x|x≠2,x ∈R};当c<2时解集为{x|x>2或x<c}.考点:1、一元二次不等式;2、分式不等式转化为一元二次不等式.18.在c b a ABC ,,,中∆分别是角A 、B 、C 的对边,()()B C n c a b m cos ,cos ,2,-=-=,且n m ⊥.(1).求角B 的大小;(2).求sin A +sin C 的取值范围. 【答案】(1)B=3π;(2)]3,23(. 【解析】试题分析:(1)由m n ⊥,可得bcos (2)cos C a c B =-,等式中边角混在了一起,需要进行边角的统一,根据正弦定理可得sin cos sin cos 2sin cos B C C B A B +=,进一步变形化简可得1cos 2B =,∴B 3π=;(2)由(1)可得π32=+C A ,即23C A π=-,因此可以将sinA+sinC进行三角恒等变形转化为关于A的函数,即A A A A C A c o s 23s i n 23)32s i n (s i n s i n s i n +=-+=+π)6(s i n 3π+=A,从而可以得到sinA+sinC 取值范围是]3,23(. (1) 由m n ⊥,得,cos )2(cos B c a C b -=.cos 2cos cos B a B c C b =+∴ 由正弦定理得:sin cos sin cos 2sin cos B C C B A B +=,.cos sin 2)sin(B A C B =+∴又,A C B -=+π.cos sin 2sin B A A =∴又.21cos ,0sin =∴≠B A 又.3),,0(ππ=∴∈B B ;∵π=++C B A ,∴π32=+C A ,∴A A A A C A cos 23sin 23)32sin(sin sin sin +=-+=+π)6(sin 3π+=A ,∵320π<<A ,∴πππ6566<+<A ,∴1)6(sin 21≤+<πA ,∴3sin sin 23≤+<C A . 故sin A +sin C 的取值范围是]3,23(. 考点:1、平面向量垂直的坐标表示;2、三角恒等变形.19.已知数列的等比数列公比是首项为41,41}{1==q a a n ,设数列{}n b 满足*)(log 3241N n a b n n ∈=+.(1)求数列{}n n b a +的前n 项和为n S ;(2)若数列n n n n b a c c ⋅=满足}{,若1412-+≤m m c n 对一切正整数n 恒成立,求实数m 的取值范围.【答案】(1)()2133)41(1-+-=n n S nn ;(2)1≥m 或5-≤m . 【解析】试题分析:(1)根据题意可以得到等比数列}{n a 的通项公式为)()41(*N n a n n ∈=,∵2log 341-=n n a b ,∴23-=n b n ,因此}{n b 是1为首项3为公差的等差数列,从而可以求得}{n n b a +的前n 项和n S ;(2)1412-+≤m m c n 对一切正整数n 恒成立,等价于141)(2max -+≤m m c n ,可以得到数列}{n c 从第二项起是递减的,而4112==c c ,因此问题等价于求使不等式141412-+≤m m 成立的m 的取值范围,从而得到1≥m 或5-≤m . (1)由题意知,)()41(*N n a n n ∈=,又∵2log 341-=n n a b ,∴23-=n b n∴()23)41(-+=+n b a n n n ,∴()2133)41(1-+-=n n S n n ; (2)由(1)知,*)(23,)41(N n n b a n n n ∈-==*)(,)41()23(N n n c nn ∈⨯-=∴n n n n n n c c )41()23()41()13(11⋅--⋅+=-++ *)(,)41()1(91N n n n ∈⋅-=+∴当n=1时,4112==c c ;当2n ≥时,n n c c <+1,即n c c c c c <⋯<<=4321;∴当n=1时,n c 取最大值是41.又1412-+≤m m c n 对一切正整数恒成立,∴141412-+≤m m ; 即510542-≤≥≥-+m m m m 或得 .考点:1、等差、等比数列的前n 项和;2、数列单调性的判断;3、恒成立问题的处理方法.20.如图,公园有一块边长为2的等边△ABC 的边角地,现修成草坪, 图中DE 把草坪分成面积相等的两部分,D 在AB 上,E 在AC 上. (1).设AD=x (x≥0),DE=y ,求用x 表示y 的函数关系式,并求函数的定义域;(2).如果DE 是灌溉水管,为节约成本,希望它最短,DE 的位置应在哪里?如果DE 是参观线路,则希望它最长,DE 的位置又应在哪里?请予证明.【答案】(1)[]()2,1,2422∈-+=x xx y ;(2)如果DE 是水管,DE 的位置在AD=AE=2处,如果DE 是参观路线,则DE 为AB 中线或AC 中线时,DE 最长,证明过程详见解析. 【解析】试题分析:(1)在△ADE 中,利用余弦定理可得AE x AE x y ⋅-+=222,又根据面积公式可得2=⋅AE x ,消去AE 后即可得到y 与x 的函数关系式,又根据⎩⎨⎧≤≤≤≤2020AE AD 可以得到x的取值范围;(2)如果DE 是水管,则问题等价于当]2,1[∈x 时,求2422-+=xx y 的最小值,利用基本不等式22222422=-⋅≥-+xx 即可求得当2=x 时,y 有最小值为2,如果DE 是参观路线,则问题等价于问题等价于当]2,1[∈x 时,求2422-+=x x y 的最小值,根据函数2422-+=xx y 在[1,2]上的单调性,可得当x=1或2时,y 有最小值3.(1)在△ADE 中,由余弦定理:60cos 2222⋅⋅-+=AE x AE x y ⇒AE x AE x y ⋅-+=222①又∵ 60sin 212321⋅⋅===∆∆AE x S S ABC ADE ⇒2=⋅AE x ② ②代入①得2)2(222-+=xx y (y >0), ∴2422-+=xx y , 由题意可知212020≤≤⇒⎩⎨⎧≤≤≤≤x AE AD ,所以函数的定义域是[]2,1,C[]()2,1,2422∈-+=∴x xx y ; (2)如果DE 是水管=y 22222422=-⋅≥-+x x , 当且仅当224x x =,即x =2时“=”成立,故DE ∥BC ,且DE =2. 如果DE 是参观线路,记()224xx x f +=,可知函数在[1,2]上递减,在[2,2]上递增, 故()()()521max ===f f x f ∴y max=DE 为AB 中线或AC 中线时,DE 最长.考点:1、平面向量的数量积;2、三角形面积计算.21.设正项数列}{n a 的前n 项和为n S ,向量()()2,1,1,+==n n a b s a ,(*N n ∈)满足b a //.(1)求数列}{n a 的通项公式; (2)设数列}{n b 的通项公式为n b n n a a t =+(*N t ∈),若1b ,2b ,m b (*,3N m m ∈≥)成等差数列,求t 和m 的值;(3).如果等比数列{}n c 满足11a c =,公比q 满足102q <<,且对任意正整数k ,()21+++-k k k c c c 仍是该数列中的某一项,求公比q 的取值范围.【答案】(1)12-=n a n ;(2)⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==4m 5t 5m 3t 7m 2t ,,;(3)12-=q . 【解析】试题分析:(1)由//可以得到12+=n n a S ,即2n )1(4+=n a S ,利用⎩⎨⎧=≥-=-)1()2(11n S n S S a n n n ,可得)2(21≥=--n a a n n ,即}{n a 是以1为首项,2为公差的等差数列,从而求得通项公式12-=n a n ;(2)由)3(,,21≥m b b b m 是等差数列可得m b b b +=122,即t m m t t +--++=+⨯121211332,整理得143-+=t m ,根据m,t 是正整数,所以t-1只可能是1,2,4,从而解得⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==4m 5t 5m 3t 7m 2t ,,; (3)易知1-=n n q c ,因为()21+++-k k k c c c 仍是该数列中的某一项,所以()()21111q q q q q q k k k k --=+--+-是该数列中的某一项,又n c 是q 的几次方的形式,所以21q q --也是q 的几次方的形式,而210<<q ,所以11412<--<q q ,所 以21q q --只有可能是q ,⎪⎭⎫ ⎝⎛<412q ,所以q q q =--21,所以12-=q . (1)∵b a //,∴12+=n n a S ,∴2)1(4+=n n a S ①当n=1,有()2111122+==a a S ,}{n a 是正项数列,∴0>n a ∴11=a 当2≥n ,有()21114+=--n n a S ②, ①-②,得()()0211=--+--n n n n a a a a , 0>n a ,∴21=--n n a a , ∴数列}{n a 以11=a ,公差为2的等差数列,12)1(21-=-+=n n a n ;(2)易知tn n b n +--=1212,∵)3(,,21≥m b b b m 是等差数列, 即m b b b +=122,∴t m m t t +--++=+⨯121211332,整理得143-+=t m , ∵m,t 是正整数,所以t 只可能是2,3,5,∴⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==4m 5t 5m 3t 7m 2t ,,; 易知1-=n n q c ,∵()21+++-k k k c c c ()()21111q q q q q qk k k k --=+-=-+-仍是该数列中的某一项,记为第t 项)(*N t ∈,∴()1211--=--t k q q q q,即k 21-=--t q q q ,∵210<<q ,∴11412<--<q q , 141<<-k t q ,又∵210<<q ,∴只有t-k=1,即q q q =--21,解得1-2q = 考点:1、数列的通项公式;2、数列综合.。
秘密★启用前2013年重庆一中高2013级高三下期第三次月考数学试题卷(理科)2013.5 数学试题共4页。
满分150分。
考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.设全集集合,则()A. B. C. D.2.向量,且∥,则锐角的余弦值为()A. B. C. D.3.的展开式中,常数项等于()A. 15B. 10C.D.4.在等差数列中每一项均不为0,若,则()A. 2011B. 2012C. 2013D. 20145.采用系统抽样方法从1000人中抽取50人做问卷调查,为此将他们随机编号为1,2,…,1000,适当分组后在第一组采用简单随机抽样的方法抽到的号码为8.抽到的50人中,编号落入区间[1,400]的人做问卷A,编号落入区间[401,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷C的人数为()A. 12B. 13C. 14D. 156.在中,已知,那么一定是()A. 直角三角形B. 等腰三角形C. 正三角形D. 等腰直角三角形7.若定义在R上的函数的导函数是,则函数的单调递减区间是()A. B. C. D.8 右图给出了一个程序框图,其作用是输入x的值,输出相应的y值。
若要使输入的x值与输出的y值相等,则这样的x值有( )A. 1个B. 2 个C. 3 个D. 4个9 已知正数满足则的最小值为()A. B. 4 C. D.10过双曲线的左焦点,作倾斜角为的直线FE交该双曲线右支于点P,若,且则双曲线的离心率为()A. B. C. D.第Ⅱ卷(非选择题,共分)二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分. 把答案填写在答题卡相应位置上.11.在复平面内,复数对应的点位于虚轴上,则12.某四面体的三视图如下图所示,则该四面体的四个面中,直角三角形的面积和.是_______.13.用红、黄、蓝三种颜色去涂图中标号为1,2,3,,9的9个小正方形,使得任意相邻(由公共边)的小正方形所涂颜色都不相同,且标号为“3,5,7”的小正方形涂相同的颜色,则符合条件的涂法共有种。
2014-2015学年度第二学期中联考试题高一数学(理)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
全卷满分150分。
考试时间120分钟。
注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至6页。
2. 答题前,考生务必将自己的姓名、准考证号填写在答题卡相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将答题卡交回。
第Ⅰ卷(选择题 共60分)一、选择题(本题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1 ( ) A. 输出a=10 B. 赋值a=10 C. 判断a=10 D. 输入a=12. 0600cos 的值为 ( )A.23 B.23- C.21 D 21- 3. 一个扇形的圆心角为︒120,半径为3,则此扇形的面积为 ( ) A.π B.45πC. 33π D.2932π 4.某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二680人、高三720人中,抽取50人进行问卷调查,则高一、高二、高三抽取的人数是 ( ) A .15,16,19 B .15,17,18 C .14,17,19 D .14,16,205.某射手一次射击中,击中10环、9环、8环的概率分别是0.24,0.28,0.19,则这射手在一次射击中不够9环的概率是( )A.0.48B.0.52C.0.71D.0.296.阅读右边的程序框图,运行相应的程序,则输出s 的值为 ( )A .-1B .0C .1D .3 7.将二进制数10001(2)化为十进制数为( )A .17B .18C .16D .19 8.设角θ的终边经过点P (-3,4),那么sin θ+2cos θ=( )A .15 B .15- C .25- D .259.已知函数))(2sin()(R x x x f ∈-=π,下面结论错误..的是( )A. 函数)(x f 的最小正周期为2πB. 函数)(x f 在区间[0,2π]上是增函数 C.函数)(x f 的图象关于直线x =0对称 D. 函数)(x f 是奇函数10.函数)20)(sin()(πϕϕω<>+=,A x A x f 其中的图象如图所示,为了得到xx g 2sin )(=的图象,则只需将)(x f 的图象( )A.向右平移6π个长度单位B.向右平移3π个长度单位C.向左平移6π个长度单位D.向左平移3π个长度单位11.函数()1f x kx =+,实数k 随机选自区间[-2,1].对[0,1],()0x f x ∀∈≥的概率是( ) A .13B .12C .23D .3412. 定义在R 上的函数()f x ,既是偶函数又是周期函数,若()f x 的最小正周期是π,且当π02x ⎡⎤∈⎢⎥⎣⎦,时,()sin f x x =,则5π3f ⎛⎫⎪⎝⎭的值为 ( )A.12-C. D.12第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4题,每小题5分,共20分)13..图2是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为_________ .08910352图(注:方差2222121()()()n s x x x x x x n⎡⎤=-+-++-⎣⎦,其中x 为x 1,x 2,…,x n 的平均数)14..函数tan()3y x π=-的单调递减区间为15.已知正边形ABCD 边长为2,在正边形ABCD 内随机取一点P ,则点P 满足||1PA ≤的概率是16.已知sin (0),()(1)1(0),x x f x f x x π⎧=⎨--⎩<> 则111166f f ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭= 三.解答题:(本大题共6个小题.共70分.解答应写出文字说明,证明过程或演算步骤.)17.(本题满分10分)已知()()()()3sin 5cos cos 23sin cos tan 322f ππααπααππαααπ⎛⎫-⋅+⋅+ ⎪⎝⎭=⎛⎫⎛⎫-⋅+⋅- ⎪ ⎪⎝⎭⎝⎭(1)化简()fα。
酉阳一中高2015级高一下期周末测试(一)文史类数学试题 测试时间2013.3.10一、 选择题:(每小题5分,共50分)1.设全集{}5,4,3,2,1=U ,集合{}{}5,2,5,3,1==N M 则图中阴影部分表示 的集合是 ( )A.{}5B.{}3,1C.{}4,2D.{}4,3,22.已知向量()()12,1,3,2,2O A O B A B ==--=则向量 ( )A.⎪⎭⎫⎝⎛23,25 B.()3,5 C.()3,5-- D.⎪⎭⎫ ⎝⎛--23,253.已知43tan =α,则=+-ααααcos sin cos sin ( )A.71-B.71C.43D.43-4.要得到函数⎪⎭⎫⎝⎛+=32sin πx y 的图像,只需将函数x y 2sin =的图像 ( ) A.向左平移3π个单位 B.向右平移3π个单位 C.向左平移6π个单位 D.向右平移6π个单位5. △ABC 中,45B =,60C =,1c =,则最短边的边长等于 ( )A36 B 26 C 21 D 236. △ABC 中,cos cos cos ab cABC ==,则△ABC 一定是 ( )A 直角三角形B 钝角三角形C 等腰三角形D 等边三角形7.△ABC 中,若60A =,3a =,则sin sin sin a b cA B C +-+-等于 ( )A.2B. 21 C 3 D.238. △ABC 中,8b =,83c =,163ABC S = ,则A ∠等于 ( )A 30B 60C 30 或150D 60 或1209. 在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为 ( )A.3400米 B.33400米 C. 2003米 D. 200米10.四边形ABCD 中,BC=CD=1,︒=∠=∠90D B ,则AD AB ⋅的最小值为( )A.24+-B.23+-C.224+-D. 223+-二、填空题:(每小题5分,共25分)11.=660cos12.在△ABC 中,===B c a ,2,33150°,则b =13.函数21cos sin lg -+=x x y 的定义域为 .14.在△ABC 中,5AB =,7BC =,8AC =,则AB BC ∙=15.]1,(- 2),1( log {)(81∞∈+∞∈=x x x x f x- ,则不等式41)(<x f 的解集是三、解答题:(本大题共6小题,共75分)16.(满分13分)根据已知条件求解: (1)在△ABC 中,︒===30,3,1B c b ,解三角形。
酉阳一中高2015级高一下期第一次月考文史类数学试题 测试时间2013.3.28命题人:文晓祥 审题人:蒋大明一、 选择题:(每小题5分,共50分)1. 设集合}312|{≤-=x x A ,集合B 是函数lg(1)y x =-的定义域;则=B A .....( )A .(1,2)B .[1,2]C .[,)12D .(,]122. 在等差数列{n a }中,已知84a a +=16,则102a a +=.......................................................( )A .12B .16C .20D .243. 若ABC ∆中,三边5,3,2===c b a,则ABC ∆.....................................()A .一定是锐角三角形.B .一定是直角三角形.C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形. 4. 等比数列{n a } 的各项是正数,且3a 11a =16,则=7a ...................................................()A .1B .2C .4D .85. 设x R ∈ ,向量(,1),(1,2),a x b ==-且a b ⊥ ,则=x .............................................( )A .2B .21-C .21D .2-6. 函数121()()2xf x x =-的零点个数为............................................................................( )A .3B .2C .1D .07. 等差数列{n a }的前n 项和为n S ,若,,10463==S S 则=9S ..............................( )A .16B .18C .12D .248. 已知1,,9,21--a a 四个实数成等差数列,1,,,9,321--b b b 五个实数成等比数列, 则)(122a a b -的值为.................................................................................................... ()A .8B .8-C .8±D .899. 函数2sin (09)63x y x ππ⎛⎫=-≤≤ ⎪⎝⎭的最大值与最小值之和为.......................................( ) A .23- B .0 C .1- D .13--10. 已知数列{}n a 的前n 项和为n S ,11a =,12n n S a +=,则n S =.....................................( )A .12n -B .112n -C .123n -⎛⎫ ⎪⎝⎭D .132n -⎛⎫ ⎪⎝⎭二、填空题:(每小题5分,共25分)11. 首项为1,公比为2的等比数列的前4项和4S =______ 12. 函数4)(2-+=ax x x f 为偶函数,则实数a =________13. 在ABC ∆中,已知60,45,3BAC ABC BC ∠=︒∠=︒=,则AC =_______ 14. 设等差数列{}n a 的前n 项和为n S ,若535a a =则95S S = 15. 数列{}n a 的通项公式cos2n n a n π=,其前n 项和为n S ,则=2012S 三、解答题:(本大题共6小题,共75分)16.(满分13分) 在ABC ∆中,︒===6027B BC AC ,,(Ⅰ) 求A sin ; (Ⅱ) 求AB 及ABC ∆的面积.17.(满分13分)(Ⅰ) 等差数列}{n a 中,若22,10,2===n a n d ,求1a 及n S .(Ⅱ) 等比数列}{n a 中,若80106431=+=+a a a a ,,求4a 及8S .18. (满分13分)已知{}n a 为等差数列,且13248,12,a a a a +=+=(Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 记{}n a 的前n 项和为n S ,若12,,k k a a S +成等比数列,求正整数k 的值.19.(满分12分)在ABC ∆中,内角,,A B C 所对的边分别是,,a b c .已知C B C B c o s c o s 61)(c o s 3=--.(Ⅰ) 求A cos ;(Ⅱ) 若ABC a ∆=,3的面积为22,求c b ,.20.(满分12分)已知向量 )2cos ,2cos (b ),2sin ,2cos (x x x x a -== ,若函数21)(-⋅=b a x f(Ⅰ) 求函数()f x 的最小正周期和值域;(Ⅱ) 若32()10f α=,求sin 2α的值.21.(满分12分)已知数列{}n a 的前n 项和为n S ,且=n S 22n n +,*∈N n ,数列}{n b 满足*∈+=N n b a nn ,3lo g 42.(Ⅰ) 求n a 及n b ; (Ⅱ) 求数列}{n nb a ⋅的前n 项和n T .参考答案一、选择题1---10、DBBCA CBCAD10.【解析】由12n n S a +=可知,当1n =时得211122a S == 当2n ≥时,有12n n S a += ① 12n n S a -= ② ①-②可得122n n n a a a +=-即132n n a a +=,故该数列是从第二项起以12为首项,以32为公比的等比数列,故数列通项公式为2113()22n n a -⎧⎪=⎨⎪⎩(1)(2)n n =≥,故当2n ≥时,1113(1())3221()3212n n n S ---=+=- ,当1n =时,11131()2S -==,故选答案D 二、填空题11、15 12、0 13、2 14、9 15、100615.【解析】由cos 2n n a n π=,可得20121021304120121S =⨯-⨯+⨯+⨯++⨯ 2462010201225031006=-+-+-+=⨯=三、解答题 16、(1)721sin =A (2)233;3==∆S AB17、(1)130;4101===S S a n (2)510;1684==S a18、【解析】(Ⅰ)设数列{}n a 的公差为d,由题意知112282412a d a d +=⎧⎨+=⎩解得12,2a d ==所以1(1)22(1)2n a a n d n n =+-=+-= (Ⅱ)由(Ⅰ)可得1()(22)(1)22n n a a n n nS n n ++===+ 因12,,k k a a S + 成等比数列,所以212k k a a S += 从而2(2)2(2)(3)k k k =++ ,即 2560k k --=解得6k = 或1k =-(舍去),因此6k = .19、 【解析】3(c o s c o s s i n s i n )16c o s c o s3c o sc o s 3s i n s i n 13c o s ()11c o s ()3B C B C B C B C B C B C A π+-=-=-+=--=-则1cos 3A =. (2) 由(1)得22sin 3A =,由面积可得bc=6①,则根据余弦定理2222291cos 2123b c a b c A bc +-+-===则2213b c +=②,①②两式联立可得32b a =⎧⎪⎨=⎪⎩或32a b =⎧⎪⎨=⎪⎩.20、【解析】 (1)由已知,f(x)=212x cos 2x sin 2x cos2-- 21sinx 21cosx 121--+=)()(4x cos 22π+=所以f(x)的最小正周期为2π,值域为⎥⎥⎦⎤⎢⎣⎡-22,22, (2)由(1)知,f(α)=,)(10234cos 22=+πα 所以cos(534=+πα). 所以)()(42cos 22cos 2sin πααπα+-=+-=257251814cos 212=-=+-=)(πα, 21、【解析】(1)由S n =22n n +,得当n=1时,113a S ==;当n ≥2时,1n n n a S S -=-=2222(1)(1)41n n n n n ⎡⎤+--+-=-⎣⎦,n ∈N ﹡. 由a n =4log 2b n +3,得21n b n =-,n ∈N ﹡.(2)由(1)知1(41)2n n n a b n -=-⋅,n ∈N ﹡所以()21372112...412n n T n -=+⨯+⨯++-⋅,()2323272112...412n n T n =⨯+⨯+⨯++-⋅, ()212412[34(22...2)]n n n n T T n --=-⋅-++++ (45)25n n =-+(45)25n n T n =-+,n ∈N ﹡.。
酉阳一中高2015级高一下数学期中试卷
理工类
一、选择题.(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的)
1.设全集{1,2,3,4,5},U =集合{1,2,},{2,3},A B ==则U A C B = ( ) A.{4,5} B.{2,3} C.{1} D.{2}
2.已知向量(1,2),(2,3),(1,)a b c x ==-=。
若向量c 满足()c a b ⊥+ ,则x =( )
A.4
B.2
C.3
D.6 3.已知数列{}n a 中,1111
1,
3(*)n n
a n N a a +=-=∈,则10a =( ) A.28 B.33 C.
133 D.128
4.在等比数列{}n a 中,若2312132,3,a a a a +=+=则2223a a +的值是( ) A.
94 B.49 C.92 D.2
9
5.若0,a b <<则下列不等式中成立的是( ) A.
11
a b
< B.
11a b a >- C.a b > D.22a b < 6.在ABC ∆中,sin sin cos cos A B A B <,则ABC ∆一定是( )
A.正三角形
B.等腰三角形
C.锐角三角形
D.钝角三角形 7.阅读右图的程序框图,则输出的S =( )
A.14
B.30
C.20
D.55 8.函数1
()3x f x a
-=+(0a >且1)a ≠的图像过定点P ,且点P 在直线30mx ny +-=(0m >且
0)n >上,则
14
m n
+的最小值是( ) A.133 B.15
4
C.253
D.25
9.不等式2
(2)2(2)40a x a x -+--<对x R ∈恒成立,则a 的取值范围为( )
A.(,2)(2,)-∞-+∞
B.(,2)[2,)-∞-+∞
C.(2,2)-
D.(2,2]-
10.设定义在R 上的函数1
(2)2
()1(2)
x x f x x ⎧≠⎪
-=⎨⎪=⎩。
若关于x 的方程2
()()0f x bf x c ++=有3个
不同的实数解123,,x x x ,则123x x x ++等于( )
A.3
B.6
C.1b --
D.c
二、填空题:(本大题共5小题,每小题5分,满分25分) 11.不等式
2
04
x x -<+的解集是 。
12.在△ABC 中sin :sin :sin 2:3:4,A B C =则cos C = 。
13.已知数列{}n a 为等差数列,若3459a a a ++=,则7S = 。
14.已知,x y 满足约束条件11y x x y y ≤⎧⎪
+≤⎨⎪≥-⎩
,则2z x y =-的最大值是 。
15.观察下列等式:2
11=,
22123-=-, 2221236-+=, 2222123410-+-=-,
……,
由以上等式推测到一个一般的结论:对于*
n N ∈,2222121234(1)n n +-+-+⋅⋅⋅+-= 。
三.解答题。
(本大题共6小题,满分75分)
16.(13分)已知集合{|17},{|210},{|}A x x B x x C x x a =≤≤=<<=<,全集为实数R 。
⑴求R C A B ;⑵如果A C =∅ ,求a 的取值范围。
19.(12分)已知一元二次不等式2
230x ax a ++->的解集为R 。
⑴若实数a 的取值范围为集合A ,求A 。
⑵对任意的x A ∈,都使得不等式2(1)90x b x +-+≥恒成立.求b 的取值范围。
参考答案
11. ()4,2-; 12. 14-; 13. 21; 14. 5; 15. 1(1)(1)2
n n n ++-⋅ 三.解答题
16.解:(1){/17}A x x =≤<,}71/{≥<=x x x A C R 或,
}107/{<≤=x x B A C R
(2){/17}A x x =≤<,}/{a x x C <= 因为A∩C≠φ,
则1>a
a 的取值范围:),1(+∞
17.解:(1)因为点(,
)n
S n n
*()n N ∈均在直线1y x =+上 n n S n +=2
当时2≥n ,n n S n -=-21,n S S a n n n 21=-=-; 当1=n 时,.211==S a 所以*,2N n n a n ∈=
(2)233n a
n n b ==,则{}n b 是首项为9,公比为9的等比数列。
n T 为数列{}n b 的前n 项和,
123n n T b b b b =+++⋅⋅⋅+=239999n +++⋅⋅⋅+=9
(91)8
n -.
18.解:(1)(sin ),(cos ,cos )a x x b x x ==
()f x a b =⋅
=2sin cos x x x
=
1sin 22x 2x +sin(2)3x π+ 令23
t x π
=+
,因为[0,
]2x π
∈,所以4[,]33
t ππ
∈。
()sin()2
f t t =+
,4[,]33t ππ∈ 当43
t π
=
时,()f t 有最小值,min ()0f t =。
即当2
x π
=
时,min ()0f x =。
(2
)()sin(2)3
f x x π
=+
222232k x k π
π
π
ππ-
+≤+
≤
+
522266k x k ππππ-+≤≤+ 51212
k x k ππππ-+≤≤+ 则()f x 的递增区间为5[,]1212
k k ππ
ππ-++,k z ∈。
19.解:(1)因为2
230x ax a ++->的解集为R
0∆<,28120a a -+<, 26a <<
{/26}A a a =<<。
(2)对任意的x A ∈,都使得不等式2
(1)90x b x +-+≥恒成立,
9
1()b x x
≥-+,(2,6)x ∈很成立。
令9
()1()f x x x
=-+,(2,6)x ∈。
()1f x ≤-5-。
当且仅当3x =时,3(2,6)∈,取等号。
所以5b ≥-.
b 的取值范围为:[5,]-+∞。
20.解:,x y 满足约束条件:
1815186100060080000,0,x y x y x x N y y N +≤⎧⎪+≤⎪
⎨≥∈⎪⎪≥∈⎩
目标函数200150z x y =+
画出可行域,得到目标函数过点(2,10)时,z 有最大值,
min 1900z =
应隔出大房间2间和小房间10间,每天能获得最大的房租收益1900
21.解:(1)4()42
x
x f x =+
()(1)f x f x +-=114414242
x x
x
x --+=++ (2)121
(0)()()(
)(1)n n a f f f f f n n n
-=+++⋅⋅⋅++ 121
(1)(
)()()(0)n n a f f f f f n n n
-=++⋅⋅⋅+++ 以上两公式相加得:
1111
2[(0)(1)][()()][()()][(1)(0)]n n n a f f f f f f f f n n n n
--=++++⋅⋅⋅++++
1111
(0)(1)()()()()(1)(0)1n n f f f f f f f f n n n n
--+=+=⋅⋅⋅=+=+=
12
n n a +=。
(3)数列{}n b 满足12n n n b a +=,(1)2n n b n =+⋅
1231n n n S b b b b b -=+++⋅⋅⋅++
12312232422(1)2n n n S n n -=⋅+⋅+⋅+⋅⋅⋅+⋅++⋅, 234122232422(1)2n n n S n n +=⋅+⋅+⋅+⋅⋅⋅+⋅++⋅
两公式相减得:12n n S n +=⋅,
40n n knS b ->对于一切的*n N ∈恒成立,则2
2(1)
n k n +>
, 21112()22k n >⋅+-,令2111
()2(),22
f n n =⋅+-*n N ∈,
当1n =时,max ()4f n =,则4k >。
k 的取值范围:(4,)+∞。