(1)知道什么是圆周角,并能从图形中准确识别它. (2)探究并掌握圆周角定理及其推论. (3)体会“由特殊到一般”“分类”“化归”等数学思想.
推进新课
知识点1 圆周角的定义及圆周角定理
1.圆心角的定义?
C
顶点在圆心的角叫圆心角.
2.图中∠ACB 的顶点和边有哪些特点? O
顶点在圆上,并且两边都和 圆相交的角叫圆周角.
125°.
5.如图,⊙O中,弦AD平行于弦BC,
∠AOC=78°,求∠DAB的度数.
解:∵AD∥BC,
∴∠DAB=∠B.
又∵∠B=
1 2
∠AOC=39°.
∴∠DAB=39°.
6.如图,⊙O的半径为1,A,B,C是⊙O上的三个点 ,且∠ACB=45°,求弦AB的长. 解:连接OA、OB. ∵∠ACB=45°, ∴∠BOA=2∠ACB=90°. 又OA=OB, ∴△AOB是等腰直角三角形.
A
B
图中圆周角∠ACB 和圆心角∠AOB 有怎样
的关系?
C
先猜一猜,再用 量角器量一量.
O
ACB 12AOB
A
B
(1)在圆上任取B⌒C,画出圆心角∠BOC 和圆 周角∠BAC,圆心角与圆周角有几种位置关系?
A A
A
O
O
O
B
B
C
B
C
C
(2)如何证明一条弧所对的圆周角等于它所 对的圆心角的一半?
周角所对的弦是直径.
圆内接四边形:圆内接四边形的内角和为360°,并且四边形的对角互补.
1 2
α.
证明:由(1)知∠BOM=90°-α.
M
又∠C=β= 12∠AOB,
C
∴β=