2-3GeV能区R值精确测量
- 格式:ppt
- 大小:148.00 KB
- 文档页数:20
USER’S MANUAL SYSDRIVE 3G3EV SERIES(Standard Models)Compact Low-noise InverterThank you for choosing this SYSDRIVE 3G3EV-series product. Proper use and handling of the product will ensure proper product performance, will length product life, and may prevent possible accidents.Please read this manual thoroughly and handle and operate the product with care.NOTICE1.This manual describes the functions of the product and relations with otherproducts. You should assume that anything not described in this manual is not possible.2.Although care has been given in documenting the product, please contactyour OMRON representative if you have any suggestions on improving this manual.3.The product contains potentially dangerous parts under the cover. Do notattempt to open the cover under any circumstances. Doing so may result in injury or death and may damage the product. Never attempt to repair or dis-assemble the product.4.We recommend that you add the following precautions to any instructionmanuals you prepare for the system into which the product is being installed.S Precautions on the dangers of high-voltage equipment.S Precautions on touching the terminals of the product even after power has been turned off. (These terminals are live even with the power turned off.)5.Specifications and functions may be changed without notice in order to im-prove product performance.Items to Check Before UnpackingCheck the following items before removing the product from the package: S Has the correct product been delivered (i.e., the correct model number and specifications)?S Has the product been damaged in shipping?S Are any screws or bolts loose?1-1Items to be Checked when Unpacking1-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1-2Precautions1-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chapter 2. Overview2-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-1Features2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-2Component Names2-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chapter 3. Design3-13-1Installation3-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-1-1Outside/Mounting Dimensions3-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-1-2Installation Conditions3-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-2Wiring3-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-2-1Terminal Blocks3-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-2-2Wiring Around the Main Circuit3-113-2-3Wiring Control Circuit Terminals3-18. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . Chapter 4. Preparing for Operation4-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-1Preparation Procedure4-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-2Using the Digital Operator4-3. . . . . . . . . . . . . . . . . . . . . . .4-2-1Name and Function of Each Component4-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-2-2Outline of Operation4-54-2-3Setting Constants4-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-3Test Run4-25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-3-1Checking Wiring4-25. . . . . . . . . . . . . .4-3-2Turning Power On and Checking Indicator Display4-25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-3-3Initializing Constants4-25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-3-4Setting a V/f Pattern4-254-3-5Setting Rated Motor Amperage4-26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-3-6Setting the Reference Frequency4-26. . . . . . . . . . . . . . . .4-3-7Operating the Inverter with the Digital Operator4-26. . . . . . . . . . . . . . . . . . . .4-3-8Checking Output Frequency and Amperage4-26. . . . . . . . . . . . . . . . . . .4-3-9Checking Operation during Reverse Rotation4-26. . . . . . . . . .4-3-10Checking Operation with Mechanical System Connected4-264-3-11Checking Operation Performed by Controller4-26. . . . . . . . . . . . . . . . . . .i5-1Protective and Diagnostic Functions5-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-2Troubleshooting5-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-2-1Constants Fail to Set5-8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-2-2Motor Fails to Operate5-8. . . . . . . . . . . . . . . . . . . . . . . .5-2-3Motor Rotates in the Wrong Direction5-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-2-4Motor Deceleration is Too Slow5-105-2-5V ertical-axis Load Drops when Brakes are Applied5-10. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-2-6Motor Burns5-11. . . . . . . . . . . . . .5-2-7Controller Receives Noise when Inverter is Started5-115-2-8AM Radio Receives Noise when Inverter is Started5-11. . . . . . . . . . . . . .. . . . . .5-2-9Ground Fault Interrupter is Actuated when Inverter is Started5-12. . . . . . . . . . . . . . . . . . . . . . . . . . . .5-2-10Mechanical System Makes Noise5-12. . . . . . . . . . . . . . . . . . . . .5-2-11Motor Does Not Operate with EF Warning5-12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-3Maintenance and Inspection5-13. . . . . . . . . . . . . . . . . . . . . . . . . . .Chapter 6. Specifications6-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6-1Specifications of Main Unit6-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . .Chapter 7. Appendix A7-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-1Notes on Using Inverter for Motor7-2. . . . . . . . . . . . . . . . . . . . . . . . . . .7-2Frequency Reference by Amperage Input7-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7-3List of Product Models7-7iiChapter 1Getting Started1-1Items to be Checked when Unpacking1-2Precautions1-21-1Items to be Checked when Unpacking H Checking the ProductOn delivery, always check that the delivered product is the SYSDRIVE 3G3EV Inverter that you ordered.Should you find any problems with the product, immediately contact your nearest local sales representative.DChecking the NameplateInverter modelInput specifications Output specificationsD Checking the ModelSpecial SpecificationSpecificationsMaximum applicable motor capacityVoltage classInstallation typeSeries name: 3G3EV SeriesSpecificationsMaximum Applicable Motor CapacityNote The figures in parentheses indi-cate capacities for 400-VAC classmodels.1-3Voltage ClassInstallation Type/OptionSpecial SpecificationD Checking for DamageCheck the overall appearance and check for damage or scratches resulting from trans-portation.H Checking Accessories Note that this manual is the only accessory provided with the 3G3EV (Standard Model).Set screws and other necessary parts must be prepared by customers.1-2PrecautionsTo ensure safe operation of the 3G3EV, note the following items:H Always Hold the Heat Sink During Removal.When moving the 3G3EV, always hold the heat sink (aluminum portion on the rear of the Unit).Heat sinkH Watch Out for Residual Voltage On Charged PortionsAfter the power is turned off, residual voltage remains in the capacitor inside the Inverter. Therefore, touching terminals immediately after turning the power off may cause an electrical shock.If an inspection or some other task is to be performed, always wait at least one minute from the time all indicators on the front panel go off.(Note that this warning is applicable whenever you perform any task after turning the main circuit off.)H Do Not Remove the Digital Operator When the Main Circuit is Still On.Always turn the main circuit off before removing the digital operator.Removing the digital operator with the main circuit ON may cause an electrical shock and damage the equipment.H Do Not Modify Wiring or Check Signals When the Main Circuit is On.Always turn the main circuit off before modifying wiring or checking signals. Touching terminals while the main circuit is on may cause an electrical shock and dam-age the equipment.H Do Not Conduct a Dielectric Strength Test.Because the 3G3EV Inverter is an electronic control unit using semiconductor, never conduct a dielectric strength test or an insulation resistance test for the control circuit.H Modify Constant Settings Correctly.Always modify the constant settings according to the procedures described in this manual.1-4Chapter 2Overview2-1Features2-2Component Names2-22-1Features H Easy to UseD Basic Constants Displayed On IndicatorsConstants for basic operations such as frequency setting and acceleration/deceleration time setting are displayed on dedicated indicators. Therefore, constant numbers can be confirmed easily.D Minimum Constant Setting ItemsConstant setting items have been minimized to enable even first-time users to set constants easily.H Easy to InstallD Very Small and LightweightThe 3G3EV Inverter is approximately half the size of our Low-noise General-purpose Inverters in terms of volume and weight percentage. This improves space efficiency and operating efficiency (including easier removal).D Optional DIN TrackAn optional DIN track is available. This DIN track enables the user to mount the 3G3EV Inverter on the DIN track with a one-touch operation.OverviewChapter 2Overview Chapter 2 H Easy to WireD Easy Wiring without Having to Open the Front CoverThis Inverter can be wired just by opening the terminal block cover.D Separate Input and Output Terminal BlocksPower input terminals are located in the upper section, while motor output terminals are in the lower section. In this way, the input and output terminal blocks are separated ac-cording to the contactors, so incorrect wiring can be prevented.D Soldering No Longer NecessaryNo connector means no soldering.H Easy to OperateD Switching the Operation Mode with a One-touch OperationFor example, after a test run is performed using the Digital Operator, it can be easily switched to a production run using control terminals with a one-touch operation.D Checking a Test Run with Various MonitorsOutput frequency, output current, and the direction of motor rotation appear in the dis-play section of the Digital Operator, so the mechanical system can be easily monitored during a test run.H Low NoiseAn insulated gate bipolar transistor (IGBT) power element has been adopted to elimi-nate metallic noise.H High-torque Operation Even in Low Speed RangeA torque rate of 150% can be achieved even in a low speed range where output frequen-cy is only 3 Hz. Thus, acceleration time can be reduced.H Various Input Power SuppliesA 400-VAC-class Inverter has been newly added to the 3G3EV Series to cope with vari-ous power supplies.•Three-phase 200-VAC input:0.1 to 1.5 kW•Single/Three-phase 200-VAC input:0.1 to 1.5 kW•Three-phase 400-VAC input:0.2 to 1.5 kW2-32-42-2Component NamesH Main UnitMain Circuit Terminals (Input)Power input terminals Braking resistor connection terminalsRun indicator Alarm indicatorControl circuit terminals(output)Ground terminalMain Circuit Terminals (Output)Motor output terminalsDigital OperatorControl circuitterminals (input)MAMBMCSF SR S1SC FS FR FCH Digital OperatorDisplaysectionOperationkeysMode Key Increment KeyRUN KeyData display sectionMonitor item indicatorsIn-service item indicators (green indicators)These items can be monitored or set evenduring operation.Stopped item indicators (red indicators)These items can be set only when theInverter is stopped.Constant item indicatorsEnter KeyDecrement KeySTOP/RESET Key2-5Chapter 3Design3-1Installation3-2Wiring3-1Installation3-1-1Outside/Mounting DimensionsNote All dimensions are in millimeters.H3G3EV-A2001(-j) to 3G3EV-A2004(-j) (0.1 to 0.4 kW):Three-phase 200-VAC InputH3G3EV-AB001(-j) to 3G3EV-AB002(-j) (0.1 to 0.2 kW): Single/Three-phase 200-VAC Input4.5 dia.Note1.For the 3G3EV-A2001(-j), 3G3EV-A2002(-j), and 3G3EV-AB001(-j), a U-shaped notch (4.5 mm wide) is provided instead of the upper mounting hole (4.5 mm in diameter).Note2.Install the Inverter with two M4 bolts.3-2D Three-phase 200-VAC Input Model3-3H3G3EV-A2007(-j) to 3G3EV-A2015(-j) (0.75 to 1.5 kW): Three-phase 200-VAC Input3G3EV-AB004(-j) to 3G3EV-AB015(-j) (0.4 to 1.5 kW): Single/Three-phase 200-VAC Input3G3EV-A4002(-j) to 3G3EV-A4015(-j) (0.2 to 1.5 kW): Three-phase 400-VAC InputTwo, 4.5 dia.Note Install the Inverter with four M4 bolts.3-43-5D Three-phase 400-VAC Input Model3-1-2Installation ConditionsH Installation Site•Install the Inverter under the following conditions:Ambient temperature for operation: –10°C to 50°C Humidity: 90% RH or less (non-condensing)•Install the Inverter in a clean location free from oil mist and dust. Alternatively, install it in a totally enclosed panel that is completely shielded from suspended dust.•When installing or operating the Inverter, always take special care so that metal pow-der, oil, water, or other foreign matter do not get in the Inverter.•Do not install the Inverter on inflammables such as wood.H Direction of Installation•Install the Inverter on a vertical surface so that the characters on the nameplate are oriented upward.H Installation Space•When installing the Inverter, always provide the following installation space to allow normal heat dissipation from the Inverter:W= 30 mm min.100 mm min.100 mm min.AirSideAirI n v e r t e rI n v e r t e rI n v e r t e rH Ambient Temperature Control•To enhance operation reliability, the Inverter should be installed in an environment free from extreme temperature rises.•If the Inverter is installed in an enclosed environment such as a box, use a cooling fan or air conditioner to maintain the internal air temperature below 50°C.•The surface temperature of the Inverter may reach 30°C higher than the ambient tem-perature. Therefore, keep all thermally susceptible devices and wires away from the Inverter.H Protecting the Inverter from Foreign Matter during Installation •Place a cover over the Inverter to shield it from metal powder produced by drilling dur-ing installation.(Upon completion of installation, always remove the cover from the Inverter. Other-wise, ventilation will be affected, causing the invert to overheat.)3-63-73-2Wiring3-2-1Terminal BlocksH Name of Each Terminal BlockMain Circuit Terminals (Input)Power input terminalsBraking resistorconnection terminalsControl circuit terminals (output)Ground terminal Main circuit terminals (output)Motor Output Terminals (Output)Control circuit terminals (input)MAMBMCSF SR S1SC FS FRFCH Main Circuit TerminalsNote Before shipping, a resin plate is attached to each braking resistor connection ter-minal to prevent incorrect wiring.When connecting a braking resistor, always remove the resin plates with a pair of long-nose pliers.Terminal block screw (M3.5)Crimpterminal6.2 mm max.H Control Circuit TerminalsD Input Terminals (On Right-hand Side)No external power supply is required because a built-in power supply is provided.24 VDC, 8 mA(See note3)(See note 3)Input impedanceIn ut im edanceNote1.Constant No. 06 (n06) is used to set this function. This constant is factory-set to “fault reset.”Note2.FR can be switched to an amperage input terminal (4 to 20 mA) by setting the internal DIP switch and constant No. 02 (operation mode selection). For details, refer to 7-2 Frequency Reference by Amperage Input.Note3.The circuit for a 400-VAC-class Inverter is as shown below.SFSRS1 to S3SCD Output Terminals (On Left-hand Side)30 VDC250 VACNote Constant No. 09 (n09) is used to set the function. This constant is factory set to “operation in progress.”H Standard Connection DiagramMolded-case circuitbreaker (MCCB) Forward/StopReverse/StopMulti-function input Sequence input common Frequencyreferencerheostat(2 kΩ,1/4 W min.)Braking resistor (option)Multi-function contact output(Contact a)(Contact b)CommonL1N/L2L3Power supply:Three-phase, 200 to 230 VAC, 50/60 HzThree-phase, 380 to 460 VAC, 50/60 HzNote1.If a 3G3EV-AB jjj is used in single-phase input mode, single-phase 200 to 240 VAC power with a frequency of 50/60 Hz must be input between terminals R and S.Note2.For the 3-wire sequence, refer to the wiring on page 4-12.Note3.The input sequence power is built in.3-2-2Wiring Around the Main CircuitSystem reliability and noise resistance are affected by the wiring methodused. Therefore, always follow the instructions given below when connect-ing the Inverter to peripheral devices and other parts.H Wire Size and Molded-Case Circuit Breaker to be UsedFor the main circuit and ground, always use 600-V polyvinyl chloride (PVC) cables. If the cable is long and may cause voltage drops, increase the wire size according to the cable length.Note Tighten the M3.5 terminal screw to the torque of 0.8 N S m.Determining the Wire SizeDetermine the wire size for the main circuit so that line voltage drop is within 2% of the rated voltage.Line voltage drop V D is calculated as follows:V D (V) = p3 x wire resistance (Ω/km) x wire length (m) x amperage (A) x 10–3H Wiring on the Input Side of Main CircuitD Installing a Molded-case Circuit BreakerAlways connect the power input terminals (R, S, and T) and power supply via a molded-case circuit breaker. Power must be supplied instantaneously. Unstable power startup will not start the Inverter.D Installing a Ground Fault InterrupterIf a ground fault interrupter is to be connected to the wire on the primary side (R, S, and T) of the main circuit, use either of the following interrupters to prevent malfunctions:•Ground fault interrupter with a sensitivity amperage of 200 mA or more and with an operating time of 0.1 second or more•Ground fault interrupter with high-frequency countermeasures (for Inverter)D Installing a Magnetic ContactorThis Inverter can be used without a magnetic contactor (MC) on the power supply side. If the power supply for the main circuit is to be shut off because of the sequence, a mag-netic contactor can be used instead of a molded-case circuit breaker.However, when a magnetic contactor is installed on the primary side of the main circuit to forcibly stop a load, note that regenerative braking does not work and the load coasts to a stop.•A load can be started and stopped by opening and closing the magnetic contactor on the primary side. Note, however, that frequently opening and closing the magnetic contactor may cause the Inverter to break down.•When the Inverter is operated with a Digital Operator, automatic operation cannot be performed after recovery from a power interruption.D Connecting Input Power Supply to the Terminal BlockBecause the phase sequence of input power supply is irrelevant to the phase sequence (R, S, T) of the terminal block, input power supply can be connected to any terminal on the terminal block.D Installing an AC ReactorIf the Inverter is connected to a large-capacity power transformer (600 kW or more) or the phase advance capacitor is switched, an excessive peak current may flow through the input power circuit, causing the converter unit to break down. T o prevent this, install an optional AC reactor on the input side of the Inverter. This also improves the power factor on the power supply side.D Installing a Surge AbsorberAlways use a surge absorber or diode for the inductive loads to be connected to the Inverter. These inductive loads include magnetic contactors, electromagnetic relays, solenoid valves, solenoids, and magnetic brakes.D Wiring of Braking Resistor/Braking Resistor UnitWhen using an Inverter for loads with a large inertia or for vertical axis loads, regenera-tive energy will be fed back.If the regenerative energy exceeds the Inverter capacity, overvoltage will be detected in the main circuit. In such a case, use a Braking Resistor or Braking Resistor Unit. Note Be sure to create a sequence that will turn OFF the Inverter power supply when resistor overheating occurs. When using a Braking Resistor, be sure to install a thermal relay to detect resistor overheating. When using a Braking Resistor Unit, use an error output contact. Otherwise, a fire may occur.Note Do not use a Resistor whose resistance is below the minimum connected resis-tance. Otherwise, the Inverter will be damaged.D Installing a Noise Filter on the Power Supply SideInstall a noise filter to eliminate noise transmitted between the power line and the Inverter.Wiring Example 13G3IV-PHF3G3EVPower supplyNoise filterSYSMAC,etc.Other controllersNote Use a special-purpose noise filter for Inverters.Wiring Example 23G3EVGeneral-purpose noise filterPower supplySYSMAC,etc.Other controllers3G3EVPower supplyGeneral-purpose noise filterSYSMAC,etc.Other controllersNote Do not use a general-purpose noise filter.H Wiring on the Output Side of Main CircuitD Connecting the Terminal Block to the LoadConnect output terminals U, V, and W to motor lead wires U, V, and W, respectively.D Never Connect Power Supply to Output TerminalsCaution Never connect a power supply to output terminals U, V, and W.If voltage is applied to the output terminals, the internal mechanism of the Inverter will be damaged.D Never Short or Ground the Output TerminalsCaution If the output terminals are touched with bare hands or the output wires comeinto contact with the Inverter casing, an electric shock or grounding will occur.This is extremely hazardous. Also, be careful not to short the output wires.D Do Not Use a Phase Advance Capacitor or Noise FilterNever connect a phase advance capacitor or LC/RC noise filter to the output circuit. Do-ing so may result in damage to the Inverter or cause other parts to burn.D Do Not Use an Electromagnetic SwitchDo not connect an electromagnetic switch or magnetic contactor to the output circuit. If a load is connected to the Inverter during operation, an inrush current will actuate the overcurrent protective circuit in the Inverter.D Installing a Thermal RelayThis Inverter has an electronic thermal protection function to protect the motor from overheating. If, however, more than one motor is operated with one Inverter or a multi-polar motor is used, always install a thermal relay (THR) between the Inverter and the motor and set to “0.0” (no thermal protection) for constant No. 31 (“THR” indicator).In this case, program the sequence so that the magnetic contactor on the input side of the main circuit is turned off by the contact of the thermal relay.D Installing a Noise Filter on the Output SideConnect a noise filter to the output side of the Inverter to reduce radio noise and induc-tion noise.3G3EV3G3IV-PLFPower supplyNoise filterSignal lineControllerInduction noise Radio noise AM radioInduction Noise:Electromagnetic induction generates noise on the signal line, causingthe controller to malfunction.Radio Noise:Electromagnetic waves from the Inverter and cables cause thebroadcasting radio receiver to make noise.D How to Prevent Induction NoiseAs described above, a noise filter can be used to prevent induction noise from being generated on the output side. Alternatively, cables can be routed through a grounded metal pipe to prevent induction noise. Keeping the metal pipe at least 30 cm away from the signal line considerably reduces induction noise.3G3EV30 cm min.MCCBMetal pipePower supplySignal lineControllerD How to Prevent Radio NoiseRadio noise is generated from the Inverter as well as the input and output lines. To re-duce radio noise, install noise filters on both input and output sides, and also install the Inverter in a totally enclosed steel box.The cable between the Inverter and the motor should be as short as possible.3G3EVPower supplySteel boxNoise filterNoise filterMetal pipeD Cable Length between Inverter and MotorIf the cable between the Inverter and the motor is long, the high-frequency leakage cur-rent will increase, causing the Inverter output current to increase as well. This may affect peripheral devices. T o prevent this, adjust the carrier frequency (set in n37) as shown in the table below.H Ground Wiring•Always use a ground terminal with the following ground resistance.200-VAC Class:100 Ω or less400-VAC Class:10 Ω or less•For 400-VAC-class models that conform to EC Directives, also connect to the neutral of the power supply.•Do not share the ground wire with other devices such as a welder or power tool.•Always use a ground wire that complies with technical standards on electrical equip-ment. Route the ground wire so that the total length is as short as possible.•When using more than one Inverter, be careful not to loop the ground wire.3-2-3Wiring Control Circuit TerminalsThe control signal line must be 50 m or less and must be separated fromthe power line. If frequency references are input externally, use a twisted-pair shielded line.H Wiring Sequence Input/Output TerminalsWire the sequence input terminals (SF, SR, S1, and SC) and the multi-function contact output terminals (MA, MB, and MC) as described below.D Wiring Method•Wire each terminal as follows:a)Loosen the terminal screw with a thin-slotted screwdriver.b)Insert the wire from underneath the terminal block.c)Tighten the terminal screw firmly.•Always separate the control signal line from the main circuit cables and other power cables.Thin-slotted screwdriverLength of stripped portion: Approx. 5.5 mmWireControl circuitterminal blockDo not solder this portion. (Otherwise, faulty contact may result.)H Wiring Frequency Reference Input TerminalsIf frequency references are input using a D/A unit (digital-to-analog converter) or exter-nal power supply, wire the frequency reference input terminals (FR and FC) as de-scribed below.3-18。
2-5GeV能区正负电子湮没产生强子反应截面(R值)的精确测量 国家自然科学奖二等奖主要人员:赵政国、黄光顺、胡海明、陈江川、吕军光工作起止时间:1996.1~2000.12粒子物理的基本理论是标准模型,其三个支柱是物质结构单元、作用力、质量。
标准模型的预言与迄今为止所有实验结果在测量精度范围内是一致的。
但标准模型的第三支柱是最薄弱的,与粒子质量起源密切相关的Higgs粒子尚未找到。
标准模型本身也还需精确检验。
当前,高能物理实验研究的主要领域有:①高能量前沿:寻找Higgs粒子和其它新粒子;②高精度前沿:精确测量其基本参数和检验标准模型。
在上述两方面研究的理论计算中,强相互作用贡献项都需要将正负电子湮没产生强子截面(R值)作为基本输入量。
原有实验的R值测量结果在2-5GeV能区的低精度状况(误差约为15-20%),带来的理论计算不确定性是对Higgs粒子质量拟合、精确检验标准模型和发现新物理的严重障碍。
在本项目开展的20年里,2-5GeV能区的R值测量没有取得任何新进展。
R值实验是在北京正负对撞机(BEPC)和北京谱仪(BES)上进行的强子产生截面绝对测量。
在2-5GeV能量范围内进行了两轮R实验,共测量了91个能量点,R值的平均误差为6.6%,比国际上原有实验精度提高了2-3倍。
把BES的R值作为输入,理论计算的电磁跑动耦合常数和缪子反常磁矩的精度有很大提高,标准模型拟合对Higgs粒子质量的预言与实验上寻找寻找Higgs粒子的结果相容。
BES的R值测量结果应邀在国际会议上报告29次,其中重大国际会议特邀报告14次。
报道R值的两篇文章分别于2000年和2002年在Physical Review Letters上发表。
2002年国际粒子数据手册(PDG)将多年不变的R值图作了重大改动,增加了BES全部测量结果,国际粒子物理数据库收录了全部R值数据。
从2002年至今所有的高能物理会议都继续引用和评价BES的R 测量结果。
北京正负电子对撞机概况北京正负电子对撞机简称:BEPC北京正负电子对撞机是世界八大高能加速器中心之一。
北京正负电子对撞机(BEPC)是我国第一台高能加速器,是高能物理研究的重大科技基础设施。
由长202米的直线加速器、输运线、周长2 40米的圆型加速器(也称储存环)、高6米重500吨的北京谱仪和围绕储存环的同步辐射实验装置等几部分组成,外型象一只硕大的羽毛球拍。
正、负电子在其中的高真空管道内被加速到接近光速,并在指定的地点发生对撞,通过大型探测器--北京谱仪记录对撞产生的粒子特点。
科学家通过对这些数据的处理和分析,进一步认识粒子的性质,从而揭示微观世界的隐秘。
北京正负电子对撞机核心部分北京正负电子对撞机是1984年作为国家重点工程之一确定的中美科技合作项目,总投资为2.4亿元,由中科院高能物理所负责建筑。
工程建筑总面积达57500平方米,形似一个庞大的“羽毛球拍”,由电子注入器、储存环、探测器、核同步辐射区、运算中心等5个部分组成。
[编辑本段]建设工程早期工程1972年8月,张文裕等18位科技工作者给周恩来总理写信,反映对进展中国高能物理研究的意见和期望。
1972年9月11日,周恩来总理对关于建设中国高能加速器实验基地报告的复信中指示:“这件事不能再延迟了。
科学院必须把基础科学和理论研究抓起来,同时又要把理论研究与科学实验结合起来。
高能物理研究和高能加速器的预制研究、应该成为科学院要抓的要紧项目之一。
”1973年初,经国家批准,中国科学院高能物理研究所正式成立。
1975年3月,国家计委向国务院提出了《关于高能加速器预制研究和建筑咨询题的报告》(七五三工程)。
刚刚复出主持中央工作的小平同志同意了那个报告,并转送周总理批示。
1977年,邓小平同志在国家科委、国家计委《关于加快建设高能物理实验中心的请示报告》(八七工程)上批示:“拟同意”。
1981年1月,国家计委决定停止十三陵“高能物理实验中心”的筹建工作(即八七工程),对玉泉路高能加速器预制工程提出调整方案。
天津市南开中学高三物理学科第二次月考考试时间:60分钟本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共100分。
考试结束后,将答题卡交回。
Ⅰ卷(选择题共40分)一、单项选择题(共5题,每题5分,共25分)1.用a 、b 两种可见光照射同一光电效应装置,测得光电流与电压的关系图像如图甲所示,图乙为氢原子的能级图。
下列说法正确的是( )A .a 光的频率比b 光的大B .用a 光照射时,获得的光电子最大初动能较大C .用大量的光子去照射基态的氢原子可得到6种不同频率的光D .若a 光是氢原子从跃迁到时发出的,则b 光可能是从跃迁到时发出的2.如图,某办公室有一竖直铁质的公告栏,通知纸用磁吸块压在公告栏上面,下列说法正确的是( )A .通知纸受到4个力作用B .磁吸块受到的摩擦力方向竖直向下C .通知纸受到公告栏的摩擦力大小大于其自身重力大小D .磁吸块对通知纸的压力和公告栏对通知纸的压力是一对相互作用力3.如图所示,绷紧的水平传送带始终以恒定速率运行,初速度大小为的小物块从与传送带等高的光滑水平地面,沿传送带运动的反方向滑上传送带,选的方向为正方向,从物块滑上传送带开始计时,其运动的图像不可能是下图中的()12.7eV E =3n =2n =4n =2n =1v 221()v v v >2v v t -A .B .C .D .4.如图所示,一个电子仅在电场力作用下由A 点运动到B 点,运动轨迹为实线,可以判定下列说法正确的是( )A .若O 、P 、Q 三条线是等势面,O 等势面的电势最高B .若O 、P 、Q 三条线是电场线,A 点的电势比B 点低C .若O 、P 、Q 三条线是等势面,电子在A 点的动能比B 点大/D .若O 、P 、Q 三条线是电场线,电子在A 点的动能比B 点大.5.如图所示,质量均为m 的A 、B 两物块用轻弹簧连接,放在光滑的水平面上,A 与竖直墙面接触,弹簧处于原长,现用向左的推力缓慢推物块B ,当B 处于图示位置时静止,整个过程推力做功为W ,瞬间撤去推力,撤去推力后( )A .当A 对墙的压力刚好为零时,物块B 的动能等于WB .当A 对墙的压力刚好为零时,墙对AC .当B 向右运动的速度为零时,弹簧的弹性势能不为零D .弹簧第一次伸长后具有的最大弹性势能为13W二、多项选择题(共3题,每题5分,共15分)6.如图所示,电路中均为定值电阻,电源的内阻不能忽略,平行板电容器C 的极板水平放置,闭合开关,带电油滴刚好悬浮在两板之间静止不动。
客运专线铁路路基K30、E v2、E vd检测技术1、地基系数K30检测1.1 名词解释地基系数K30地基系数K30是表示土体表面在平面压力作用下产生的可压缩性的大小。
它是用直径为300mm的刚性承载板进行静压平板载荷试验,取第一次加载测得的应力—位移(σ—s)曲线上s为1.25mm所对应的荷载σs,按K30=σs/1.25计算得出,单位:MPa/m。
1.2国内外发展现状二十世纪三十年代开始美国提出的压实度指标,即压实系数K、相对密度D r或孔隙率n 至今仍然作为世界各国路基设计及施工控制的土的压实质量标准。
虽然压实度为参数的路基压实质量标准具有击实试验指导现场施工、现场检测简便等优点,但是,对于高速铁路或其他对强度指标要求严格的情况,仅靠压实度参数来反映填土的压实质量就有其局限性。
为了保证路基填土的强度指标,七、八十年代,许多国家开始用强度及变形指标作为路基填土质量控制参数,即所谓的“抗力检测法”。
其中包括美国的CBR(加州承载比值)标准,德国、法国、奥地利和瑞士等国家的静态变形模量E v2标准,日本的地基系数K30标准等。
可见,采用强度及变形参数作为控制指标是路基质量标准的一大进步。
我国铁路系统自1985年大秦线施工引入K30平板载荷试验以来,在铁路建设中已经逐步推广应用。
从二十多年K30在我国铁路系统应用的情况来看,无论是仪器设备、试验方法,还是设计标准均已比较成熟。
地基系数K30已成为新线铁路控制基床和路堤填料压实质量的主要指标之一,并已正式列入《铁路路基工程质量检验评定标准》(TB10414-98)和《铁路路基设计规范》(TB10001-99)。
K30平板载荷试验作为一种强度及变形指标,能够直观地表征路基刚度和承载能力。
我国参照日本JISA1215-1995年修订版《公路的平板载荷试验方法》和德国的DIN18134《平板载荷试验》-1993年修订版,并吸收近年来的科研成果和施工经验,同时针对实际应用中存在的问题,制订了“K30平板载荷试验”方法,该方法首次正式纳入2004年4月1日起开始实施的《铁路工程土工试验规程》(TB10102—2004)。