误差的基本概念
- 格式:pdf
- 大小:171.26 KB
- 文档页数:3
误差的基本概念测量值与真值之差异称为误差,物理实验离不开对物理量的测量,测量有直接的,也有间接的。
由于仪器、实验条件、环境等因素的限制,测量不可能无限精确,物理量的测量值与客观存在的真实值之间总会存在着一定的差异,这种差异就是测量误差。
误差与错误不同,错误是应该而且可以避免的,而误差是不可能绝对避免的。
基本概述【英文】:an error; inaccuracy deviation【中文拼音】:wù chā【基本解释】:一个量的观测值或计算值与其真值之差;特指统计误差,即一个量在测量、计算或观察过程中由于某些错误或通常由于某些不可控制的因素的影响而造成的变化偏离标准值或规定值的数量释义误差,物理实验离不开对物理量的测量,测量有直接的,也有间接的。
由于仪器、实验条件、环境等因素的限制,测量不可能无限精确,物理量的测量值与客观存在的真实值之间总会存在着一定的差异,这种差异就是测量误差。
设被测量的真值(真正的大小)为a,测得值为x,误差为ε,则:x-a=ε误差与错误不同,错误是应该而且可以避免的,而误差是不可能绝对避免的。
从实验的原理,实验所用的仪器及仪器的调整,到对物理量的每次测量,都不可避免地存在误差,并贯穿于整个实验始终。
测量值与真值之差异称为误差。
测量时,由于各种因素会造成少许的误差,这些因素必须去了解,并有效的解决,方可使整个测量过程中误差减至最少。
测量时,造成误差的主要有系统误差和随机误差,而系统误差有下列情况:视差、刻度误差、磨耗误差、接触力误差、挠曲误差、余弦误差、阿贝 (Abbe) 误差、热变形误差等。
系统误差的大小在测量过程中是不变的,可以用计算或实验方法求得,即是可以预测,并且可以修正或调整使其减少。
这些因素归纳成五大类,详细内容叙述如下:由于人为因素所造成的误差,包括误读、误算和视差等。
而误读常发生在游标尺、分厘卡等量具。
游标尺刻度易造成误读一个最小读数,如在10.00 mm处常误读成10.02 mm或9.98 mm。
计算方法-1 -第一章 误差分析的基本概念§ 1误差的来源1. 误差概念:精确值与近似值之差称为误差,也叫绝对误差。
2. 产生误差的主要原因① 模型误差:在解决实际问题时,在一定条件下抓住主要因素将现实系统理想化的数学描述称为实 际问题的数学模型,这种数学描述常常是近似的,数学模型与实际系统之间存在误差,这种误差称为模 型误差。
② 观测误差:数学模型中往往含有一些由观测得到的物理量(如温度、电阻、长度)或由物理量估 算出的模型参数,这些观测物理量或模型参数常常与实际数据存在误差。
这种由观察产生的误差称为观 测误差。
③ 截断误差:数值计算中用有限运算近似代替无穷过程产生的误差。
例如计算一个无穷次可微函数 的函数值时,理论上只要能算出这个函数的泰勒级数值即可,但是实际工程上仅用泰勒级数中前面有限 项来近似计算函数值,而舍去高阶无穷小量。
这个被舍的高阶无穷小量正是截断误差。
④ 舍入误差:计算中按四舍五入进行舍入而引起的误差或因计算机字长有限,数据在内存中存放时 进行了舍入而引起的误差。
3. 举例说明例1设一根铝棒在温度t 时的实际长度为L t ,在t=0 C 时的实际长度为 L o ,用i t 来表示铝棒在温度为t 时的长度计算值,并建立一个数学模型: I tL °(1「.t ),其中a 是由实验观察得到的常数:-二(0.0000238 ± 0.0000001 ) 1/ C,称L t —I t 为模型误差,0.0000001/ C 是a 的观测误差。
这个问题中模型 误差产生的原因是:实际上 L t 与t 2有微弱关系,也就是说模型未能完全反映物理过程。
为了计算近似值,可取前面有限项计算•如取前面五项计算,计算过程中与计算结果都取五位小数得e ~1+1 + 1/2+1/6+1/24疋2.7083, e 取五位小数时的准确值为~ =2.71828,于是截断误差为:□0' —:2.71828 -2.7083 = 0.00995 n总n !这表明:只要在计算中采用了有限步运算近似代替无限步运算的方法,截断误差就一定存在。
实验一误差的基本概念一、实验目的通过实验了解误差的定义及表示法、熟悉误差的来源、误差分类以及有效数字与数据运算。
二、实验原理1、误差的基本概念所谓误差就是测量值与真实值之间的差,可以用下式表示误差=测得值-真值(一)绝对误差某量值的测得值和真值之差为绝对误差,通常简称为误差。
绝对误差=测得值-真值(二)相对误差绝对误差与被测量的真值之比称为相对误差,因测得值与真值接近,故也可以近似用绝对误差与测得值之比值作为相对误差。
相对误差=绝对误差/真值≈绝对误差/测得值(三)引用误差所谓引用误差指的是一种简化和使用方便的仪器仪表表示值的相对误差,它以仪器仪表某一刻度点的示值误差为分子,以测量范围上限值或全量程为分母,所得的比值称为引用误差。
引用误差=示值误差/测量范围上限2、精度反映测量结果与真值接近程度的量,称为精度,它与误差大小相对应,因此可以用误差大小来表示精度的高低,误差小则精度高,误差大则精度低。
精度可分ⅰ准确度它反映测量结果中系统误差的影响程度ⅱ精密度它反映测量结果中随机误差的影响程度ⅲ精确度它反映测量结果中系统误差和随机误差综合的影响程度,其定量特征可以用测量的不确定度来表示。
3、有效数字与数据运算含有误差的任何近似数,如果其绝对误差界是最末位数的半个单位,那么从这个近似数左方起的第一个非零的数字,称为第一位有效数字。
从第一位有效数字起到最末一位数字止的所有数字,不论是零或非零的数字,都叫有效数字。
数字舍入规则如下:①若舍入部分的数值,大于保留部分的末位的半个单位,则末位加1。
②若舍去部分的数值,小于保留部分的末位的半个单位,则末位不变。
③若舍去部分的数值,等于保留部分的末位的半个单位,则末位凑成偶数。
即当末位为偶数时则末位不变,当末位为奇数时则末位加1。
三、实验内容1、用自己熟悉的语言编程实现对绝对误差和相对误差的求解。
2、按照数字舍入规则,用自己熟悉的语言编程实现对下面数据保留四位有效数字进行凑整。
误差的基本概念第六节、误差的基本概念由于⼈们认识能⼒的局限,科学技术⽔平的限制,以及测量数值不能以有限位数表⽰(如圆周率∏)等原因,在对某⼀对象进⾏试验或测量时,所测得的数值与其真实值不会完全相等,这种差异即称为误差。
但是随着科学技术的发展,⼈们认识⽔平的提⾼,实践经验的增加,测量的误差数值可以被控制到很⼩的范围,或者说测量值可更接近于其真实值。
⼀,真值真值即真实值,是指在⼀定条件下,被测量客观存在的实际值。
真值通常是个未知量,⼀般所说的真值是指理论真值、规定真值和相对真值。
理论真值:理论真值也称绝对真值,如平⾯三⾓形三内⾓之和恒为18O0。
规定真值:国际上公认的某些基准量值,如1960年国际计量⼤会规定“1m等于真空中氪86原⼦的2P10和5d5能级之间跃迁时辐射的1650 763.73个波长的长度”。
1982年国际计量局召开的⽶定义咨询委员会提出新的⽶定义为“⽶等于光在真空中1/299792458 秒时间问隔内所经路径的长度”。
这个⽶基准就当作计量长度的规定真值。
规定真值也称约定真值。
相对真值:计量器具按精度不同分为若⼲等级,上⼀等级的指⽰值即为下⼀等级的真值,此真值称为相对真值)例如,在⼒值的传递标准中;⽤⼆等标准测⼒机校准三等标准测⼒计,此时⼆等标准测⼒机的指⽰值即为三等标准测⼒计的相对真值。
⼆、误差根据误差表⽰⽅法的不同,有绝对误差和相对误差。
1.绝对误差绝对误差是指实测值与被测之量的真值之差,即但是,⼤多数情况下,真值是⽆法得知的;因⽽绝对误差也⽆法得到。
⼀般只能应⽤⼀种更精密的量具或仪器进⾏测量,所得数值称为实际值,它更接近真值,并⽤它代替真值计算误差。
绝对误差具有以下⼀些性质:(1)它是有单位的,与测量时采⽤的单位相同;(2)它能表⽰测量的数值是偏⼤还是偏⼩以及偏离程度;(3)它不能确切地表⽰测量所达到的精确程度。
2.相对误差相对误差是指绝对误差与被测真值(或实际值)的⽐值,即:相对误差不仅表⽰测量的绝对误差,⽽且能反映出测量时所达到的精度。
第5章测量误差基本知识测量工作使用仪器进行测量,在测量过程中不可避免的出现误差,为了提高测量精度及精度评定,需要了解测量误差的来源,促进测量工作方法的改进,和测量精度的提高。
误差—在一定观测条件下,观测值与真值之差。
精度—观测误差的离散程度。
5-1 误差的基本概念讨论测量误差的目的:用误差理论分析,处理测量误差,评定测量成果的精度,指导测量工作的进行。
▼▼▼▼产生测量误差的原因,▼▼测量误差的分类和处理原则,▼▼偶然误差的特性一、测量误差的来源仪器原因:仪器精度的局限,轴系残余误差等。
人的原因:判别力和分辨率的限制,经验等。
外界影响:气象因素(温度变化,风、大气折光)等。
有关名词:观测条件,等精度观测:上述三大因素总称观测条件,在上述条件基本一致的情况下进行各次观测,称等精度观测。
结论:观测误差不可避免(粗差除外)二、测量误差的分类两类误差:系统误差偶然误差粗差(错误排除)1、系统误差-- 误差出现大小、符合相同,或按规律变化,具有积累性。
处理方法①检校仪器,把仪器的系统误差降到最小程度;②求改正数,对测量结果加改正数消除;③对称观测,使系统误差对观测成果的影响互为相反数,以便外业操作时抵消。
例:误差处理方法钢尺尺长误差△D K 计算改正钢尺温度误差△Dt 计算改正水准仪视准轴误差I 操作时抵消(前后视等距)经纬仪视准轴误差C 操作时抵消(盘左盘右取平均)●结论:系统误差可以消除。
2、偶然误差-- 误差出现的大小,符合各部相同,表面看无规律性。
例:估读误差—气泡居中判断,瞄准,对中等误差,导致观测值产生误差。
◎偶然误差:是由人力不能控制的因素所引起的误差。
◎特点:具有抵偿性。
◎处理原则:采用多余观测,减弱其影响,提高观测结果的精度。
3、粗差—指在一定的观测条件下超过规定限差值。
对于粗差,应当分析原因,通过补测等方法加以消除。
三、偶然误差的特性1、偶然误差的定义:设某量的真值X对该量进行n次观测得n次的观测值l1,l2,l3……l n则产生了n个真误差真误差:△I = X-l i2、偶然误差的特性☎当观测次数很多时,偶然误差的出现,呈现统计学上的规律性,偶然误差具有正态分布的特性。
误差的基本概念误差的基本概念误差是指实际值与理论值或标准值之间的差异,它是一种客观存在的量,是科学研究、工程设计和生产制造等领域中不可避免的问题。
在现代科学技术和经济管理中,误差的控制和评定是非常重要的。
一、误差的分类1. 绝对误差:指实际值与理论值或标准值之间的代数差。
2. 相对误差:指绝对误差与理论值或标准值之比。
3. 系统误差:指在同样条件下进行多次测量时,由于仪器、环境等因素引起测量结果偏离真实值而形成的常规性偏离。
系统误差也被称为仪器误差或固有偏离。
4. 随机误差:指在同样条件下进行多次测量时,由于各种因素引起测量结果随机地偏离真实值而形成的非常规性偏离。
随机误差也被称为非系统性偏离。
二、误差的来源1. 人为因素:如操作不当、读数不准确、观察角度不同等。
2. 仪器因素:如仪器的精度、灵敏度、分辨率等。
3. 环境因素:如温度、湿度、气压等。
4. 样品因素:如样品的形状、大小、密度等。
三、误差的控制误差的控制是科学研究和生产制造中必须重视的问题。
以下是误差控制的几个方面:1. 提高人员技能水平,加强对测量方法和仪器使用规范的培训。
2. 选用精度较高、稳定性好的仪器,并按照使用说明进行正确操作和维护。
3. 控制环境条件,确保测量环境稳定,避免外界干扰。
4. 对样品进行预处理,使其符合测量要求。
5. 采用多次测量并取平均值来减小随机误差,同时对系统误差进行校正。
四、误差评定误差评定是指对实验或生产过程中产生的误差进行判断和分析。
以下是误差评定的几个方面:1. 计算绝对误差和相对误差,并与规定标准比较,判断是否满足要求。
2. 根据测量数据的分布情况,判断随机误差的大小和分布规律。
3. 对系统误差进行校正,并对校正后的数据进行评定。
4. 通过误差分析,找出产生误差的原因并采取相应措施,以减小误差。
五、总结误差是科学研究和生产制造中不可避免的问题,它会对实验结果和产品质量产生影响。
因此,我们需要了解误差的基本概念、分类和来源,并采取相应措施进行控制和评定。
第六节、误差的基本概念
由于人们认识能力的局限,科学技术水平的限制,以及测量数值不能以有限位数表示(如
圆周率∏)等原因,在对某一对象进行试验或测量时,所测得的数值与其真实值不会完全相等,这种差异即称为误差。
但是随着科学技术的发展,人们认识水平的提高,实践经验的增加,测量的误差数值可以被控制到很小的范围,或者说测量值可更接近于其真实值。
一,真 值
真值即真实值,是指在一定条件下,被测量客观存在的实际值。
真值通常是个未知量,一般所说的真值是指理论真值、规定真值和相对真值。
理论真值:理论真值也称绝对真值,如平面三角形三内角之和恒为18O0。
规定真值:国际上公认的某些基准量值,如1960年国际计量大会规定“1m等于真空中氪86原子的2P10和5d5能级之间跃迁时辐射的1650 763.73个波长的长度”。
1982年国际计量局召开的米定义咨询委员会提出新的米定义为“米等于光在真空中1/299792458 秒时间问隔内所经路径的长度”。
这个米基准就当作计量长度的规定真值。
规定真值也称约定真值。
相对真值:计量器具按精度不同分为若干等级,上一等级的指示值即为下一等级的真值,此真值称为相对真值)例如,在力值的传递标准中;用二等标准测力机校准三等标准测力计,
此时二等标准测力机的指示值即为三等标准测力计的相对真值。
二、误 差
根据误差表示方法的不同,有绝对误差和相对误差。
1.绝对误差
绝对误差是指实测值与被测之量的真值之差,即
但是,大多数情况下,真值是无法得知的;因而绝对误差也无法得到。
一般只能应用一种更精密的量具或仪器进行测量,所得数值称为实际值,它更接近真值,并用它代替真值计算误差。
绝对误差具有以下一些性质:
(1)它是有单位的,与测量时采用的单位相同;
(2)它能表示测量的数值是偏大还是偏小以及偏离程度;
(3)它不能确切地表示测量所达到的精确程度。
2.相对误差
相对误差是指绝对误差与被测真值(或实际值)的比值,即:
相对误差不仅表示测量的绝对误差,而且能反映出测量时所达到的精度。
相对误差具有以下一些性质: ‘~。
,。
(1)它是元单位的,通常以百分数表示,而且与测量所采用的单位元关,而绝对误差则不然,测量单位改变,其值亦变;
(2)能表示误差的大小和方向,因为相对误差大时绝对误差亦大;
(3)能表示测量的精确程度。
当测量所得绝对误差相同时,则测量的量大者精度就高。
因此,通常都用相对误差来表示测量误差。
三、误差的来源
在任何测量过程中,无论采用多么完善的测量仪器和测量方法,也无论在测量过程中怎样
细心和注意,都不可避免地存在误差、产生误差的原因是多方面的,可以归纳如下。
1;装置误差
主要由设备装置的设计制造、安装、调整与运用引起的误差。
如试验机示值误差,等臂天
平不等臂,仪器安装不垂直、偏心等。
2.环境误差
由于各种环境因素达不到要求的标准状态所引起的误差。
如混凝土养护条件达不到标准的温度、湿度要求等。
3.人员误差
测试者生理上的最小分辨力和固有习惯引起的误差。
如对准示值读数时,始终偏左或偏右,偏上或偏下,偏高或偏低。
4.方法误差
测试者未按规定的操作方法进行试验所引起的误差。
如强度试验时试块放置偏心,加荷
速度过快或过慢等。
需要指出,以上几种误差来源,有时是联合作用的,在进行误差分析时,可作为一个独立的误差因素来考虑。
四、误差的分类
误差就其性质而言,可分为系统误差、随机误差(或称偶然误差)和过失误差(或称粗差)。
1.系统误差
在同一条件下,多次重复测试同一量时,误差的数值和正负号有较明显的规律。
系统误差通常在测试之前就已经存在,而且在试验过程中,始终偏离一个方向,在同一试验中其大小和符号相同。
例如,试验机示值的偏差等。
系统误差容易识别,并可通过试验或用分析方法掌握其变化规律,在测量结果中加以修正。
2.随机误差
在相同条件下,多次重复测试同一量时,出现误差的数值和正负号没有明显的规律,它是由许多难以控制的微小因素造成的。
例如,原材料特性的正常波动,试验条件的微小变化等。
由于每个因素出现与否,以及这些因素所造成的误差大小、方向事先无法知道,有时大、有时小,有时正、有时负,其发生完全出于偶然,因而很难在测试过程中加以消除。
但是,完全可以掌握这种误差的统计规律,用概率论与数理统计方法对数据进行分析和处理,以获得可靠的测量结果。
3.过失误差
过失误差明显地歪曲试验结果,如测错、读错、记错或计算错误等。
含有过失误差的测量数据是不能采用的,必须利用一定的准则从测得的数据中剔除。
因此,在进行误差分析时,只考虑系统误差与随机误差。
五、精密度、准确富和精确度
精密度与准确度两者并不相同。
精密度系用同一测量方法自某一总体反复抽样时,样本平均值(x’)离开总体平均值(µ)的程度。
系统误差越大即二者的偏差越大,则精密度越低。
通常将系统误差的大小作为反映精密度高低的定量指标。
准确度系用同一方法自某一总体反复抽样时,或自同一(或均匀)样本用同一方法反复测量时,各观测值(x i)离开观测平均值(x’)的程度。
数据越分散,准确度越差。
引起数据分散的随机误差作为反映准确度的定量指标。
在此可见,精密度与准确度分别是对两类不同性质的系统误差和随机误差的描述。
只有
当系统误差和随机误差都很小时才能说精确度高。
精确度是对系统误差和随机误差的综合描述。
对于上述概念,目前国内外尚不完全统一,有的把准确度称为正确度,而把精确度称为准确度;有的把精密度简称为精度,而有的则把精确度简称为精度。
尽管在名词的称谓上有所差异,但其所包含的内容(即系统误差与随机误差对测量结果影响的程度)是完全一致
的。