TURBULENT COMBUSTION
- 格式:pdf
- 大小:193.35 KB
- 文档页数:8
航海及海运专业英语词汇(T7)tunnel stern 轴隧式船尾tunnel bearign 中间轴轴承tunnel casing 轴隧盖tunnel cryotron 隧道冷子管tunnel diode amplifier 隧道二极管放大器tunnel diode 隧道二极管tunnel effect 隧道效应tunnel escape 地轴弄应急出口tunnel escape 轴隧应急出口tunnel escape 轴隧应急出口轴隧太平洞tunnel flat 轴隧平台tunnel frame 轴隧框架tunnel frame 轴隧肋骨tunnel grease 尾轴轴承滑脂tunnel grease 尾轴轴承润滑脂tunnel grease 中间轴轴承润滑脂tunnel opening 轴隧出入口tunnel platform 轴隧平台tunnel pressure 风洞压力tunnel propeller 轴隧推进器tunnel recess bracket 轴隧端室肘板tunnel recess 沟槽tunnel recess 沟槽;轴隧尾室;鹅颈暗槽tunnel recess 轴隧端室tunnel screw propeller 隧道螺旋桨tunnel screw propeller 轴隧推进器tunnel shaft bearing 中间轴轴承tunnel shaft 中间轴tunnel shaft 轴隧中的轴tunnel speed gauge 风筒风速计tunnel stern 隧道型尾tunnel stern 轴隧式船尾tunnel stool 推进轴系支座tunnel stool 中间轴承台tunnel stool 中间轴轴承支座tunnel test 风洞试验tunnel top 轴隧顶tunnel trunk 地轴弄应急出口tunnel trunk 轴隧通道tunnel trunk 轴隧通道轴隧应急出口tunnel type air cooling freezer 隧道吹风冻结装置tunnel wall influence 风洞壁效应tunnel well 地轴弄污水井tunnel well 轴隧泄水井tunnel 地轴弄tunnel 轴隧tunnel-stern afterbody 隧道式后体tunnelbearign 中间轴轴承tunnelstern 轴隧式船尾tunny boat 捕金枪鱼船tunny catcher 捕金枪鱼船tunny net 金枪鱼网tunny nets 金枪鱼网turbid flow 浊流;乱流turbid flow 浊流乱流turbidimeter 浊度计turbidity detector 浊度探测器turbidity value 浊值turbidity 混浊度turbine propeller 环围整流推进器turbine alternator 涡轮交流发电机turbine and reciprocating combine 蒸汽机-废汽轮机联合装置turbine automatic control equipment 涡轮机自动控制设备涡轮自动控制装置turbine beam 涡轮机支承梁turbine blade vibration 涡轮机叶片振动turbine blade 涡轮机叶片turbine blade 涡轮叶片turbine blading 涡轮机叶片装置turbine boiler propulsion unit 锅炉汽轮机推进装置turbine bucket vibration 涡轮机叶片振动turbine bucket vibration 涡轮叶片振动turbine bucket 涡轮机叶片turbine casign 涡轮机机壳turbine casing 涡轮机机壳turbine casing 涡轮机外壳turbine cylinder 涡轮机壳体turbine direct drive 涡轮机直接传动turbine disc 涡轮机转轮turbine disk 涡轮机叶片盘turbine drive 汽轮机驱动turbine drive 涡轮传动turbine driven cargo oil pump lubricating oil tank 汽轮货汪泵润滑油柜turbine driven auxiliary unit 涡轮驱动辅机组turbine driven compressor 涡轮压缩机turbine driven fan 涡轮通风机turbine driven feed pump 汽轮给水泵turbine driven pump 涡轮泵turbine driven set 汽轮发电机组turbine driven vessel 涡轮机船turbine driven 涡轮机驱动的turbine drum 涡轮机转鼓turbine drum 涡轮机转子turbine dynamo 涡轮发电机turbine dynamo 涡轮直流发电机turbine efficiency 涡轮机效率turbine electric drive 涡轮机电力传动turbine electric drive 涡轮机电力传动涡轮机电力推进装置turbine electric genertor 涡轮发电机turbine engine 汽轮机涡轮发动机turbine engine 涡轮发动机turbine engine 涡轮发动机汽轮机涡轮机turbine exit temperature 涡轮出口温度turbine flowmeter 涡轮式流量表turbine foundation 涡轮机底座turbine fuel pump 涡轮燃油泵turbine gas absorber 涡轮气体吸收器turbine genared propulsion unit 涡轮机减速推进装置turbine generator set 涡轮发电机组turbine governor 涡轮机调速器turbine housing 涡轮机壳体turbine housing 涡轮壳体turbine inlet pressure 涡轮机入口压力turbine inlet temperature 涡轮机入口温度turbine inlet temperature 涡轮进口温度turbine installation 涡轮机装置turbine intake temperature 涡轮进口温度turbine jet 涡轮喷气发动机turbine lube oil 涡轮机润滑油turbine nozzle 涡轮机喷管turbine nozzle 涡轮机喷嘴turbine oil storage tank 汽轮机油贮存柜turbine oil 涡轮机油turbine oupput 涡轮机功率turbine output 涡轮机功率turbine packing gland 涡轮机填料函压盖turbine performance characteristic curve 涡轮机特性曲线turbine piping 涡轮管路turbine plant 涡轮机装置turbine power control valve 汽轮机功率控制阀turbine pressure ratio 涡轮压力比turbine protective device 涡轮机保安设备turbine protective device 涡轮机防护装置turbine pump 涡轮泵turbine rear frame 涡轮后框架turbine regulation 涡轮机调整turbine room 涡轮机舱turbine rotor 涡轮机转动部分turbine rotor 涡轮机转子turbine set 涡轮组turbine ship 汽轮机船涡轮机船turbine ship 涡轮机船turbine shroud ring 涡轮壳环turbine stage 涡轮机级turbine stator 涡轮机定子turbine stator 涡轮机固定部分turbine steam seal system 汽轮机汽封系统turbine steamer 汽轮机船turbine steamship 汽轮机船turbine type centrifugal pump 涡轮式离心泵turbine vane 涡轮机叶片turbine vessel 涡轮机船turbine vibration 涡轮机振动turbine washing test 涡轮清洗试验turbine wheel 涡轮机转轮turbine 混合式涡轮机turbine 涡轮turbine 涡轮机turbine 涡轮涡轮机turbine-compressor 涡轮压缩机turbine-driven pump 涡轮传动泵turbine-driven steamer 汽轮机船turbine-driven 涡轮机驱动的turbinepropeller 环围整流推进器turbining 自由回转turbo blower 涡轮鼓风机turbo circulator 涡轮循环泵turbo compressor 涡轮压缩机turbo electric drive 涡轮电力推动turbo generator 涡轮发电机turbo jet engine 涡轮喷气机turbo prop engine 涡轮推进机turbo reciprocating engines 涡轮往复蒸气机联合装置turbo 涡轮turbo- 涡轮驱动的turbo-alternator 涡轮交流发电机turbo-alternator 涡轮交流发电机组turbo-alternator=turboalternator 涡轮交流发电机turbo-blower characteristics 涡轮增压器特性曲线turbo-blower 涡轮式鼓风机turbo-blower 涡轮增压器turbo-charge 涡轮增压turbo-charge=turbocharge 涡轮增压turbo-charged diesel 涡轮增压柴油机turbo-charged diesel 涡轮增压式柴油机turbo-charged engine 涡轮增压发动机turbo-charged engine 涡轮增压式发动机turbo-charged engine 员轮增压式发动机turbo-charger bearing 涡轮增压器轴承turbo-charger complement 涡轮增压器总成turbo-charger impeller 涡轮增压器叶轮turbo-charger lubricating oil pump 涡轮增压器润滑油泵turbo-charger rotor complement 涡轮增压转子总成turbo-charger running defects diagnosis 涡轮增压器运行故障诊断turbo-charger running defects 涡轮增压器运行故障turbo-charger shaft 涡轮增压器轴turbo-charger speed 涡轮增压器转速turbo-charger sytem 涡轮增压器系统turbo-charger 涡轮增压器turbo-charging auxiliary blower 涡轮增压辅助鼓风机turbo-charging emergency blower 涡轮增压装置turbo-charging 涡轮增压turbo-circulator 涡轮循环泵turbo-compound diesel 涡轮增压柴油机复合式发动机turbo-compounded diesel 涡轮增压柴油机turbo-compounded diesel 涡轮增压柴油机复合式发动机turbo-compressor rotor 涡轮压缩机转子turbo-compressor 涡轮压缩机turbo-coupling 涡轮联轴器turbo-drive 涡轮机传动turbo-driven compressor 涡轮压缩机turbo-driven supercharger 涡轮驱动增压器turbo-driven supercharger 涡轮增压器turbo-driven turbocompressor 涡轮驱动涡轮压缩机turbo-driven 涡动驱动的turbo-dynamo 澡轮发电机turbo-dynamo=turbodynamo 澡轮发电机turbo-electric drive 涡轮机电力传动turbo-electric drive 涡轮机电力传动涡轮机电力推进装置turbo-electric installation 涡轮机电力装置turbo-electric propelling machinery 涡轮电力推进装置turbo-electric propulsion 涡轮机电力推进turbo-electric ship 涡轮机电力船turbo-electric ship 涡轮机电力推进船turbo-electric 涡轮电力的turbo-electric 涡轮电力装置turbo-electricdrive 涡轮电力推进turbo-exhauster 涡轮排气机turbo-extractor pump 涡轮排水泵turbo-fan 涡轮通风机turbo-feed pump 涡轮给水泵turbo-generator compartment 涡轮发电机舱turbo-generator installation 涡轮发电机装置turbo-generator room 涡轮发电机舱turbo-generator set 涡轮发电机组turbo-generator 涡轮发电机turbo-generatorturbosupercharger 涡轮增压器turbo-jet engine 涡轮喷气发动机turbo-jet 涡轮喷气发动机turbo-machine 涡轮机(拽蒸汽轮机turbo-power unit 涡轮机动力装置turbo-prop 涡轮螺旋桨发动机turbo-pump unit 涡轮泵机组turbo-pump 涡轮泵turbo-scavengine blower 涡轮扫气泵turbo-scavenging blower 涡轮扫气泵turbo-supercharger 涡轮增压器turbo-supercharger=turbosupercharger 涡轮增压器turbo-supercharging 涡轮式增压turbo-type supercharger 涡轮式增压器turboalternator 透平交流发电机turboalternator 涡轮交流发电机turbocharge vt. 涡轮增压turbocharge 涡轮增压turbocharged engine 涡轮增压式发动机turbocharger 涡轮增压器turbocharger 涡轮增压器@n.涡轮增压器turbocharging 涡轮增压turbocharging 涡轮增压@n.涡轮增压turbocompressor 涡轮压缩机turbocompressor 涡轮压缩机@n.涡轮压缩机turbodynamo 涡轮发电机turbofan engine 涡轮风扇发动机turbofan 涡轮风扇turbogenerator 涡轮发电机turbojet 涡轮喷气发动机turbomachinery 涡轮机械turboprop engine 涡轮螺旋桨发动机turboprop 螺轮螺旋桨turboprop 涡轮螺旋桨发动机turbosupercharged 备有涡轮增压器的turbosupercharger matching test 涡轮增压器匹配试验turbosupercharger 涡轮增压器turbovessel 涡轮机船turbulence combustion chamber 湍流式燃烧室turbulence level 湍流级turbulence measurement 湍流度测量turbulence meter 湍流计turbulence number 湍流度turbulence spectrum 湍流谱turbulence 扰动turbulence 扰动湍流turbulence 骚动turbulent boundary layer 湍流边界层turbulent burner 湍流式燃烧器turbulent burner 紊流式燃烧器turbulent contact absorber 湍流接触吸收器turbulent current 湍流turbulent current 紊流turbulent diffusion process 湍流扩散过程turbulent diffusion 湍流扩散turbulent diffusivity 湍流扩散系数turbulent drag 湍流阻力turbulent drag 紊流阻力turbulent flow air register 旋流式调风机turbulent flow drag reduction 湍流减阻turbulent flow 湍流turbulent flow 湍流;紊流turbulent flow 湍流紊流turbulent friction 湍流摩擦turbulent jet 湍流射流turbulent model 湍流模式turbulent motion 湍流运动turbulent propagation 湍流传播turbulent scattering 湍流散射turbulent sea 激浪turbulent sea 汹涌的海面turbulent separation 湍流界层分离turbulent skin friction 紊流摩擦turbulent skn friction 湍流摩擦turbulent 扰动的turbulent 扰动的湍流的turbulent 扰动的紊流的turbulent 骚动的;湍流的turbulent-velocity field 湍流速度场turbulivity 湍流度turing basin 船舶掉头水区turk loydu 土耳其船级社turk's head 打花箍turkey 土耳其turkish millet 土耳其黍turmeric 盖黄turn about 转向turn around 旋转;船在港内周转时间;掉头turn around 旋转船在港内周转时间掉头turn berth clause 停泊条款turn berth clause 停泊条款(船舶按到港次序装卸turn buckle 螺旋扣turn buckle=turnbuckle 螺旋扣turn count 转速估算turn counting dial 转动计数度盘turn down ratio 调节比turn down ratio 燃烧器调节比turn down 摺;折;旋小turn down 摺折旋小turn in 向内turn indicator equipment 旋转指示设备turn indicator 匝数计turn indicator 转数表turn insulation 线匝绝缘turn knob 旋钮turn of bilge 舭部弯曲处turn of tidal current 转流turn of tide 潮汐转流turn off current 断路电流turn off method 断开方法turn off n. 切断turn off thyristor 可关断可控硅元件turn off time 断开时间turn off 关turn off 切断turn on method 接通方法turn on n. 接通turn on 接通turn on 开turn out 切断turn out 向外turn over n. 翻转交叉频率周转额turn over rate 周转率turn over type pick-up 翻转式拾音器turn over 翻转turn over 翻转交叉频率周转额turn over 接到下一行(下一栏turn over 接到下一页turn over 转动turn over 转动接到下一行(下一栏turn point 转向点turn rate 旋转率turn ratio 匝数比turn round time 周转时间turn round 船只进港turn round 旋转;掉头turn switch 旋转开关turn the hands to 使全体船员各就各位turn the hands up 使全体船员在甲板集合turn to port 向左转舵turn to starboard 向右转舵turn to 开始工作;向……转变turn to 开始工作向…转变turn turn insulation 圈间绝缘turn turtle 翻船turn up 在甲板集合;旋大turn up 在甲板集合旋大turn upside down 把…完全颠倒turn 弯曲turn 转turn 转动turn-around 周转期回旋水面turn-away 离开turn-off method 断开方法turn-off thyristor 可关断可控硅元件turn-off time 断开时间turn-off 避开关turn-on method 接通方法turn-on 开turn-over type entry guide 翻转式导口turn-over whale back 船尾防浪损的拱形架turn-round of ship 船舶掉头turn-round period 船在港内掉头时间turn-round period 船在港内掉头时间船在港内周转时间回航时间turn-round period 船在港内周转时间turn-round period 回航时间turn-round 船在港内周转时间turnabout 转向turnaround time 换向时间turnaround time 周转时间turnaround time 周转时间换向时间turnbuckle closure 螺套封闭器turnbuckle closure 螺套封闭器turnbuckle 螺旋扣turncate 截头turned knee 折肘turned position 转动位置turner 车工turner 车工镟工turnery 车工工艺turnery 车削工作turning trial 旋回试验turning ability with large rudder angle 大舵角回转性能turning ability 回转性能turning ability 旋回性能turning action 转弯动作turning angle 折转角turning angle 转折角turning arm for reversing couping 换向联轴器转臂turning basin 掉头区turning basin 掉头区掉头区掉头区turning beharvior 旋回性能turning berth 掉头区turning block 转动块turning buoy 转弯浮标turning by ahead and astern engine 进倒车掉头turning by one engine ahead and the other astern 一进一倒掉头turning by pulling the bow and pushing the stern 拖头顶尾掉头turning by pulling the bow 拖头掉头turning by pulling the stern 拖尾掉头turning by pushing the bow 顶头掉头turning circle test 转圈试航turning circle trial 回转试验turning circle trial 旋回试验turning circle 回转圈turning circle 旋回圈turning crane 旋臂起重机turning crane 旋转起重机turning device 回转装置turning diameter 回转直径turning direction 回转方向turning effort 转动力turning effort 转动力转矩turning engine 盘车机turning engine 转车机turning error 转向误差turning force 回转力turning force 转动力turning gear interlocking device 盘车联锁装置turning gear oil pump 盘车装置油泵turning gear on 盘车机合上turning gear test 盘车试验turning gear 盘车装置turning gear 盘车装置;转车机turning in heavy sea 大风浪中掉头转向turning interval 回转周期turning joint 活动关节turning lathe 车床turning leverage 回转效应turning leverage 旋回效应turning marks 转向叠标turning moment 回转力矩turning moment 回转力矩转矩turning motion 回转运动turning motion 旋回运动turning of the tide 转潮turning operating mode manaement 转向工况管理turning operation 车削操作turning out device 转出工具turning out gear 摇倒机构turning pair 回转副turning path 旋回航迹turning performance 旋回性能turning period 回转时间turning pivot 旋回点turning point locus 旋回点轨迹turning point 旋转点turning point 转向点turning point 转折点turning quality 回转性turning quality 回转性能turning radius indicator 回转半径指示器turning radius indicator 旋回半径指示器turning radius 回转半径turning radius 旋回半径turning range mark 转向叠标turning range marks 转向叠标turning rate 航向变化率turning shop 车工车间turning short round an anchor 抛锚掉头turning short round 就地回转turning short round 就地旋回turning speed 回转速度turning speed 旋回速度turning speed 转速turning surface 车削面turning taper 车削锥体turning the gear over 改变吊杆位置turning thrust vector 转动推力矢量turning tool 车刀turning trial 回转试验turning trial 旋回试验turning unit 旋转部件turning valve 回转阀turning valve 加转阀turning vane steering gear 转翼式液压操舵装置turning velocity 转向速度turning wheel 回转轮turning wheel 转轮turning with the aid of current 利用流力掉头turning 旋转turning 转动turning 转弯;旋转turnings 钢屑turnings 切屑turningtrial 旋回试验turnkey 总控钥匙turnmeter 回转计turnout 产品turnout 产品产额设备turnover 翻转交叉频率周转额turnplate 回转板turnround of a ship 船舶在港时间turnround 周转期turns per volt 匝数伏特turnstile antenna 挠杆式天线turntable 电唱盘;转盘turntable 转台turpentine 松节油turret deck vessel 坛甲板船turret deck 坛甲板(弧形凸起甲板turret head boring machine 转塔式镗床turret ice 侧立冰turret lathe 六角车床turret lathe 转塔式六角车床turret miller 转塔式铣床turret mount 回转架turret nozzle 可转向喷管turret 台turret 转台turreted cloud 塔状云turtle back deck 鲸背甲板turtle back poop 龟背甲板尾楼turtle back poop 鲸背式船尾楼turtle back 船尾防浪损的拱形架turtle 龟;甲鱼turtle 龟甲鱼tusk tenon 齿榫tusk tenon 多齿榫tusk 齿状物tusk 齿状物齿tutin rudder 反应舵的一种tuurbidimetry 浊度测定法tuyere 喷气口tv and communications 电视通信tv audio carrier 电视音频载波tv broadcast satellite 电视广播卫星tv broadcast station 电视广播台tv channel 电视信道tv picture-phone 电视电话tv set 电话机tv studio 电视演播室tv system 电视系统tv tower 电视塔tv translator 电视差转机tv transposer 电视差转机tw-phase system 二相制twaddell hydrometer 液体相对密度计tweeks 大气干扰tween deck bulkhead 甲板间舱壁tween deck bunker 二层舱煤舱tween deck bunker 甲板间燃料舱tween deck cargo space 二层舱tween deck ceiling 甲板间衬板tween deck frame 甲板间肋骨tween deck height 甲板间高tween deck hold 二层船舱甲板间舱tween deck ladder 甲板间梯tween deck space 甲板间空间tween deck space 甲板间空间中间甲板间空间tween deck space 中间甲板间空间tween deck tank 甲板间液柜tween deck tanks 二层液舱tween deck tonnage section 甲板间吨位截面tween deck tonnage section 甲板间容积丈量截面tween deck tonnage section 甲板间容积丈量剖面tween deck tonnage 二层舱吨位tween deck vessel 多层甲板船tween deck 二层甲板tween deck 二层甲板二层舱tween deck 二层甲板中间甲板tween deck 中层甲板tween deck=tweendeck 甲板间的tween decker 多层甲板船tween decks 二层舱tween decks 甲板空间tween drive spindle 中间传动轴tween …的中间tween 在…之间tween 在…之间在之间tween-deck hatch 甲板间舱口tween-deck pillar 甲板窨支柱tweendeck bunker 甲板间燃料舱tweendeck ceiling 甲板间衬板tweendeck compartment 甲板间舱tweendeck equipment 中间甲板设备tweendeck frame 甲板间肋骨tweendeck height 甲板间高tweendeck height 甲板间高度tweendeck ladder 甲板间梯子tweendeck portside 左舷二层甲板tweendeck space 甲板间处所tweendeck tank 甲板间液柜tweendeck tonnage section 甲板间容积丈量截面tweendeck tonnage 甲板间吨位tweendeck 甲板间tweendeck 甲板间的tweendeck 甲板间二层舱中甲板tweendeck 甲板间甲板间舱tweendecker 多层甲板船tweendecker 双层甲板船tweenhatches 双联舱口twelve num.十二twenty equivalent unit 20英尺标准集装箱twenty feet equivalent unit 20 英尺标准箱twenty fot equivalent unit 20英尺标准集装箱twenty four equivalent units24 英尺集装箱换算单位24英尺集装箱twenty four hours rule 二十四小时规则twenty knotter 具有20节航速的船twenty-feet equivalent unit 标准箱twenty-foot equivalent unin20 英尺集装箱twentyfoot equivalent units 换算箱twice a week 每周两次twice 两次twice 两次两倍twice-laid rope 再生绳twice-laid stuff 再生材料twiddling line 小船横舵柄绳twilight arch 蒙影光弧twilight sight 晨昏蒙影测星twilight zone 蒙影地带twilight 晨昏蒙影twill canvas 加料帆布双经斜纹)加料帆布twill canvas 加料帆布twin beams 并置梁twin bulkhead tanker 双纵舱壁油船twin cable system 双电缆系统twin cable 双芯电缆twin cam shaft type 双凸轮轴式twin channel 双路的twin check 双重校验twin conductor 平行双芯线twin conductor 双芯导线twin conductor 双芯导线;平行双蕊线twin contact 双触点twin controller 双联控制器twin core cable 双芯电缆twin core cable 双芯电线twin crane 双吊起重机twin crystal 双晶体twin cylinder pump 双缸泵twin cylinderpump 双缸泵twin deck crane 甲板起重双吊twin decker ship 双层甲板船twin derrick posts 龙门式起重柱twin diode 双二极管twin drive gear 功率分轴式二级减速齿轮twin drive 功率分轴式双电动机传动twin elbow 双弯头twin elbow 双弯弯管twin engine single-shaft system 双机单轴式twin engine 双发动机twin engine 双发动机的twin engined 装有双发动机的twin helical gear 人字齿轮twin horn cleat 双羊角twin htach vessel 双舱口船twin hull boat 双体船twin hull unit 双体船twin hull 双体twin input reduction gear 双主动齿轮减速齿轮twin input single-output gear 双主动齿轮单出轴齿轮twin islet 双岛twin jack 双插孔twin lead-covered wire 双芯铅皮线twin masts 龙门桅twin pinion single-output redduction gear 双主动齿累单出轴减速齿轮twin pistoncylinder-head diesel engine 双活塞-气缸头柴油机twin pistoncylinder-head diesel engine 双活塞-汽缸头柴油机twin propeller 双螺旋桨的twin pulse code 双脉冲编码twin pump 双联泵twin roller type 双滚轮式twin rope grab 双索抓斗twin rudder 双舵twin rudder 双舵的twin screw motor mine-sweeper 双螺旋桨扫雷艇twin screw motor ship 双螺旋桨内燃机船twin screw motor vessel 双螺旋桨内燃机船twin screw pump 双螺杆泵-screw ship双螺旋桨船twin screw ship 双螺旋桨船twin screw steamer 双推进器船舶twin screw 双螺旋桨twin screw 双螺旋桨船twin screw 双螺旋桨的双螺杆的twin screw 双螺旋桨双螺杆双推进器双螺旋桨船双推进器twin screw 双推进器twin shafting 双轴系twin ship 同型船双体船twin sideband 双边带twin single pump 双联单作用泵twin span derrick 双千斤索吊杆装置twin spanderrick 双千斤索吊杆装置twin strainer 双联滤器twin subcarrier 双幅载波制twin t network 双t型网络twin tandem 双串式twin tanks 两舷水柜twin turbo-charger 双级涡轮增压器twin tyype cable 对绞多芯电缆twin wire 双芯导线twin 成双的twin 孪生双晶双twin 双的twin 双晶twin-boat 姐妹船twin-bulkhead tanker 双纵舱壁油船twin-bulkhead tanker 双纵舱壁油船双纵向舱壁油轮twin-deck vessel 双层甲板船twin-engined 双主机的twin-hatch 成对舱口twin-headarc welding machine 双头弧焊机twin-hull boat 双体船twin-hull hydrofoil 双体水翼艇twin-hull ship 双体船twin-hull vessel 双体船twin-propeller 双推进器twin-rudder vessel 双舵船twin-rudder 双舵twin-screw and single-rudder ship 双车单舵船twin-screw and triple-rudder ship 双车三舵船twin-screw and twin-rudder ship 双车双舵船twin-screw motor ship 双螺旋桨内燃机船twin-screw motor vessel 双螺旋桨内燃机船twin-screw ship 双螺旋桨船twin-screw steamer 双螺旋桨蒸汽机船twin-screw 双螺旋桨twin-screw 双螺旋桨的twin-shaft 双轴twin-ship 同型船twin-skeg stern 双导流尾鳍twin-tandem 成双串联twin-unit pack 双箱包装twine 帆线twine 双股线twinkle 闪烁twinkling light 闪烁光twinkling 闪烁twinned binary code 孪生二进制码twinned binary 孪生二进制twist drill 麻花钻twist flat drill 麻花平钻twist joint 扭绞接合twist lock 箱门搬手twist lock span 扭锁销twist lock 扭锁twist lock 箱门搬手twist switch 旋钮开关twist 扭弯twist 使呈螺旋状twisted blade 扭叶片twisted blade 扭转车叶twisted blade 扭转叶片twisted cable 绞合电缆twisted cable 绞合线twisted conductor 分层绞合线twisted cord 绞合电绳twisted cord 双绞软线twisted effect 扭曲效应twisted joint 扭绞接合twisted line 绞合线twisted pair 双芯绞合线twisted plate 弯曲板twisted spur gear 斜齿轮twisted thread canvas 双线帆布twisted wire 绞合线twisted 扭转的twister 绞扭器twisting couple 扭转力偶twisting force 扭力twisting inertia 扭转惯性twisting load 扭力负荷twisting moment diagram 扭矩图twisting moment 扭矩twisting resistance 抗扭转能力twisting strain 扭应变twisting strength 抗扭强度twisting stress 扭应力twisting test 扭力试验twisting 扭转two address computer 二地址计算机two arm mooring 用双锚固定的系锚two armature generator 双电枢发电机two bank engine 双排式发动机two bearing rudder 双支承舵two bladed propeller 双叶螺旋桨two bladed propeller 双叶推进器two blocks 滑车拉到头two boat trawler 对拖网渔船bull wheel大齿轮双拖网渔船two bowline 双套结two bulb type resistance thermometer 双球式电阻温度计two bus-bar regulation 双汇流条调整two bush stern tube system 双衬套尾轴系统two channel switch 双通道开关two circuit winding 双路绕组two circuit 双回路的two coil relay 双线圈继电器two compartment ship 两舱制船two consecutive ports 两个连续港口two core cable 双芯电缆two core fixture wire 双芯电器引线two core switch 双磁心开关two core 双心的two cycle engine 二冲程发动机two cycle internal combustion engine 二冲程内燃机two cycle marine diesel engine 二冲程船用柴油机two cycle 二冲程循环two cylinder pump 双缸泵two cylinder steering gear 双缸操舵装置two cylinder turbine 双缸式涡轮机two decked ship 双层甲板船two decker 双层甲板船two degree of freedom gyro 二自由度陀螺仪two derrick boom cargo handling 联杆吊货法two digit code services 两位数代码业务two dimensinal flow 二元流动two dimension 二维two dimensional 二元的two dot chain line 双点划线two drum boiler 双锅筒锅炉two edged 双面的two electrode vacuum tube 二极真空管two element air ejector 双组空气抽除器two engined 装有双发动机的two flank gear rolling tester 双面啮合检查仪two flow condenser 双流程冷凝器two fold purchase 2—2绞辘two fold purchase 绞辘two fold tackle 绞辘two folding door 双折门two gang variable capacitor 双联可变电容器two half hitch 两半结two hop-f f电离层二次反射波two in-hand winding 叠绕组叠绕法two lane canal 双航道运河two layer winding 双层绕组two layer 双层的two leg mooring 用双锚固定的系锚two leg propeller strut 人字尾轴架two leg strut 双支脚尾轴架two letter signal 双字母信号two lobe blower 双叶转子鼓风机two master 双桅船two noded vertical vibration 双节点垂直振动two noded vibration 双节点振动two party draft 双名汇票two pass condenser 双流程冷凝器two pass evaprator 双流程蒸发器two pass superheater 双流程过热器two phase current 二相电流two phase flow 两相流two phase generator 二相发电机two phase ground 两相接地two phase motor 二相电动机two phase propulsion 双态喷射推进two phase selsyn 二相自动同步机two phase three-wire system 二相三线制two phase 两相two phase 两相的two phase 双相two photon emission 二光子发射two piece bearing 对开轴承two pin plug 两脚插砂two pin plug 两脚插头two ply n. 双层板a.双层的two ply 双层板双层的two point jack 二簧片插孔two pole knife switch 双极闸刀开关two pole switch 双刀开关two pole 两极的two position action 双位动作two position control 双位控制two position controller 双位控制器two position four-way valve 二位四通阀two position mode 双位制two position relay 双位继电器two position three way directional control valve 二位三通换向阀two position three-way valve 二位三通阀two position two-way valve 二位二通阀two position valve 双位阀two position 双位two pulse counting circuit 双脉冲计数电路two pulse timer 双脉冲定时器two pulse 双脉冲two ram hydraulic steering gear 双柱塞液压操舵装置two range decca 双程台卡导航系统two range decca 双距离式台卡导航系统two range winding 双排绕组two row hatch 两横列舱口two row impulse wheel 二列冲动叶累two speed clutch 双速离合器two speed gear 双速齿轮传动装置two speed motor 双速电动机two speed 双速的two spindle 双轴two spool compressor 双转子压缩机two stabilivolt bridge 双稳压管测量电桥two stabilivolt bridge 双稳压管测量电桥-stage二级的two stage air ejector 二级空气抽除器two stage amplifier 二级放大器two stage burner 二级燃烧器two stage centrifugal pump 二级离心泵two stage compesson refrigerating system 二级压缩制冷系统two stage compression 二级压缩two stage pump 双级泵two stage regulator 双级调节器two stage relay 双级继电器two stage shut 双级制动two stage speed change 二级变速two stage supercharger 二级增压器two stage supercharging 二级增压two stage superheater 二级过热器two stage turbo-charger 二级涡轮增压器two stage turbocharging system 二级涡轮增压系统two stage 二级的two stagecompressor 二级空气压缩机two stars navigation 双星导航two start screw 双头螺纹two state device 双稳态器件two step action 双位作用two step control 双级控制two step controller 双级控制器two step injection sysyem 双级喷射系统two step relay 双级继电器two stroke cycle engine 二冲程发动机two stroke cycle 二冲程循环two stroke direct-coupled machine 二冲程直接传动式发动机two stroke double-acting type 二冲程双作用式two stroke engine supercharged according to pulse parallel system 脉冲并联系统增压式二冲程发动机two stroke engine supercharged on pulse series parallel system 脉冲串并联系统增压式二冲程发动机two stroke engine 二冲程发动机two stroke marine diesel engine 二冲程船用柴油机two stroke single-acting type 二冲程单作用式two stroke 二冲程的two terminal network 二端网络two throw crank shaft 双联曲轴two throw crank 以联曲柄two throw pump 双吸泵two tier exchange rate 双重汇率two tip torch 双嘴割炬two tone diaphone 双声低音雾号two turn 抛双锚时船回转900°two unit 双机组two wattmeter method 双瓦特计法two way break before-make contact 双向先断后合触点two way channel 双向电路two way cock 两路旋塞two way cock 双通旋塞two way communication 双向通信two way contact 双向触点two way fuse plug 双熔丝插塞two way fuse socket 双熔丝插座two way launching 双滑道下水two way make-before break contact 双向先合后断触点two way radio 双向无线电设备two way reversing switch 双向转换开关two way switch 双向开关two way valve 双通阀two way variable displacement pump 双向变量泵two way 双向的two wire circuit 双线线路two wire system 两线制two wire system 双线制two num.two num.二two 两个two's complement 补码two- aerial consol 康索兰two-action line 双向传输线two-action trunk 双向中继线two-address system 二地址制two-aerial synchronized satellite 双天线同步卫星two-arm mooring 双臂双锚系船设施(底链各端一锚two-arm mooring 用双锚固定的系锚two-armmooring 双臂双锚系船设施(底链各端一锚two-axis inclinometer 双轴倾斜仪two-axis magnetometer 双轴磁强计two-band receiver 双波段接收机two-bank engine v型发动机two-berth room 双铺舱two-bladed porpeller 两叶螺旋桨two-bladed propeller 双叶螺旋桨two-bladed 两叶的two-body satellite 双体卫星two-channel duplexer 双道天线收发转换开关two-channel tracking receiver 双信道跟踪接收机two-circuit receiver 双调谐电路接收机two-circuit tuner 双回路调谐器two-circuit winding 双路绕组two-compartment floodability 两舱进水不沉性two-compartment floodability 两舱浸水不沉性two-compartment ship 两舱制船two-compartment sub-division 二舱不沉制two-compartment subdivision 两舱制two-compartment vessel 两舱制船two-component accelerometer 双向加速度计two-component electromagnetic log 双分量电磁计程仪two-component pallograph 两向振动记录仪two-component pallograph 两向振动仪two-condition code 双态码two-core cable 双芯电缆two-core fixture wire 双芯电器引线two-core switch 双磁芯开关two-core 双芯的two-course beacon 双向信标two-cycle engine 二冲程发动机two-cylinder engine 双缸发动机two-cylinder steering 双缸操舵装置two-deck bridge 双层甲板桥楼two-decked ship 双层甲板船two-decked 双层甲板的two-decker 双层甲板船two-degree of freedom gyroscope 二自由度陀螺仪two-dimensional code 二维码two-dimensional ensemble 二维集two-dimensional motion 二维运动two-dimensional 二维的two-frequency duplex 双频双工制two-frequency signal receiver 双频制信号接收机two-frequency signal 双频信号two-funneled 双烟囱的two-gate caisson 人字式坞门two-gyro pendulous gyrocompass 双转子摆锤校正式罗经two-gyro pendulous gyrocompass 双转子摆式罗经two-hinged arch 二铰拱two-lens objective 双透镜物镜two-lens ocular 双透镜物镜two-level deckhouse 双层甲板室two-lobe blower 双叶转子鼓风机two-man diving bell 双人潜水钟two-masted 双桅的two-part construction 两段造船法two-pass superheater 双流程蒸汽过热器two-path amplifier 双信道放大器two-path circuit 双路电路two-phase current 二相电流two-phase flow 两相流动two-phase generator 二相发电机two-phase ground 两相接地two-phase machine 双相电机two-phase motor 二相电动机two-phase phase shift keying 二相相移键控。
第38卷 第4期 2023年12月 西 南 科 技 大 学 学 报 JournalofSouthwestUniversityofScienceandTechnology Vol.38No.4 Dec.2023DOI:10.20036/j.cnki.1671 8755.2023.04.010收稿日期:2023-02-27;修回日期:2023-04-03基金项目:中国石油西南油气田分公司科技计划项目(20210305-06)第一作者简介:熊绍专(1985—),男,讲师,研究方向为石油基燃料燃烧,E mail:shaoruixiong@126.com试气测试用燃烧池天然气燃烧数值模拟熊绍专1 何 川1 陈 健2 袁 萍3 乔文友1(1.西南科技大学燃烧空气动力学研究中心 四川绵阳 621010;2.中国石油川西北气矿 四川江油 621700;3.四川科宏石油天然气工程有限公司 成都 610000)摘要:天然气试气测试过程中传统燃烧池存在墙体拉裂和熔化的安全隐患,且无法满足长时间的放喷燃烧要求。
选择合适的燃烧模型对多个工况下天然气放喷燃烧进行了数值模拟计算,分析了燃烧池的尺寸、入口流量和壁面材料的导热系数等对燃烧池壁面温度、流速分布的影响。
结果表明:固定喷管位置时,燃烧池尺寸和入口流速对燃烧池壁面最高温度和温度分布影响较大;导热系数变化对内壁温度变化影响较小,但对高温区分布影响很大。
研究结果可供耐火材料的筛选及燃烧池的优化设计参考。
关键词:天然气 试气测试燃烧池 数值模拟 半封闭空间中图分类号:TE272 文献标志码:A 文章编号:1671-8755(2023)04-0073-07NumericalSimulationofNaturalGasCombustioninCombustionCellforGasProductionTestXIONGShaozhuan1,HEChuan1,CHENJian2,YUANPing3,QIAOWenyou1(1.ResearchCenterofCombustionAerodynamics,SouthwestUniversityofScienceandTechnology,Mianyang621010,Sichuan,China;2.ChinaNationalPetroleumCorporation,NorthwestSichuanGasMine,Jiangyou621700,Sichuan,China;3.SichuanKehongOilandGasEngineeringCorporation,Chengdu610000,Sichuan,China)Abstract:Theexistingcombustioncellmainlybuiltwithtraditionalrefractorybricknotonlyposesapotentialsafetyhazard(thewallcracksandmelts,forinstance),butalsocannotmeetthecontinuousblowoutrequirements.Numericalsimulationcalculationoftheinjectioncombustionundermulti operatingconditionswasconductedbyusingappropriateturbulentcombustionmodel,andtheeffectsofthesizeofthecombustioncell,theinletflowandthethermalconductivityofthematerialonthewalltemperatureandvelocitydistributionofthecombustioncellwereanalyzed.Theresultsshowthatwhenthenozzlepositionisfixed,thesizeandinletflowratehaveagreaterinfluenceonthemaximumtemperatureandtemperaturedistributionontheinnerwallofcombustioncell;Thechangeofthermalconductivityhaslesseffectonthetemperaturechangeofinnerwallbutsignificantinfluenceonthedistributionofhigh temperatureareas.Thispaperprovidesreferencesnotonlyforselectingthepotentialrefractorymaterialbutalsoforguidingtheoptimaldesignofcombustioncell.Keywords:Naturalgas;Gasproductiontest;Numericalsimulation;Semi confinedspace 试气放喷是天然气勘探开采过程中必不可少的一道工序。
Category类别Variable变量表1:物种,反应,pdf,预混和燃烧的列表1、Species...物种Massfractionofspecies-n(sp,pdf,orppmx;nv)n种质量分率Molefractionofspecies-n(sp,pdf,orppmx)n种摩尔分数Concentrationofspecies-n(sp,pdf,orppmx)n种浓度LamDiffCoefofspecies-n(sp,dil)n种LamDiff系数EffDiffCoefofspecies-n(t,sp,dil)n种EffDiff系数ThermalDiffCoefofspecies-n(sp)n种热量Diff系数Enthalpyofspecies-n(sp)n种焓species-nSourceTerm(rc,cpl)n种SourceTermSurfaceDepositionRateofspecies-n(sr)n种表面沉积率RelativeHumidity(sp,pdf,orppmx;h2o)相对湿度TimeStepScale(sp,stcm)FineScaleMassfractionofspecies-n(edc)n种精密标度质量分率FineScaleTransferRate(edc)精密标度传输率1-FineScaleVolumeFraction(edc)精密标度体积分率2、Reactions...反应RateofReaction-n(rc)n反应速度ArrheniusRateofReaction-n(rc)n反应阿伦纽斯速度TurbulentRateofReaction-n(rc,t)n反应湍流速度3、Pdf...MeanMixtureFraction(pdforppmx;nv)平均混合分数SecondaryMeanMixtureFraction(pdforppmx;nv)二级平均混合分数MixtureFractionVariance(pdforppmx;nv)平均混合分数变量SecondaryMixtureFractionVariance(pdforppmx;nv)二级平均混合分数变量FvarProd(pdforppmx)fvar测试棒Fvar2Prod(pdforppmx)fvar2测试棒ScalarDissipation(pdforppmx)标量逸散4、Premixed预混和ProgressVariable(pmxorppmx;nv)进展变量5、Combustion...燃烧DamkohlerNumber(pmx or ppmx)StretchFactor(pmx or ppmx)伸长因数TurbulentFlameSpeed(pmx or ppmx)湍流焰速度StaticTemperature(pmx or ppmx)静态温度ProductFormationRate(pmx or ppmx)生成物形成率LaminarFlameSpeed(pmx or ppmx)层流焰速度CriticalStrainRate(pmx or ppmx)临界应变率AdiabaticFlameTemperature(pmx or ppmx)绝热火焰温度UnburntFuelMassFraction(pmx or ppmx)未燃烧燃料质量分率表2:NOx,Soot,andUnsteadyStatisticsCategories(Nox,烟灰和不稳定统计列表)1、NOx...MassfractionofNO(nox)NO质量分率MassfractionofHCN(nox)HCN质量分率MassfractionofNH3(nox)NH3质量分率MolefractionofNO(nox)NO摩尔分率MolefractionofHCN(nox)HCN摩尔分率MolefractionofNH3(nox)NH3摩尔分率ConcentrationofNO(nox)NO浓度ConcentrationofHCN(nox)HCN浓度ConcentrationofNH3(nox)NH3浓度VarianceofTemperature(nox)温度变量VarianceofSpecies(nox)物种变量VarianceofSpecies1(nox)物种1变量VarianceofSpecies2(nox)物种2变量2、Soot...烟灰Massfractionofsoot(soot)烟灰质量分率Massfractionofnuclei(soot)核的质量分率3、UnsteadyStatistics...不稳定统计Meanquantity-n(stat)平均值nRMSquantity-n(stat)均方根值n表3:Phases,DiscretePhaseModel,GranularPressure,andGranularTemperature Categories(相,分散相模型,颗粒压强,和颗粒温度列表)Phases...相Volumefractionofphase-n(mp)n相体积分率DiscretePhaseModel...分散相模型DPMMassSource(dpm)质量源DPMErosion(dpm,cv)腐蚀DPMAccretion(dpm,cv)增长DPMXMomentumSource(dpm)X动量源DPMYMomentumSource(dpm)Y动量源DPMZMomentumSource(dpm,3d)Z动量源DPMSwirlMomentumSource(dpm,2dasw)旋转动量源DPMSensibleEnthalpySource(dpm,e)显焓源DPMEnthalpySource(dpm,e)焓源DPMAbsorptionCoefficient(dpm,rad)吸收系数DPMEmission(dpm,rad)发散DPMScattering(dpm,rad)散射DPMBurnout(dpm,sp,e)燃尽DPMEvaporation/Devolatilization(dpm,sp,e)蒸发/液化DPMConcentration(dpm)浓度DPMspecies-nSource(dpm,sp,e)n种源GranularPressure...颗粒压强phase-nGranularPressure(emm,gran)n相颗粒压强GranularTemperature...颗粒温度phase-nGranularTemperature(emm,gran)n相颗粒温度表4:Properties,WallFluxes,UserDefinedScalars,andUserDefinedMemory Categories(性质,间隔层通量,用户定义标量和用户定义存储列表)Properties...性质MolecularViscosity(v)分子粘度MolecularViscosityofphase-n(v,mp)n相分子粘度Diameterofphase-n(mixoremm)n相直径ThermalConductivity(e,v)导热性SpecificHeat(Cp)(e)比热SpecificHeatRatio(gamma)(id)比热比GasConstant(R)(id)气体常数MolecularPrandtlNumber(e,v)分子普朗特数MeanMolecularWeight(seg,pdf)平均分子量SoundSpeed(id)声速WallFluxes...间隔层通量WallShearStress(v,cv)间隔层剪应力phase-nWallShearStress(v,cv,emm)n相间隔层剪应力X-WallShearStress(v,cv)X剪应力Y-WallShearStress(v,cv)Y剪应力Z-WallShearStress(v,3d,cv)Z剪应力phase-nX-WallShearStress(v,cv,emm)n相X剪应力phase-nY-WallShearStress(v,cv,emm)n相Y剪应力phase-nZ-WallShearStress(v,3d,cv,emm)n相Z剪应力Axial-WallShearStress(2da,cv)轴向剪应力Radial-WallShearStress(2da,cv)径向剪应力Swirl-WallShearStress(2dasw,cv)旋向剪应力SkinFrictionCoefficient(v,cv)表面摩擦系数phase-nSkinFrictionCoefficient(v,cv,emm)n相表面摩擦系数TotalSurfaceHeatFlux(e,v,cv)总表面热负荷RadiationHeatFlux(rad,cv)辐射热负荷SurfaceIncidentRadiation(do,cv)表面入射辐射SurfaceHeatTransferCoef.(e,v,cv)表面传热系数SurfaceNusseltNumber(e,v,cv)表面努珊数SurfaceStantonNumber(e,v,cv)表面斯坦顿数UserDefinedScalars...用户定义标量Scalar-n(uds,nv)n标量DiffusionCoef.ofScalar-n(uds)n标量扩散系数UserDefinedMemory...用户定义存储udm-n(udm)CellInfo,Grid,andAdaptionCategories(控制体积,网络节点,配合列表)CellInfo...控制体积CellPartition(np)控制体积分区ActiveCellPartition(p)主动控制体积分区StoredCellPartition(p)存储控制体积分区CellId(p)控制体积标识CellElementType控制体积要素种类CellZoneType控制体积区域种类CellZoneIndex控制体积区域指数PartitionNeighbors邻元素分区Grid...网格节点X-Coordinate(nv)X坐标Y-Coordinate(nv)Y坐标Z-Coordinate(3d,nv)Z坐标AxialCoordinate(nv)轴向坐标RadialCoordinate(nv)径向坐标XSurfaceAreaX表面面积YSurfaceAreaY表面面积ZSurfaceArea(3d)Z表面面积XFaceAreaX端面面积YFaceAreaY端面面积ZFaceArea(3d)Z端面面积CellEquiangleSkew控制体积等角度倾斜CellEquivolumeSkew控制体积等量倾斜CellVolume控制体积容量2DCellVolume(2da)2D控制体积容量CellWallDistance控制体积间隔层距离FaceHandedness端面旋向性FaceSquishIndex端面挤压指数CellSquishIndex控制体积挤压指数GridCategory(Turbomachinery-SpecificVariables)andAdaptionCategory(网络节点列表(涡轮积类变量)和配合列表)Grid...网络节点MeridionalCoordinate(nv,turbo)经纬坐标AbsMeridionalCoordinate(nv,turbo)绝对值经纬坐标SpanwiseCoordinate(nv,turbo)Abs(H-C)SpanwiseCoordinate(nv,turbo)Abs(C-H)SpanwiseCoordinate(nv,turbo)PitchwiseCoordinate(nv,turbo)AbsPitchwiseCoordinate(nv,turbo)Adaption...配合AdaptionFunction配合功能ExistingValue现存值BoundaryCellDistance控制体积边界距离BoundaryNormalDistance边界标准距离BoundaryVolumeDistance(np)边界容量距离CellVolumeChange控制体积容积变化CellEquiangleSkew控制体积等角度倾斜CellEquivolumeSkew控制体积等容量倾斜CellSurfaceArea控制体积表面面积CellWarpage控制体积折曲ResidualsCategory(残值列表)Residuals...残值MassImbalance质量不稳定PressureResidual(cpl)压强残值X-VelocityResidual(cpl;2dor3d)X速度残值Y-VelocityResidual(cpl;2dor3d)Y速度残值Z-VelocityResidual(cpl,3d)Z速度残值Axial-VelocityResidual(cpl,2da)轴向速度残值Radial-VelocityResidual(cpl,2da)径向速度残值Swirl-VelocityResidual(cpl,2dasw)旋向速度残值TemperatureResidual(cpl,e)温度残值Species-nResidual(cpl,sp)n物种残值Derivatives...导数StrainRate(v)应变速率Derivatives...导数StrainRateofphase-n(v,emm)n相应变速率。
Proceedings of the Combustion Institute (2000-2001) 1.甲烷燃烧相关Da Cruz A P et al.[1] studied the laminar flame speed of stratified methane flames by using a modified version of the Lawrence Livermore National Laboratory HCT code in spatially stratified equivalence ratio conditions at atmospheric pressure. Results showed that the laminar flame speed was strongly affected by the equivalence ratio gradient and by the burned gas composition and temperature. High burned gas temperature behind the flame controls lean stratified flames traveling from stoichiometric to lean conditions and these flames are faster than their equivalent homogeneous ones. The propagation of rich stratified flames is controlled by production and consumption of molecular hydrogen in the flame front and in the burned gases. If the fuel decomposition leads to high H2 production that is not consumed because of insufficient oxygen, then the flame tends to accelerate if oxygen is available in the fresh gases. This causes the stoichiometric to rich flames to slow down and the rich to stoichiometric flames to accelerate compared with homogeneous propagation (as fig1 shows). The importance of heat and mass transfer on the observed results implies that their extrapolation to high pressure and to turbulent systems must be made with care.(a) stoichiometric to rich(b) rich to stoichiometricparison between the evolution of the laminar flame speed and the laminar flame speed of steady state flames at fixed equivalence ratio.Da Cruz A P等人[1]通过使用劳伦斯利弗莫尔国家实验室HCT编码的修改版本在大气压下的空间分层当量比条件下研究了分层甲烷火焰的层流火焰速度。
湍流燃烧及其数值模拟研究1. 湍流燃烧1.1湍流燃烧基本概念当流动雷诺数数较小时,由于流体粘性的作用,流体呈层流流态。
当流动的特征雷诺数超过相应的临界值,流动从层流转捩到湍流。
湍流燃烧是指湍流流动中可燃气的燃烧,在能源、动力、航空和航天等工程领域,经常遇到的实际燃烧过程几乎全部都是湍流燃烧过程。
湍流燃烧实质是湍流,化学反应和传热传质等过程相耦合的结果。
湍流对燃烧的影响与湍流强度和湍流涡旋尺度有关。
小尺度湍流通过湍流扩散使火焰区内的输运效应增加,从而使化学反应速率增加。
但气流脉动不会火焰面产生皱褶,只能把火焰变成波纹状。
大尺度湍流对火焰内部结构没有影响,但使火焰阵面出现皱褶,增加其燃烧面积,造成火焰表现传播速度增加。
当湍流强度及湍流尺度均较大时,火焰前沿不再连续而分裂成四分五裂。
燃烧对湍流的影响主要表现在燃烧释放的热流流团膨胀,影响气体的密度和运动速度,从而影响当地的涡旋,湍流强度和湍流结构。
1.2湍流燃烧分类湍流燃烧按其燃料和氧化剂的初始混合状态可以分类为:湍流非预混燃烧、预混燃烧和部分预混燃烧。
在湍流非预混燃烧燃料和氧化剂事先是分离的,燃料和氧化剂一边混合一边燃烧,燃烧速率主要受湍流混合过程控制,而在湍流预混燃烧中,燃料和氧化剂在进入核心燃烧区以前已经充分混合,化学反应的速率由火焰前缘从炽热的燃烧区向冷态无反应区的传播所控制。
上面两种燃烧方式是湍流燃烧的两个极限情形,很多情况下两种燃烧模式是并存的,称为部分预混燃烧。
部分预混燃烧可出现在下列情形中叫:(1)在一个完全以非预混燃烧为配置的燃烧装置发牛了局部熄火;(2)当预混火焰前缘穿过非均匀的混气时;(3)射流非预混火焰发生抬举,其根部是一个典型的部分预混火焰。
这三种部分预混燃烧情形涉及了经常受到关注的燃烧研究话题如局部熄火、火焰稳定等,它们对研究湍流燃烧过程的机理有很大意义。
在湍流燃烧中,湍流流动过程和化学反应过程有强烈的相互关联和相互影响.湍流通过强化混合而影响着时平均化学反应速率,同时化学反应放热过程又影响着湍流,如何定量地来描述和确定这种相互作用是湍流燃烧研究的一个重要内容.湍流是非常复杂的,它包括湍流问题,湍流与燃烧的相互作用,流动参数与化学动力参数之间的耦合机理等问题。
Effects of flame development on stationarypremixed turbulent combustionPratap Sathiah,Andrei Lipatnikov*Department of Applied Mechanics,Chalmers University of Technology,Go ¨teborg 41296,SwedenAbstractA typical stationary premixed turbulent flame is a developing flame,as indicated by the growth of meanflame brush thickness with distance from the flame-stabilization point.The goal of this work is to assess the importance of modeling flame development for RANS of confined stationary premixed turbulent flames.For this purpose,computations of lean propane–air flames stabilized behind a bluffbody in a channel under the conditions of the Validation Rig I experiments have been performed using eight different com-bustion models,all other things being equal.The models step-by-step address various phenomena associ-ated with premixed turbulent flame development,in particular,(i)the growth of mean flame brush thickness,(ii)the development of turbulent diffusivity D t ,and (iii)the development of turbulent burning velocity U t .Numerical results show that all these phenomena affect transverse profiles of the normalized Reynolds-averaged temperature in the studied flames.The effect of the development of U t on the computed profiles is well-pronounced even at large distances from the bluffbody.The effect of the development of D t on the profiles decreases with distance.The flame speed closure model of premixed turbulent combustion,which addresses all the above phenomena,predicts the measured profiles reasonably well.Ó2006The Combustion Institute.Published by Elsevier Inc.All rights reserved.Keywords:Premixed turbulent combustion;Flame development;Stationary flames;Numerical modeling1.IntroductionThere are two major applications of premixed turbulent burning:expanding flames in spark igni-tion (SI)internal combustion engines and statisti-cally stationary flames in gas turbine combustors and aeroengine afterburners.Although the same physical mechanisms appear to control the burn-ing rate in all these flames,different models are often used in multi-dimensional simulations of expanding and stationary flames.For instance,when simulating the former flames,the transient nature of combustion process is widely recognizedand the time counted beginning from spark igni-tion is directly taken into account by some models [1,2].When simulating the latter flames,a discus-sion of transient phenomena is generally avoided and most models reviewed elsewhere [3]have been elaborated by considering a fully developed unperturbed flame.The term ‘‘unperturbed’’means that:(i)The flame is statistically planar and one-dimensional (1D).(ii)The unburned gas is fully premixed,sta-tistically stationary,and spatially uniform.(iii)The mean flow is statistically stationary,1D,and normal to the mean flame surface.(iv)The turbulence is statistically stationary,spatially uni-form,and isotropic in the unburned mixture.The term ‘‘fully developed’’and subscript ‘‘1’’desig-nate that the burning velocity U t,1and mean1540-7489/$-see front matter Ó2006The Combustion Institute.Published by Elsevier Inc.All rights reserved.doi:10.1016/j.proci.2006.07.123*Corresponding author.Fax:+4631180976.E-mail address:lipatn@chalmers.se (A.Lipatnikov).Proceedings of the Combustion Institute 31(2007)3115–3122/locate/prociProceedings of theCombustion Institutethickness d t,1of theflame are time-independent in this1D meanflow.The stationarity of the burning velocity U t and the mean thickness d t of aflame stabilized in a more complex,2D or3D,meanflow does not prove that theflame is fully developed.Stationary but devel-oping processes in turbulentflows are well known, e.g.,the decay of grid-generated turbulence or the development of turbulent diffusion[4].The devel-opment of suchflows manifests itself in the depen-dence of a quantity q,which characterizes a perturbation of aflow(e.g.,the concentration of an admixture for the turbulent diffusion),on the distance X counted from a source of this perturba-tion along the mainflow direction.The perturba-tion develops as it is convected by the meanflow. This process can be characterized using a develop-ment time,which is approximately equal to X/U if the meanflow velocity U)u0(the well-known Taylor hypothesis[4]).An increase in aflame brush thickness with dis-tance X from aflame-stabilization zone indicates that typical stationary premixed turbulent com-bustion is also a developing process.Such an increase in d t(X)is clearly seen in typical images of V-shaped and bunsenflames(see Fig.3in Refs.[5]and[6],respectively).An analysis[7]of numer-ous experimental data obtained from stationary premixed turbulentflames indicates that the growth of d t(X)is described by the classical Taylor theory[8]of turbulent diffusion,discussed in many turbulence[4]and combustion[9,10]text-books.The theory predicts that the mean distance ðYÞ1=2,through which an admixture diffuses in time t,scales as u0t if t(s L.If t)s L,the dis-tanceðY2Þ1=2scales as(u0L L t)1/2.Here,L L ands L=L L/u0are the Lagrangian length and time scales,respectively,and u0is rms turbulent veloc-ity.The latter scaling corresponds to the limit of fully developed turbulent diffusivity D t,1=u0L L, whereas the former scaling is associated with D t¼u02t<D t;1.A similar scaling of d tµu0tµX u0/U has been documented in many stationary premixed turbulentflames[6,11–14].The goal of this work is to study numerically whether or not the development of stationary premixed turbulentflames substantially affects their main characteristics,such asflame position, thickness,and spatial profiles of the mean temperature T.More specifically,we will compute a stationary confined premixed turbulentflame invoking differ-ent combustion models,which step-by-step address more and more phenomena associated withflame development,as discussed in the next section.The details of the computations are reported in Section3.In Section4,results of the simulations are compared with one another and with the experimental data[15]in order to show the role played byflame development in station-ary premixed turbulent bustion modelsWe study an adiabatic premixed turbulent flame using the following balance equationo .~cþo .~u j~cj¼oj.D to~cjþU t jr~c j;ð1Þfor the Favre-averaged combustion progress vari-able~c¼.c= ..Here,x j and u j are the coordinates andflow velocity components,respectively,.¼ q=quis the Reynolds-averaged normalized density of the mixture,subscripts‘‘u’’and‘‘b’’designate the unburned and burned gas, respectively.We have chosen this balance equation for the following reasons:First,in recent papers[16,17], a similar one-dimensional balance equationo .~co tþo .~u~co x¼Doo x.o~co x|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}IþU to~co x|fflfflffl{zfflfflffl}IIð2Þhas rigorously been derived for a self-similar developing premixed turbulentflame starting from the following rather general balance equationoð .~cÞþoð .~u~cÞ¼oo x.D to~co x|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}IIIÀVo fo x|ffl{zffl}IVþX Ws f|{z}V;ð3Þwhich simulates the basic physical mechanisms of turbulentflame propagation,such as turbulent diffusion(term III),pressure-driven countergradi-ent transport[18](IV),and chemical reactions (V).Here,velocity V and time s f scales are intro-duced for dimensional reasons;fð~cÞ,Wð~cÞP0, and X(t)P0are arbitrary functions such that f(0)=f(1)=W(0)=W(1)=0,X(tfi1)fi1, and fðo~c=o xÞP0in order for term IV to yield the countergradient transport.In Eq.(2),the generalized diffusivity D is con-trolled not only by turbulent diffusion but also by the pressure-driven transport term IV in Eq.(3) and by a part of the reaction term V.Even if the scalar transport is countergradient in a developing flame,the generalized diffusivity is positive due to the effect of the reaction term on D[16,17,19].In the fully developedflame,D!0and the diffu-sion term I vanishes in Eq.(2)as tfi1.Second,numerical simulations[19]show that;(i)the difference in D t and D is well-pronounced solely in a sufficiently developedflame character-ized by t/s L P t D/s L=O(1),(ii)the normalized critical time t D/s L strongly increases when the nor-malized scale Vðs f=D tÞ1=2of the pressure-driven transport term IV decreases,and(iii)this scale appears to decrease when a ratio of u0/S L increas-es[18].Here,S L is the laminarflame speed.For3116P.Sathiah,A.Lipatnikov/Proceedings of the Combustion Institute31(2007)3115–3122practicalflames,characterized by t/s L=O(1)and u0/S L)1,the difference in D t and D is weakly pronounced.Third,Eq.(1)has been validated by different groups using experimental data obtained from variousflames(see review[7]and recent papers [19–22]).Fourth,Eq.(1)has been implemented into var-ious commercial CFD codes(Star-CD,Fluent, CFX,etc.).It is widely used for SI engine[1,2] and gas turbine[23,24]applications.Finally,Eq.(1)offers opportunities to model various phenomena associated with turbulent flame development step-by-step.To discuss these opportunities,let usfirst compare Eq.(1)with the following more common balance equation [3,18]o .~c o t þo .~u j~co x j¼oo x j.D to~co x jþ.~ws f;ð4Þwith the dimensionless mean reaction rate .~w being equal to~cð1À~cÞ.Using the KPP-theorem [3,7],it can easily be shown that the fully devel-oped unperturbed turbulent burning velocity U t,1predicted by Eq.(4)is equal to U t ifs f¼4D t=U2t ,i.e.,both Eqs.(1)and(4)yield thesame U t,1.In contrast,the two equations yield substantially different d t.For the unperturbed flame,Eq.(1)predicts a permanent growth of d t(t)[7,25],whereas Eq.(4)yields afinite d t(tfi1)fid t,1µD t,1/U t,1.The basic difference between the two equations consists of the fact that Eq.(1)has primarily been developed to model the growth of d t[25],whereas various models[3,18]associated with Eq.(4)do not place the focus of consideration on this pro-cess.Accordingly,we suppose that effects offlame thickness growth on stationaryflames can be assessed by comparing results computed usingeither Eq.(1)or Eq.(4)with s f¼4D t=U2t ,allother things being equal.The following specification should be intro-duced.For arbitrary initial conditions,Eq.(4) can yield a growing thickness atfinite t.For instance,both Eqs.(1)and(4)predict that d tµ(D t t)1/2for a self-similarflame at tfi0(see Eqs.(43)and(56)in Ref.[17]).Thus,Eqs.(1) and(4)may yield the same d t at the early stage offlame development.However,since the models associated with Eq.(4)have been elaborated by considering the fully developed unperturbed flame,the ability of Eq.(4)to yield a growing d t(t)appears to be a side-result never studied pur-posefully.Thus,when writing‘‘effects offlame brush thickness growth,’’we mean precisely the effects of placing the focus of consideration on this growth.Turbulentflame development is not reduced to the growth of d tµ(D t t)1/2controlled by a con-stant turbulent diffusivity.Turbulent diffusivity develops too[8].To model the effects of diffusivity development on stationaryflames,we invoke the following well-known approximation[4,9,10]D t¼D t;11ÀexpÀt ds L;ð5Þwhere t d is theflame development time and s L¼D t;1=u02in order for Eq.(5)to result in D t!u02t d as t dfi0,as predicted by Taylor’s the-ory[8].Finally,the growth offlame brush thickness, controlled by the large-scale turbulent eddies,is accompanied by a slow(if t/s L>1)growth of tur-bulent burning velocity,which is mainly con-trolled by the small-scale eddies but is also affected by the large-scale ones[7].To model the latter process,we invoke the following equation [7]U t¼U t;11Às Lt dþs Lt dexpÀt ds L1=2;ð6Þwhere the fully developed burning velocity is closed as follows[25]U t;1¼Au0L Eu0s c1=4;ð7ÞA=0.5is a constant,L E is the Eulerian integral length scale,s c¼j u=S2Lis the chemical time scale, and j u is the molecular heat diffusivity.Equation(6)has been derived[7]using Eqs.(5) and(7),i.e.,the three equations are consistent with one another.Equations1and(5)–(7)consti-tute the base of the so-calledflame speed closure (FSC)model of premixed turbulent combustion, which has been extensively validated against vari-ous experimental data obtained from expanding sphericalflames[7,19].Combining Eqs.(1)or(4)with Eqs.(5)and(6), eight models can be designed,as summarized in Table1.When closing the rhs of Eq.(1),Eqs.(5)and(6)are incorporated into thefirst and sec-ond terms,respectively.When closing the rhs of Eq.(4),Eq.(5)is incorporated solely into thefirst diffusion term(models NAN and NAA),whereas theflame time scale s f in the last source termTable1Combustion modelsModel d t(t)D t(t)U t(t) NNN Eq.(4)D t=D t,1U t=U t,1 NAN Eq.(4)Eq.(5)U t=U t,1 NNA Eq.(4)D t=D t,1Eq.(6) NAA Eq.(4)Eq.(5)Eq.(6) ANN Eq.(1)D t=D t,1U t=U t,1 AAN Eq.(1)Eq.(5)U t=U t,1 ANA Eq.(1)D t=D t,1Eq.(6) AAA Eq.(1)Eq.(5)Eq.(6)P.Sathiah,A.Lipatnikov/Proceedings of the Combustion Institute31(2007)3115–31223117s f ¼4D t ;1=U 2t is evaluated using the fully devel-oped diffusivity and either U t =U t,1(modelsNNN and NAN)or Eq.(6)(models NNA and NAA).Letter ‘‘A’’(‘‘N’’)in the model name means that the development of the corresponding quantity (d t ,D t ,and U t ,respectively)is (not)addressed.Note,that model ANN is equivalent to the Zimont (or TFC)model [25].When using Eqs.(5)and (6),one has to evalu-ate the flame development time t d .Previous appli-cations of the two equations were limited to unsteady spark ignited flames,with t d being sim-ply equal to the time counted from spark ignition.For stationary flames,the calculation of t d is dif-ficult in a general case.To evaluate it,one has to compute a time during which a gas volume moves from a flameholder to a point considered.Since our primary goal is to assess whether or not the development of D t and U t plays a substan-tial role in stationary premixed turbulent flames,let us invoke the simplest evaluation of t d =x /U ,where x is the distance from the bluffbody,and U is the mean velocity averaged over the channel cross-section at x =0(see Fig.1).Our simulations have shown that the use of other,more advanced submodels for t d does not alter the trends dis-cussed in this paper.3.Numerical simulationsWe simulated lean (the equivalence ratio was equal to 0.61)propane–air flames stabilized behind a triangular bluffbody in a rectangular channel (section 0.12·0.24m,length 1m)under the conditions of the Validation Rig I experiments [15](see Fig.1)performed in two cases character-ized by different inlet temperatures,T u =288and 600K.The mean inlet velocity was equal to 17and 35m/s,respectively,and S L =0.14and 0.77m/s,respectively.Temperature was recorded using coherent anti-Stokes Raman scattering at three different distances from the bluffbody.The measurements were simulated running Fluent 6.2[26],which numerically solved the sta-tionary Favre-averaged mass balance,Navier–Stokes,combustion progress variable,and k À [27]equations on a two-dimensional numerical mesh consisting of 301·61nonuniformly distrib-uted nodes in x (axial)and y (transversal)direc-tions,respectively.The nodes were concentrated in the near-field region behind the bluffbody.By virtue of the symmetry of the combustor geometry with respect to the centerline,half of the combus-tor was simulated in the y -direction.The progress variable balance equation was closed using one of the eight combustion models summarized in Table 1,the Bray–Moss [28]state equation.~c ¼.b c ¼.b ð1À .Þ=ð1À.b Þ;ð8Þand the following expressions D t ;1¼C l Sc t ~k 2~;L E ¼C D ~k 3=2~;ð9Þwhere C l =0.09and C D ¼C 3=4l[26].Uniform profiles of the mean axial velocity ~u ,turbulent kinetic energy ~k and its dissipation rate~ were specified at the inlet usingu 0¼ð2~k =3Þ1=2¼0:03~u [15]and Eq.(9)withL E =0.07H [26],where H is the channel width.At the outlet,a constant pressure boundary condi-tion [26]was used and o ~c =o x ¼0.The goal of the simulations was solely restrict-ed to assessing the effects of turbulent flame devel-opment on stationary premixed combustion.To show the role played by these effects in a more dis-tinct and convincing manner,we avoided any empiricism not justified by our primary goal.In particular,we did not invoke submodels of (i)heat losses,(ii)the local combustion quenching by tur-bulent eddies [29],(iii)the influence of heat release on turbulence [3,18],etc.,because such submodels involve new adjustable constants.We did not tune the constant A in Eqs.(1)and (7)(when using Eq.(4),A was increased).We varied neither turbu-lence model,nor its constants (e.g.,C D in Eq.(9)could depend on the Reynolds number [30]),with the exception of the turbulent Schmidt num-ber Sc t ,which was equal to 0.3in our simulations (e.g.,Bilger et al.[31]obtained Sc t =0.35by studying reaction in a scalar mixing layer in grid-generated turbulence).We did not adjust the boundary conditions, e.g.,L E at the inlet was not measured and could be tuned.For these reasons and,primarily,due to the lack of a well-elaborated model of turbulence in reacting,recirculating,confined flows;computed results should not be considered to be a solid test of a combustion model.Nevertheless,we will compare the experimental and computed data to assess our simulations.To convert the Favre-aver-aged temperature ~Tcomputed by the code [26]into the Reynolds-averaged temperature Trecord-ed using CARS [15],we invoked Eq.(8)where c =(T ÀT u )/(T max (x )ÀT u )and T max (x )wastheFig.1.Validation Rig I.3118P.Sathiah,A.Lipatnikov /Proceedings of the Combustion Institute 31(2007)3115–3122maximum value of Tðy Þin the channel cross-sec-tion at distance x from the bluffbody.4.Results and discussionTo reduce complicating factors and to show solely the straightforward effects of turbulent flame development on stationary premixed com-bustion,let us first consider the case of stationary and spatially uniform turbulence not affected by heat release.To simulate such a hypothetical case,the constant values of u 0and L E were set in the whole computational domain instead of solving the k À balance equations.Results obtained in this case are shown in Figs.2and 3.To make these and the following figures readable,we will plot results computed using only five of eight combustion models in each separate figure,whereas the least interesting results obtained using the other three models will not be reported.Figure 2shows the burning rate Q ,which is equal to R U t jr ~c j dy or R ~c ð1À~c Þdy =s f for the models associated with Eqs.(1)or (4),respectively.Note that the constant A was increased by 3times in the latter models in order to obtain a sta-tionary flame.The point is that Eq.(4)with s f ¼4D t =U 2t ;1predicts a substantially lower burn-ing rate than Eq.(1)with the same A and U t =U t,1.This is a manifestation of the role played by flame development.Both equations yield the burning rate equal to U t,1for a fully developed unperturbed flame.However,for a developing flame,the Q predicted by Eq.(4)is lower than U t,1,because the developing d t is much lower than d t,1.The same mechanism explains the substantial effect of the development of turbulent diffusivity on burning rate (cf.curves NNN and NAN).Such an effect is not observed when using Eq.(1)and results computed using models ANN (not shown)and AAN are very close to one another,as well as results computed using models ANA (not shown)and AAA.Due to the increase in A ,the normalized burn-ing rate Q /U t,1obtained using Eq.(4)can be larg-er than unity (see curves NNN and NAN),as the denominator U t,1was calculated using the same A =0.5for all models.A decrease in Q /U t,1with x /(U s t ),e.g.,curve NNN,results from a reduction in flame thickness near the walls.Figure 2indicates a substantial effect of the development of U t on burning rate (cf.NNN and NNA or AAN and AAA).The development of D t affects Q (cf.NNN and NAN)only when using Eq.(4).In contrast,the development of D t substantial-ly affects the growth of d t (x ),computed using either Eq.(1)(cf.ANN and AAN in Fig.3)or Eq.(4)(cf.NNN and NAN),whereas the thick-ness is weakly affected by the development of U t (cf.AAN and AAA,the same trend is observed when comparing NNN and NNA,not shown).Figure 3indicates that Eqs.(1)and (4)yield roughly the same d t (x )(cf.ANN and NNN)if the constant A ,used to evaluate s f ¼4D t ;1=U 2t ;1in the latter equation by invoking Eq.(7),is prop-erly increased,all other things being equal.This observation is consistent with the above men-tioned (see Section 2)result of a theoretical study of self-similar developing flames,which shows that both Eqs.(1)and (4)predict that d t µ(D t t)1/2as t fi0[16,17].Figures 4–6show results computed using the k À model in the case of T u =288K.TheP.Sathiah,A.Lipatnikov /Proceedings of the Combustion Institute 31(2007)3115–31223119decrease in Q with x /U at x /U <10ms (see Fig.4),yielded by models ANA and AAA,is associated with turbulence variations near the bluffbody.The increase in Q with x /U at x /U >10ms,yielded by model NNN,is caused by a strong decrease in s f near the walls.Such an effect is well known in SI engine simulations [1].The decrease in s f also causes an increase in c ðy Þin the near-wall region (see curve NNN in Fig.6b).Other trends observed in Fig.4are similar to the trends discussed above concerning the con-stant turbulent case.First,when using Eq.(4)with s f ¼4D t =U 2t ,the constant A should be increased to obtain a stationary flame.For instance,Eqs.(1)and (4),supplemented with the same Eqs.(7)and (9)to evaluate U t,1and D t,1,respectively,yield roughly the same profiles of c ðy Þat x =0.15m (cf.curves ANN and NNN in Fig.6a)if A =0.5and 1.9,respectively.3120P.Sathiah,A.Lipatnikov /Proceedings of the Combustion Institute 31(2007)3115–3122Second,the development of U t(cf.ANN and ANA)substantially affects the burning rate.Third,the development of D t weakly affects Q (cf.ANN and AAN)when using Eq.(1).Figure5indicates that not only the develop-ment of D t(cf.ANN and AAN or ANA and AAA)but also the development of U t(cf.ANN and ANA or AAN and AAA)markedly affect d t(x).The latter effects,not observed in the con-stant turbulence case,are associated with turbu-lence variations in theflame.The ends of the curves in Fig.5correspond to distances x at which the computedflame brush reaches the walls.Similar to Fig.3,Fig.5shows that Eqs.(1)and (4)yield roughly the same d t(x)(cf.ANN and NNN)if the constant A is properly increased when evaluating s f in the latter equation.Thus, although from a theoretical standpoint,the key difference between Eqs.(1)and(4)consists of modeling the growth of the meanflame thickness, as discussed in Section2;in practical computa-tions,the key difference between the two equa-tions consists of the values of the burning rates, yielded by Eqs.(1)and(4)in developingflames.The trends discussed above are also pro-nounced in Fig.6.Briefly speaking,all the consid-ered phenomena associated with premixed turbulentflame development notably affect the transverse profiles of the Reynolds-averaged pro-gress variable.The curves computed using the FSC(AAA)model,which addresses all these phenomena,agree with the experimental data bet-ter than results obtained using the other seven models.It is worth emphasizing that the effect of the development of U t on cðyÞis well pronounced even at a large distance from the bluffbody(cf. ANN with ANA or AAN with AAA in Fig.6c), whereas the effect of the development of D t on cðyÞdecreases with x(cf.ANA and AAA in Figs. 6a and c).Figure7shows that these effects are also of importance in the case of T u=600K;the FSC (AAA)model agrees with the experimental data better than the Zimont(ANN)model(cf.bold andfine lines with symbols).However,the reason-able agreement(with the exception of the farfield, x=0.55m)between measured data and the results computed using the FSC model in both cases(see Figs.6and7)should not be overesti-mated,as the ability of the kÀ model to predict turbulence characteristics in the simulatedflow can easily be put into question.It is worth noting that the simulation offlame development does not reduce the computational efficiency of the code.The convergence rate for the FSC model(AAA)was higher by10%than for the Zimont model(ANN).Although the above simulations demonstrate thatflame development may substantially affect stationary premixed turbulent combustion,these particular results do not prove that such effects are of importance in all confined burners.The magnitude of these effects depend on meanflow velocity,turbulence characteristics,and combus-tor geometry.5.ConclusionsNumerical simulations of confined,stationary, premixed,turbulentflames were performed using eight different combustion models,which step-by-step address various physical mechanisms associated with premixed turbulentflame develop-ment,in particular,(i)the growth of meanflame brush thickness,(ii)the development of turbulent diffusivity,and(iii)the development of turbulent burning velocity.Results show that these mechanisms notably affect(i)burning rate integrated over a combustor cross-section,(ii)meanflame thickness,and(iii) transverse profiles of the normalized Reynolds-av-eraged temperature in the studiedflames.These mechanisms should be addressed when modeling a stationary turbulentflame in a general case.For this purpose,elaboration of an advanced submodel for evaluatingflame develop-ment time in stationary combustors is of para-mount importance.AcknowledgmentsThis work was supported by the Swedish Gas Turbine Center(GTC).The authors are grateful to Prof.Jerzy Chomiak for valuable discussions and to Mrs.Lena Andersson from Volvo Aero Corporation for providing experimental data.P.Sathiah,A.Lipatnikov/Proceedings of the Combustion Institute31(2007)3115–31223121References[1]H.G.Weller,lu,A.D.Gosman,R.R.Maly,R.Herweg,B.Heel,in:COMODIA94—Proceedings of the Third International Symposium on Diagnos-tics and Modeling of Combustion in Internal Combustion Engines,Yokohama,Japan,11–14 July,1994,163–169.[2]J.Wallesten,A.N.Lipatnikov,J.Chomiak,Proc.Combust.Inst.29(2002)703–709.[3]D.Veynante,L.Vervish,Prog.Energy Combust.Sci.28(2002)193–266.[4]R.S.Brodkey,The Phenomena of Fluid Motions,Addison-Wesley,London,1967.[5]R.G.Bill,I.Naimer,L.Talbot,R.K.Cheng,F.Robben,Combust.Flame43(1981)229–242. [6]T.C.Chew,K.N.C.Bray,R.E.Britter,Combust.Flame80(1990)65–82.[7]A.N.Lipatnikov,J.Chomiak,Prog.Energy Com-bust.Sci.28(2002)1–74.[8]G.I.Taylor,Proc.London Math.Soc.Ser.2(20)(1921)196–211.[9]B.Lewis,G.Von Elbe,Combustion,Flames andExplosions of Gases,second ed.,Academic Press, New York,1961.[10]J.Chomiak,Combustion:a Study in Theory,Factand Application,Gordon and Breach,New York, 1990.[11]M.Namazian,I.G.Shepherd,L.Talbot,Combust.Flame64(1986)299–308.[12]A.Boukhalfa,I.Go¨kalp,Combust.Flame73(1988)75–87.[13]P.Goix,P.Paranthoen,M.Trinite,Combust.Flame81(1990)229–241.[14]S.A.Filatyev,J.F.Driscoll, C.D.Carter,J.M.Donbar,Combust.Flame141(2005)1–21.[15]A.Sjunnesson,P.Henrikson,C.Lo¨fstro¨m,AIAAPaper92/3650.[16]A.N.Lipatnikov,J.Chomiak,bust.Inst.30(2005)843–850.[17]A.N.Lipatnikov,J.Chomiak,Phys.Fluids17(2005)065105.[18]K.N.C.Bray,Proc.R.Soc.London A451(1995)231–256.[19]A.N.Lipatnikov,Combust.Sci.Technol.(2006)inpress.[20]V.L.Zimont,F.Biagioli,Combust.Theory Model-ling6(2002)79–101.[21]F.Biagioli,V.L.Zimont,bust.Inst.29(2002)2087–2095.[22]S.R.P.Muppala,N.K.Aluri,F.Dinkelacker,A.Leipertz,Combust.Flame140(2005)257–266. [23]V.L.Zimont,W.Polifke,M.Bettelini,W.Weisen-stein,J.Eng.Gas Turbines Power120(1998)526–532.[24]W.Polifke,P.Flohr,M.Brandt,J.Eng.GasTurbines Power124(2002)58–65.[25]V.L.Zimont,Exp.Therm.Fluid Sci.21(2000)179–186.[26]Fluent6.0User’s Guide.Lebanon,NH,2001.[27]under,D.B.Spalding,Mathematical Modelsof Turbulence,Academic Press,London,1972. [28]K.N.C.Bray,J.B.Moss,Acta Astronautica4(1977)291–319.[29]A.N.Lipatnikov,J.Chomiak,Prog.Energy Com-bust.Sci.31(2005)1–73.[30]K.R.Sreenivasan,Phys.Fluids10(1998)528–529.[31]R.W.Bilger,L.R.Saetran,L.V.Krishnamoorthy,J.Fluid Mech.233(1991)211–242.3122P.Sathiah,A.Lipatnikov/Proceedings of the Combustion Institute31(2007)3115–3122。
氢气-空气泄爆理论预测模型研究韩森; 沈致和; 汪兴【期刊名称】《《安徽建筑》》【年(卷),期】2019(026)010【总页数】3页(P212-214)【关键词】泄爆; 预测模型; 超压【作者】韩森; 沈致和; 汪兴【作者单位】合肥工业大学土木与水利工程学院安徽合肥230009【正文语种】中文【中图分类】TQ116.21 引言为了解决日益严重的能源危机和环境污染问题,迫切需要开发洁净、经济的新能源。
氢具有燃烧无污染、效率高等优点,氢的利用等方面的研究被世界各国高度重视。
截止2017年1月,全球已经有两百多个加氢站投入运营,相应的氢汽车也是逐年增加。
然而氢气具有密度小、点火能量低、爆炸极限宽(4%~75%)、燃烧速度快等特点。
一旦氢气储存和使用不当而发生泄漏,在外界点火源作用下可能会发生火灾甚至造成爆炸等灾害事故。
而爆炸事故一旦发生,其损失是不可估量的。
因此为了预防和减少事故发生的危害,迫切需要发展氢防爆抑爆技术。
泄爆作为一种最有效降低氢爆炸超压的方式,获得研究者大量关注,国内外开展了大量的实验研究和理论研究。
郭进等人[1-5]在带有泄口面积为49的圆柱形小容器(V=12266cm3)中进行了不同工况下的实验研究,实验研究发现在同种泄口面积下,不同的氢气浓度、不同的点火位置(前、中、后)对最大超压的影响。
Daubech等人[6]在2m×2m×1m的容器中,开展了泄口面积为0.5m2,不同点火位置、氢气浓度(10.5%~28.7%)等工况下氢气/空气爆炸实验研究。
结果表明,容器内部产生最大超压明显受点火位置、氢气浓度等参数的影响。
Bauwens 等人[7-10]开展了大尺度舱室(4.6m×4.6m×3m)中氢气/空气的泄爆实验,针对不同的点火位置、不同泄口面积、低氢气浓度等参数下对爆炸超压进行了研究。
Bauwens等人发现泄口面积对容器内部产生的峰值超压也有影响。
fluent tui使用技巧及燃烧室自动化仿真案例TUI stands for Transient User Interface and it is an interactive mode of FLUENT, a computational fluid dynamics (CFD) software developed by ANSYS. FLUENT TUI allows users to interact with the software through command line inputs instead of using the graphical user interface (GUI). Here are some tips to improve your fluency in FLUENT TUI and an example of automation simulation in a combustion chamber.1. Familiarize Yourself with FLUENT TUI: Start by learning the basic commands and syntax of FLUENT TUI. You can refer to the FLUENT documentation or online resources for a comprehensive list of commands and their functions.2. Customize and Save Commands: FLUENT TUI allows you to create custom commands and save them for future use. This can greatly simplify repetitive tasks. Use the Define/User-Defined Function (UDF) option to define custom commands and then save them for later use.3. Use Journal Files: Journal files are scripts that contain a sequence of TUI commands. You can create journal files by recording your actions in the GUI or by manually writing the commands. Using journal files can automate repetitive tasks and allow for easy reproducibility ofsimulations.4. Utilize Shortcuts: FLUENT TUI provides many shortcuts to speed up your workflow. For example, you can use the "" wildcard to select multiple objects at once, use "rp" to repeat the last command with revised parameters, or use "ac" to access the command that was previously active.5. Incorporate Macros: Macros are predefined sets of commands that can be executed with a single command. Macros can be useful for complex simulations with multiple steps or for automating a series of tasks. You can create macros by recording a set of commands or writing them manually.Example: Combustion Chamber Automation Simulation1. Load Pre-processing Data: Use the "file/read-case" command to load the pre-processing files, such as mesh file (.msh) and boundary condition files (d). Make sure to specify the correct file paths.2. Define Boundary Conditions: Set the appropriate boundary conditions for the combustion chamber, such as inlet velocity, pressure, andtemperature, and outlet pressure.3. Define Combustion Model: Choose a combustion model that suits your simulation requirements, such as a laminar or turbulent combustion model. Set the relevant parameters for the selected model using the appropriate commands.4. Perform Iterative Solver: Use the "solve/iterate" command to start the iterative solution process. Adjust the convergence criteria and maximum iterations as needed. Monitor the convergence and make adjustments if required.5. Post-processing: Once the simulation is complete, use post-processing commands to analyze and visualize the results, such as contour plots, vector plots, or exporting data for further analysis.By applying these tips and following the example, you can enhance your skills in using FLUENT TUI and automate combustion chamber simulations. Remember to refer to the documentation and practice regularly to become proficient in FLUENT TUI.。