framebuffer 简要
- 格式:pdf
- 大小:200.62 KB
- 文档页数:9
Android帧缓冲区(Frame Buffer)硬件抽象层(HAL)模块Gralloc的实现原理分析Android帧缓冲区,Frame Buffer,硬件抽象层,HAL,模块Gralloc的实现原理分析前面在介绍Android系统的开机画面时提到,Android设备的显示屏被抽象为一个帧缓冲区,而Android系统中的SurfaceFlinger服务就是通过向这个帧缓冲区写入内容来绘制应用程序的用户界面的。
Android系统在硬件抽象层中提供了一个Gralloc模块,封装了对帧缓冲区的所有访问操作。
本文将详细分析Gralloc模块的实现,为后续分析SurfaceFlinger服务的实现打下基础。
在前面Android系统的开机画面显示过程分析一文中提到,Linux内核在启动的过程中会创建一个类别和名称分别为“graphics”和“fb0”的设备,用来描述系统中的第一个帧缓冲区,即第一个显示屏,其中,数字0表示从设备号。
注意,系统中至少要存在一个显示屏,因此,名称为“fb0”的设备是肯定会存在的,否则的话,就是出错了。
Android系统和Linux内核本身的设计都是支持多个显示屏的,不过,在Android目前的实现中,只支持一个显示屏。
在前面Android系统的开机画面显示过程分析一文中还提到,init进程在启动的过程中,会启动另外一个进程ueventd来管理系统的设备文件。
当ueventd进程启动起来之后,会通过netlink接口来Linux内核通信,以便可以获得内核中的硬件设备变化通知。
而当ueventd进程发现内核中创建了一个类型和名称分别为“graphics”和“fb0”的设备的时候,就会这个设备创建一个/dev/graphics/fb0设备文件。
这样,用户空间的应用程序就可以通过设备文件/dev/graphics/fb0来访问内核中的帧缓冲区,即在设备的显示屏中绘制指定的画面。
注意,用户空间的应用程序一般是通过内存映射的方式来访问设备文件/dev/graphics/fb0的。
flutter linux framebuffer -回复Flutter是一个开源的UI框架,它可以帮助开发者快速构建漂亮且高性能的跨平台应用程序。
而Linux framebuffer是一种基于内存的显示设备,它可以直接访问和操作显存,将图形信息显示在屏幕上。
本文将详细介绍Flutter在Linux framebuffer上的应用,包括如何配置和启动以及遇到的一些常见问题和解决方案。
何为Linux framebuffer?首先,我们需要理解什么是Linux framebuffer。
Framebuffer是一种显示设备的编程接口,它提供了对显存的底层访问和操作。
以前,大多数操作系统都使用字符设备驱动或者X Window System来显示图形界面,而Linux framebuffer则是在这些方式之上的一层软件接口。
它允许开发者直接操作显存,快速地将图形信息显示在屏幕上。
Linux framebuffer不仅适用于嵌入式设备,也可以在普通的Linux系统上使用。
Flutter在Linux framebuffer上的使用Flutter最初是为移动设备开发的,但随着时间的推移和社区的发展,Flutter已经支持了更多的平台,包括桌面和嵌入式系统。
使用Flutter在Linux framebuffer上进行开发,可以让我们在Linux环境中快速构建漂亮且高性能的应用程序。
# 配置Linux framebuffer在开始使用Flutter在Linux framebuffer上进行开发之前,我们需要先配置Linux framebuffer。
首先,确保操作系统已经安装了Linux framebuffer的驱动程序。
然后,通过修改系统的启动参数来启用Linux framebuffer。
具体的步骤会因不同的Linux发行版而有所不同,可以参考相关的文档和教程来进行配置。
# 启动Flutter应用一旦Linux framebuffer配置完成,我们就可以开始启动Flutter应用了。
FrameBuffer对象被用来存放渲染的结果,FrameBuffer可以使你对颜色,模型,色深等的创建精确。
下面是创建FrameBuffer的方法:1:创建framebuffer对象。
2:创建一个或多个对象 (renderbuffers or textures),对他们进行存储分配,将它们付着到framebuffer的付着点上去。
3:测试framebuffer的完整性。
下面是Sample Code生成一个OfferScreenFramebuffer对象1:生成并绑定framebuffer2:生成colorRenderbuffer,分配内存,付着到framebuffer上。
3:生成depthRenderbuffer,分配内存,付着到framebuffer上。
4,检查framebuffer的完整性,在需要在frame属性被编辑后调用:用framebuffer进行纹理渲染:1:创建一个framebuffer对象。
2:创建目的纹理,并将其付着到framebuffer上。
3:生成depthRenderbuffer,分配内存,付着到framebuffer上。
(同上)4:检查framebuffer的完整性。
(同上)渲染Core Animation Layer:在iOS里面都是由Core Animation Layer来作显示效果的,但是OpenGL ES没有直接使用CAEAGL Layer而是定义一个UIView的子类,UIView可以被CAEAGLLayer支持。
下面是生成OpenGL ES的View步骤:1:生成一个UIView的子类用来做OpenGL ES的View;2:重写(override)layerClass方法,使得你的View使用CAEAGLLayer作为它的底层。
layerCla ss返回一个CAEAGLLayer。
3:在View 的初始化过程中,读取view的layer属性,代码如下:myEAGLLayer = (CAEAGLLayer*)yer;4:设置layer的属性。
framebuffer 编程(原创实用版)目录1.framebuffer 概述2.framebuffer 编程的基本原理3.framebuffer 编程的步骤4.framebuffer 编程的实例5.framebuffer 编程的优缺点正文【1.framebuffer 概述】Framebuffer(帧缓冲区),也被称为显存,是计算机图形学中的一种存储设备,主要用于暂时存储显卡生成的图像。
Framebuffer 是一个高分辨率的缓冲区,可以存储屏幕上的所有像素。
它主要用于将计算机生成的二维图像转换为显示器可以识别的信号,以便在屏幕上显示。
【2.framebuffer 编程的基本原理】Framebuffer 编程的基本原理是通过编程控制显卡的帧缓冲区,从而实现对图像的控制。
它主要包括以下几个步骤:1.配置 framebuffer:设置 framebuffer 的属性,如宽度、高度、颜色深度等。
2.将图像数据写入 framebuffer:通过显卡的命令将图像数据写入framebuffer。
3.提交 framebuffer:将 framebuffer 中的数据提交给显卡,开始渲染。
【3.framebuffer 编程的步骤】Framebuffer 编程的基本步骤如下:1.初始化 framebuffer:首先,需要初始化 framebuffer,包括分配内存、设置属性等。
2.绑定 framebuffer:将 framebuffer 绑定到特定的渲染管线。
3.写入图像数据:通过显卡的命令将图像数据写入 framebuffer。
4.提交 framebuffer:将 framebuffer 中的数据提交给显卡,开始渲染。
5.释放 framebuffer:渲染完成后,需要释放 framebuffer。
【4.framebuffer 编程的实例】以下是一个简单的 framebuffer 编程实例:```c#include <GL/glut.h>void display() {glClear(GL_COLOR_BUFFER_BIT); // 清除颜色缓冲区glLoadIdentity(); // 重置变换矩阵glOrtho(0, glutGet(GL_WIDTH), glutGet(GL_HEIGHT), 0, -1, 1); // 设置透视投影矩阵glBegin(GL_QUADS); // 开始绘制四边形glColor3f(1.0, 0.0, 0.0); // 设置颜色为红色glVertex2f(-0.5, -0.5); // 绘制左下角glVertex2f(0.5, -0.5); // 绘制右上角glVertex2f(0.5, 0.5); // 绘制右上角glVertex2f(-0.5, 0.5); // 绘制左上角glEnd(); // 结束绘制glFlush(); // 提交绘制结果}int main(int argc, char** argv) {glutInit(&argc, argv);glutCreateWindow("Framebuffer Programming");glutDisplayFunc(display);glutMainLoop();return 0;}```【5.framebuffer 编程的优缺点】Framebuffer 编程的优点:1.灵活性:framebuffer 编程可以实现对图像的精确控制,包括颜色、亮度、对比度等。
全面的framebuffer详解一、FrameBuffer的原理FrameBuffer 是出现在2.2.xx 内核当中的一种驱动程序接口。
Linux是工作在保护模式下,所以用户态进程是无法象DOS那样使用显卡BIOS里提供的中断调用来实现直接写屏,Linux抽象出FrameBuffer这个设备来供用户态进程实现直接写屏。
Framebuffer机制模仿显卡的功能,将显卡硬件结构抽象掉,可以通过Framebuffer 的读写直接对显存进行操作。
用户可以将Framebuffer看成是显示内存的一个映像,将其映射到进程地址空间之后,就可以直接进行读写操作,而写操作可以立即反应在屏幕上。
这种操作是抽象的,统一的。
用户不必关心物理显存的位置、换页机制等等具体细节。
这些都是由Framebuffer设备驱动来完成的。
但Framebuffer本身不具备任何运算数据的能力,就只好比是一个暂时存放水的水池.CPU将运算后的结果放到这个水池,水池再将结果流到显示器. 中间不会对数据做处理. 应用程序也可以直接读写这个水池的内容.在这种机制下,尽管Framebuffer需要真正的显卡驱动的支持,但所有显示任务都有CPU完成,因此CPU 负担很重framebuffer的设备文件一般是/dev/fb0、/dev/fb1 等等。
可以用命令: #dd if=/dev/zero of=/dev/fb 清空屏幕.如果显示模式是1024x768-8 位色,用命令:$ dd if=/dev/zero of=/dev/fb0 bs=1024 count=768 清空屏幕;用命令: #dd if=/dev/fb of=fbfile 可以将fb中的内容保存下来;可以重新写回屏幕: #dd if=fbfile of=/dev/fb;在使用Framebuffer时,Linux是将显卡置于图形模式下的.在应用程序中,一般通过将FrameBuffer 设备映射到进程地址空间的方式使用,比如下面的程序就打开/dev/fb0 设备,并通过mmap 系统调用进行地址映射,随后用memset 将屏幕清空(这里假设显示模式是1024x768-8 位色模式,线性内存模式):int fb;unsigned char* fb_mem;fb = open ("/dev/fb0", O_RDWR);fb_mem = mmap (NULL, 1024*768, PROT_READ|PROT_WRITE,MAP_SHARED,fb,0); memset (fb_mem, 0, 1024*768); //这个命令应该只有在root可以执行FrameBuffer 设备还提供了若干ioctl 命令,通过这些命令,可以获得显示设备的一些固定信息(比如显示内存大小)、与显示模式相关的可变信息(比如分辨率、象素结构、每扫描线的字节宽度),以及伪彩色模式下的调色板信息等等。
framebuffer的配置方法在console模式(也就上文本显示,也是text模式),说直接一点,就是全屏是黑色的,象DOS那样的界面的,在桌面环境下,按CTRL+ALT+F2 或者F3 等,就进入console模式了。
就是完全文本命令操作的那种非图形桌面环境。
用 framebuffer 驱动及配置,主要是能让text模式下找到更适合的观感。
一、让console 模式下分辨率起作用的主要配置文件是 lilo.conf 或者 grub.conf , lilo.conf 是lilo系统引导管理器的配置文件,如果您用这个来引导系统,就要配置 lilo.conf文件;grub.conf 是另一个系统引导管理器grub的配置文件。
这两个系统引导管理器,其作用是一样的,只是实现的方法不太一样。
这两个管理器不能同时使用。
二、framebuffer console的参数如下,主要是分辨率;# Colours 640x480 800x600 1024x768 1280x1024 16 00x1200# --------+---------------------------------------------# 256 | 769 771 773 775 796# 32,768 | 784 787 790 793 797# 65,536 | 785 788 791 794 798# 16.8M | 786 789 792 795 799如果看不懂上面的这个,就看下面的这个,对照着看吧# Normal VGA console# vga = normal# VESA framebuffer console @ 1024x768x64k# vga=791# VESA framebuffer console @ 1024x768x32k# vga=790# VESA framebuffer console @ 1024x768x256# vga=773# VESA framebuffer console @ 800x600x64k# vga=788# VESA framebuffer console @ 800x600x32k# vga=787# VESA framebuffer console @ 800x600x256# vga=771# VESA framebuffer console @ 640x480x64k# vga=785# VESA framebuffer console @ 640x480x32k# vga=784# VESA framebuffer console @ 640x480x256# vga=769三、配置[对于大多数Linux发行版,如果您是用系统自带的内核,内核是支持framebuffer 驱动的。
uClinux的framebuffer简介如何配置framebuffer面的内容主要是关于framebuffer 的一些知识,主要是根据我们实际开发过程中的一些体会,其中难免错漏之处,欢迎指正。
什么是framebuffer 设备framebuffer 是一种能够提取图形的硬件设备,是用户进入图形界面很好的接口。
有了framebuffer,用户的应用程序不需要对底层的驱动的深入了解就能够做出很好的图形。
对于用户而言,它和/dev 下面的其他设备没有什么区别,用户可以把framebuffer 看成一块内存,既可以向这块内存中写入数据,也可以从这块内存中读取数据。
第一个被注册的framebuffer 的minor 等于0,第二个被注册的framebuffer的minor 等于1,以此类推。
framebuffer 内部结构数据结构:framebuffer 设备很大程度上依靠了下面四个数据结构。
这三个结构在fb.h 中声明。
Struct fb_var_screeninfoStruct fb_fix_screeninfoStruct fb_info第一个结构是用来描述图形卡的特性的。
通常是被用户设置的。
第二个结构定义了图形卡的硬件特性,是不能改变的,用户选定了哪一个图形卡,那么它的硬件特性也就定下来了。
第三个结构定义了当前图形卡framebuffer 设备的独立状态,一个图形卡可能有两个framebuffer,在这种情况下,就需要两个fb_info 结构。
这个结构是唯一在内核空间可见的。
设计自己的framebuffer 设备驱动用户首先需要添加下面的代码到fbmem.cstatic struct {const char *name;int (*init)(void);int (*setup)(char*);} fb_drivers[] __initdata = {#ifdef CONFIG_FB_YOURCARD{ "driver_name", xxxfb_init, xxxfb_setup },#endif其次在xxfb.c 中根据自己的需要重新分配显存大小。
framebuffer设备原理FrameBuffer是一种用于图形显示的设备,它作为计算机系统中的一个重要组成部分,用于控制显示器显示图像。
在现代计算机体系结构中,FrameBuffer被广泛应用于图像处理、计算机游戏和图形用户界面等领域。
FrameBuffer设备原理涉及到了显示器、图像数据存储和显示控制等多个方面。
让我们逐步来了解FrameBuffer设备的原理。
首先,我们需要了解FrameBuffer是什么。
FrameBuffer实际上是指一块内存区域,用于存储和管理图像数据。
这块内存被分割成一系列的单元,每个单元都对应屏幕上的一个像素点。
每个像素点的颜色信息都会被存储在FrameBuffer中。
FrameBuffer设备通过显示控制器来控制图像在显示器上的显示。
显示控制器连接着FrameBuffer设备和显示器,负责将FrameBuffer中的图像数据转换成电子信号发送给显示器。
实际上,显示控制器将FrameBuffer中的二进制图像数据转换为模拟信号,通过显示器上的像素点来显示图像。
在显示控制器中,最关键的部分是时序控制电路。
时序控制电路负责生成与显示器参数匹配的时钟信号,以确保每个像素点按照正确的时间顺序接收到正确的图像数据。
时序控制电路还会根据显示器的分辨率和刷新率等参数来确定显示图像的频率。
为了保证图像的质量和平滑度,FrameBuffer设备通常会具备高的色彩深度,即每个像素点可以表示的颜色种类数量。
常见的色彩深度有16位、24位和32位。
高色彩深度可以更精确地表示颜色,使得图像更加真实和细腻。
当用户在计算机上进行图形操作时,如打开应用程序、拖动窗口或者播放视频,操作系统会将相应的图像数据传输到FrameBuffer设备中。
操作系统通过设备驱动程序来控制FrameBuffer设备。
设备驱动程序是连接操作系统和硬件设备的桥梁,它将图像数据传输到FrameBuffer,并通知显示控制器开始显示图像。
framebuffer简介FrameBuffer是出现在2.2.xx内核当中的一种驱动程序接口。
Linux工作在保护模式下,所以用户态进程是无法象DOS那样使用显卡BIOS里提供的中断调用来实现直接写屏,Linux抽象出FrameBuffer这个设备来供用户态进程实现直接写屏。
Framebuffer机制模仿显卡的功能,将显卡硬件结构抽象掉,可以通过Framebuffer的读写直接对显存进行操作。
用户可以将framebuffer看成是显示内存的一个映像,将其映射到进程地址空间之后,就可以直接进行读写操作,而写操作可以立即反应在屏幕上。
这种操作是抽象的,统一的。
用户不必关心物理显存的位置、换页机制等等具体细节。
这些都是由framebuffer设备驱动来完成的。
framebuffer本身不具备任何运算数据的能力,就只好比是一个暂时存放水的水池.CPU将运算后的结果放到这个水池,水池再将结果流到显示器.中间不会对数据做处理.应用程序也可以直接读写这个水池的内容.在这种机制下,尽管framebuffer需要真正的显卡驱动的支持,但所有显示任务都有CPU完成,因此CPU负担很重.帧缓冲驱动应用广泛,在linux的桌面系统中,X window服务器就是利用帧缓冲进行窗口的绘制。
尤其是通过帧缓冲可显示汉字点阵,成为Linux汉化的唯一可行方案。
在开发者看来,FrameBuffer本质上是一块显示缓存,往显示缓存中写入特定格式的数据就意味着向屏幕输出内容。
所以说FrameBuffer就是一块白板。
例如对于初始化为16位色的FrameBuffer来说,FrameBuffer中的两个字节代表屏幕上一个点,从上到下,从左至右,屏幕位置与内存地址是顺序的线性关系。
帧缓存可以在系统存储器(内存)的任意位置,视频控制器通过访问帧缓存来刷新屏幕。
帧缓存也叫刷新缓存Frame buffer或refresh buffer,这里的帧(frame)是指整个屏幕范围。
帧缓存有个地址,是在内存里。
我们通过不停的向frame buffer中写入数据,显示控制器就自动的从frame buffer中取数据并显示出来。
全部的图形都共享内存中同一个帧缓存。
CPU指定显示控制器工作,则显示控制器根据CPU的控制到指定的地方去取数据和指令,目前的数据一般是从显存里取,如果显存里存不下,则从内存里取,内存也放不下,则从硬盘里取,当然也不是内存放不下,而是为了节省内存的话,可以放在硬盘里,然后通过指令控制显示控制器去取。
帧缓存Frame Buffer里面存储的东西是一帧一帧的,显卡会不停的刷新Frame Buffer,这每一帧如果不捕获的话,则会被丢弃,也就是说是实时的。
这每一帧不管是保存在内存还是显存里,都是一个显性的信息,这每一帧假设是800x600的分辨率,则保存的是800x600个像素点,和颜色值。
如何启用framebuffer首先确认内核是否支持framebuffer,查看/proc/fb文件是否存在,存在则说明支持,否则,说明不支持。
其次查看framebuffer设备是否已激活,若/dev/fbx文件存在,则说明已经激活;否则说明没有激活。
在系统启动时可通过向kernel传送vga=mode-number的参数来激活FrameBuffer设备,如vga=0x314,将会启动800*600*16bpp模式要linux缺省激活framebuffer设备,需要将/etc/grub.conf改成如下形式:#grub.conf generated by anaconda##Note that you do not have to rerun grub after making changes to this file#NOTICE:You do not have a/boot partition.This means that#all kernel and initrd paths are relative to/,eg.#root(hd0,0)#kernel/boot/vmlinuz-version ro root=/dev/sda1#initrd/boot/initrd-version.img#boot=/dev/sdadefault=0timeout=10splashimage=(hd0,0)/boot/grub/splash.xpm.gztitle Red Hat Linux(2.4.18-14)root(hd0,0)kernel/boot/vmlinuz-2.4.18-14ro root=LABEL=/hdc=ide-scsi vga=0x314initrd/boot/initrd-2.4.18-14.img0x314表示800*600*16bpp,其它取值见下表:color640x400640x480800x6001024x7681280x10241600x12004bits??0x302???8bits0x3000x3010x3030x3050x3070x31C15bits?0x3100x3130x3160x3190x31D16bits?0x3110x3140x3170x31A0x31E24bits?0x3120x3150x3180x31B0x31F32bits??????framebuffer设备启用后,在重启系统时屏幕左上方会显示一个小企鹅。
如何编程操作framebuffer帧缓冲设备对应的设备文件为/dev/fb*,如果系统有多个显示卡,Linux下还可支持多个帧缓冲设备,最多可达32个,分别为/dev/fb0到/dev/fb31,而/dev/fb则为当前缺省的帧缓冲设备,通常指向/dev/fb0。
当然在嵌入式系统中支持一个显示设备就够了。
帧缓冲设备为标准字符设备,主设备号为29,次设备号则从0到31,分别对应/dev/fb0至/dev/fb31。
通过/dev/fb,应用程序的操作主要有这几种:1读/写(read/write)/dev/fb文件:相当于读/写屏幕缓冲区。
通过seek接口定位读写位置,通过read/write接口读写具体数据;2映射(map)操作:由于Linux工作在保护模式,每个应用程序都有自己的虚拟地址空间,在应用程序中是不能直接访问物理缓冲区地址的。
为此,Linux在文件操作file_operations结构中提供了mmap函数,可将文件的内容映射到用户空间。
对于帧缓冲设备,则可通过映射操作,可将屏幕缓冲区的物理地址映射到用户空间的一段虚拟地址中,之后用户就可以通过读写这段虚拟地址访问屏幕缓冲区,在屏幕上绘图了。
实际上,使用帧缓冲设备的应用程序都是通过映射操作来显示图形的。
由于映射操作都是由内核来完成,下面我们将看到,帧缓冲驱动留给开发人员的工作并不多。
3I/O控制:对于帧缓冲设备,对设备文件的ioctl操作可读取/设置显示设备及屏幕的参数,如分辨率,显示颜色数,屏幕大小等等。
ioctl的操作是由底层的驱动程序来完成的。
在应用程序中,一般通过将framebuffer设备映射到进程地址空间的方式使用,比如下面的程序就打开/dev/fb0设备,并通过mmap系统调用进行地址映射,随后用memset将屏幕清空(这里假设显示模式是1024x768-8位色模式,线性内存模式):int fb;unsigned char*fb_mem;fb=open("/dev/fb0",O_RDWR);fb_mem=mmap(NULL,1024*768,PROT_READ|PROT_WRITE,MAP_SHARED,fb,0); memset(fb_mem,0,1024*768);framebuffer设备还提供了若干ioctl命令,通过这些命令,可以获得显示设备的一些固定信息(比如显示内存大小)、与显示模式相关的可变信息(比如分辨率、象素结构、每扫描线的字节宽度),以及伪彩色模式下的调色板信息等等。
通过framebuffer设备,还可以获得当前内核所支持的加速显示卡的类型(通过固定信息得到),这种类型通常是和特定显示芯片相关的。
比如目前最新的内核(2.4.9)中,就包含有对S3、Matrox、nVidia、3Dfx等等流行显示芯片的加速支持。
在获得了加速芯片类型之后,应用程序就可以将PCI设备的内存I/O(memio)映射到进程的地址空间。
这些memio一般是用来控制显示卡的寄存器,通过对这些寄存器的操作,应用程序就可以控制特定显卡的加速功能。
PCI设备可以将自己的控制寄存器映射到物理内存空间,而后,对这些控制寄存器的访问,给变成了对物理内存的访问。
因此,这些寄存器又被称为"memio"。
一旦被映射到物理内存,Linux的普通进程就可以通过mmap将这些内存I/O映射到进程地址空间,这样就可以直接访问这些寄存器了。
当然,因为不同的显示芯片具有不同的加速能力,对memio的使用和定义也各自不同,这时,就需要针对加速芯片的不同类型来编写实现不同的加速功能。
比如大多数芯片都提供了对矩形填充的硬件加速支持,但不同的芯片实现方式不同,这时,就需要针对不同的芯片类型编写不同的用来完成填充矩形的函数。
framebuffer只是一个提供显示内存和显示芯片寄存器从物理内存映射到进程地址空间中的设备。
所以,对于应用程序而言,如果希望在framebuffer之上进行图形编程,还需要自己动手完成其他许多工作。
工具cat/dev/fb是一个文件,因此我们可以用对其读写。
cat/dev/fb0>screensnap.txt/*read current sreen to a file*/cat screensnap.txt>/dev/fb0/*将screensnap.txt的内容贴到屏幕上*/dd可以用如下命令清空屏幕:dd if=/dev/zero of=/dev/fb如果显示模式是1024x768-8位色,用如下命令清空屏幕:dd if=/dev/zero of=/dev/fb0bs=1024count=768用如下命令可以将fb中的内容保存下来和重新写回屏幕:dd if=/dev/fb of=fbfiledd if=fbfile of=/dev/fbfbsetfbset是一个可以查看和设置framebuffer的工具。
具体使用方法可参看手册。
Linux LCD驱动程序的编写基本原理∙通过framebuffer,应用程序用mmap把显存映射到应用程序虚拟地址空间,将要显示的数据写入这个内存空间就可以在屏幕上显示出来;∙驱动程序分配系统内存作为显存;实现file_operations结构中的接口,为应用程序服务;实现fb_ops结构中的接口,控制和操作LDC控制器;∙驱动程序将显存的起始地址和长度传给LCD控制器的寄存器(一般由fb_set_var 完成),LDC控制器会自动的将显存中的数据显示在LCD屏上。