归纳:圆外一点求切线长的方法
- 格式:doc
- 大小:48.50 KB
- 文档页数:1
初中数学知识归纳圆的切线与切线定理的计算方法圆是初中数学中非常重要的一个几何概念,而切线与切线定理也是与圆密切相关的概念和定理。
在本文中,我们将对圆的切线和切线定理进行归纳并介绍计算方法。
一、圆的切线圆的切线是指与圆只有一个公共点的直线。
切线的特点是与圆相切于切点,并且切点在切线上。
根据切线的定义,我们可以得出切线具有以下性质:1. 切线与半径垂直在圆的任意切点处,切线与通过该点的半径垂直相交。
这是切线与圆的一个重要性质,在计算切线时会用到。
2. 切线的切点切线与圆相切于切点,而切点位于切线上。
这也是切线的定义之一,切点的坐标可以通过计算得出。
二、切线定理的计算方法切线定理是描述切线与半径之间的关系的一组定理。
我们将介绍几个常用的切线定理及其计算方法。
1. 切线长定理切线长定理描述了切线和半径之间的关系。
对于与圆相切的切线来说,切线上的两个切点到圆心的距离乘积等于这两个切点分别到圆心的距离的平方。
具体计算方法如下:假设切线与圆相切于点A和点B,圆的半径为r,圆的圆心为O。
则有以下关系成立:AO × BO = AC² = BC²其中,AO和BO分别表示点A和点B到圆心O的距离,AC和BC分别表示点A和点B到圆心O的距离。
2. 外切线定理外切线定理指出,如果一条直线同时与两个相交圆的外切,那么它们的切点与连接圆心的直线构成一个等边三角形。
具体计算方法如下:对于与两个圆相切的外切线来说,它的两个切点与两个圆心之间形成的三角形是等边三角形。
设两个圆的半径分别为r₁和r₂,切点之间的距离为d,则有以下关系成立:d = r₁ + r₂其中,d表示切点之间的距离,r₁和r₂表示两个圆的半径。
三、圆的切线与切线定理的应用举例为了更好地理解切线和切线定理的计算方法,我们举例说明。
例题1:已知一个圆的半径为3 cm,点A是这个圆上的一个切点,连接点A和圆心O的线段OA与圆相交于一点B。
过圆外一点求圆的切线方程公式切线方程是解析几何中的重要内容,它描述了一个圆外一点到圆的切线的位置关系。
在学习切线方程的过程中,我们需要了解圆的基本性质,学习如何求解圆的切线方程,以及掌握应用切线方程的能力。
本文将从这三个方面展开,详细介绍圆的切线方程相关知识。
一、圆的基本性质圆是平面上到一个定点距离恒定的点的轨迹。
圆的基本性质包括圆的半径、直径、圆心、弧长、扇形面积等,这些性质都对于计算切线方程很重要。
1.圆的半径和直径:圆的半径是圆心到圆上任意一点的距离,用r表示。
圆的直径是穿过圆心并且两端点都在圆上的线段,直径的长度是半径的两倍,即直径d=2r。
2.圆的圆心:圆的圆心是到圆上任意一点的距离恒定的点,用O表示。
3.圆的弧长和扇形面积:圆的弧长是圆心周围一部分圆的长度,用l表示。
圆的扇形面积是由两条半径和围成弧的线段所围成的部分,扇形面积S = (1/2)rl。
以上是圆的一些基本性质,后面的内容将涉及到这些性质的运用。
二、求解圆的切线方程在解决圆的切线方程时,首先需要确定给定点到圆的位置关系,然后使用几何和代数的方法进行求解。
1.给定圆和外点的位置关系:首先,给定一个圆和一点P,我们需要判断这个点与圆的位置关系。
如果点P到圆的圆心的距离等于圆的半径,即OP = r,那么点P在圆上;如果OP < r,点P在圆内;如果OP > r,点P在圆外。
2.求解切线方程的一般步骤:(1)确定圆心O、圆的半径r和外点P的坐标;(2)计算圆心O到外点P的距离OP;(3)根据距离OP与半径r的关系,判断P与圆的位置关系;(4)分析切线的几何性质,求解切线斜率和切点;(5)写出切线方程的一般形式。
3.以圆心为原点的情况:当圆的圆心O为原点时,圆的方程为x^2 + y^2 = r^2。
假设给定外点P的坐标为(x1, y1),根据距离公式,点到圆心的距离为OP = sqrt(x1^2 + y1^2),然后根据P与圆的位置关系进行求解。
《圆:切线长定理》知识梳理:(1)圆的切线长定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.(3)注意:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.(4)切线长定理包含着一些隐含结论:①垂直关系三处;②全等关系三对;③弧相等关系两对,在一些证明求解问题中经常用到.综合练习:一.选择题1.如图,已知AB为⊙O的直径,CB切⊙O于B,CD切⊙O于D,交BA的延长线于E,若AB=3,ED=2,则BC的长为()A.2 B.3 C.3.5 D.42.既有外接圆,又有内切圆的平行四边形是()A.矩形B.菱形C.正方形D.矩形或菱形3.如图所示,已知PA、PB切⊙O于A、B两点,C是上一动点,过C作⊙O的切线交PA于点M,交PB于点N,已知∠P=56°,则∠MON=()A.56°B.60°C.62°D.不可求4.已知四边形ABCD是梯形,且AD∥BC,AD<BC,又⊙O与AB、AD、CD分别相切于点E、F、G,圆心O在BC上,则AB+CD与BC的大小关系是()A.大于B.等于C.小于D.不能确定5.如图,在平行四边形ABCD中,AB=15,过点D作一圆与AB、BC分别相切于G、H,与边AD、CD相交于点E、F,且5AE=4DE,8CF=DF,则BH等于()A.5 B.6 C.7 D.86.如图,PA,PB分别切⊙O于点A和点B,C是上任一点,过C的切线分别交PA,PB于D,E.若⊙O的半径为6,PO=10,则△PDE的周长是()A.16 B.14 C.12 D.107.如图△ABC内接于⊙O,PA,PB是⊙O的两条切线,已知AC=BC,∠ABC=2∠P,则∠ACB的弧度数为()A.B.C.D.8.PA、PB、CD分别切⊙O于A、B、E,∠APB=54°,则∠COD=()A.36°B.63°C.126°D.46°9.如图,P A、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P的度数为()A.35°B.45°C.60°D.70°10.已知:如图,AB为⊙O的直径,CD、CB为⊙O的切线,D、B为切点,OC交⊙O 于点E,AE的延长线交BC于点F,连接AD、BD.以下结论:①AD∥OC;②点E为△CDB的内心;③FC=FE;④CE•FB=AB•CF.其中正确的只有()A.①②B.②③④C.①③④D.①②④二.填空题11.如图,PA,PB分别为⊙O的切线,切点分别为A、B,PA=6,在劣弧AB上任取一点C,过C作⊙O的切线,分别交PA,PB于D,E,则△PDE的周长是.12.如图,AB为⊙O的直径,点C在AB的延长线上,CD、CE分别与⊙O相切于点D、E,若AD=2,∠DAC=∠DCA,则CE=.13.如图,四边形ABCD是正方形,以BC边为直径在正方形内作半圆O,再过顶点A作半圆O的切线(切点为F)交CD边于E,则sin∠DAE=.14.如图,AC是⊙O的直径,PA,PB是⊙O的切线,A,B为切点,AB=6,PA=5.则⊙O的半径.15.如图,PA,PB分别是⊙O的切线,A,B为切点,AC是⊙O的直径,已知∠BAC=35°,∠P的度数为.16.如图,PA、PB、EF分别切⊙O于A、B、D,若PA=10cm,则△PEF的周长是cm,若∠P=35°,则∠AOB=(度),∠EOF=(度).17.如图,正方形ABCD的边长为4,以AB为直径向正方形内作半圆,CE与DF是半圆的切线,M,N为切点,CE,DF交于点P.则AE=,△PMN的面积是.三.解答题18.如图,∠APB=52°,PA、PB、DE都为⊙O的切线,切点分别为A、B、F,且PA=6.(1)求△PDE的周长;(2)求∠DOE的度数.19.如图,P是半径为cm的⊙O外一点,PA,PB分别和⊙O切于点A,B,PA=PB =3cm,∠APB=60°,C是弧AB上一点,过C作⊙O的切线交PA,PB于点D,E.(1)求△PDE的周长;(2)若DE=cm,求图中阴影部分的面积.20.已知:AB为⊙O的直径,∠A=∠B=90°,DE与⊙O相切于E,⊙O的半径为,AD=2.①求BC的长;②延长AE交BC的延长线于G点,求EG的长.参考答案一.选择题1.解:由切割线定理,得DE2=EA•EB,∵AB=3,ED=2,∴4=AE(AE+3),解得AE=1或﹣4(舍去),∵CB切⊙O于B,∴∠B=90°,∴根据勾股定理得,BC2+42=(BC+2)2,∴BC=3.故选:B.2.解:A、矩形只有外接圆,没有内切圆,故本选项不符合题意;B、菱形只有内切圆,没有外接圆,故本选项不符合题意;C、正方形既有外接圆,也有内切圆,故本选项符合题意;D、矩形只有外接圆,没有内切圆,菱形只有内切圆,没有外接圆,故本选项不符合题意;故选:C.3.解:∠PMN+∠PNM=180°﹣∠P=124°,∠AMN+∠BNM=360°﹣124°=236°,∵MA、MC是⊙O的切线,∴∠AMO=∠CMO,∵NB、NC是⊙O的切线,∴∠BNO=∠CNO,∴∠CMO+∠CNO=(∠AMN+∠BNM)=118°,∴∠MON=180°﹣118°=62°,故选:C.4.解:连接OF,OA,OE,作AH⊥BC于H.∵AD是切线,∴OF⊥AD,易证四边形AHOF是矩形,∴AH=OF=OE,∵S△AOB=•OB•AH=•AB•OE,∴OB=AB,同理可证:CD=CO,∴AB+CD=BC,故选:B.5.解:由8CF=DF,得CF=15×=,则CH2=CF×DC,故CH=5,设BC=x,则BH=x﹣5=BG,故AG=20﹣x,又∵5AE=4DE,∴DE=x,AE=x,则AG2=AE×AD,则(20﹣x)2=x2,解得:x=12,故BH=BC﹣CH=7.故选:C.6.解:连接OA,∵PA切⊙O于A,∴∠OAP=90°,∴在Rt△OAP中,OP=10,OA=6,由勾股定理得:PA=8,∵PA,PB分别切⊙O于点A和点B,DE切⊙O于C,∴PA=PB=8,DA=DC,EB=EC,∴△PDE的周长是:PD+DE+PE=PD+DC+CE+PE=PD+DA+EB+PE=PA+PB=8+8=16,故选:A.7.解:连接OA,OB.则OA⊥AP,OB⊥PB,∴在四边形APBO中,∠P+∠AOB=180°,又∵∠AOB=2∠ACB,∠ABC=2∠P,设∠ACB=180°﹣2∠ABC=180°﹣4∠P,∴∠AOB=360°﹣8∠P,∴∠P+∠AOB=∠P+(360°﹣8∠P)=180°,∴∠P=,∴∠ACB=180﹣4×=,∴∠ACB的弧度数为.故选:A.8.解:如图,连接OA,OB,OE,∵PA、PB、CD分别切⊙O于A、B、E,∴∠AOC=∠EOC,同理∠BOD=∠DOE,∴∠COD=∠COE+∠DOE=∠AOB,∵∠APB=54°,∴∠AOB=126°,∴∠COD=63°.故选:B.9.解:根据切线的性质定理得∠PAC=90°,∴∠PAB=90°﹣∠BAC=90°﹣35°=55°.根据切线长定理得PA=PB,所以∠PBA=∠PAB=55°,所以∠P=70°.故选:D.10.解:连接OD,DE,EB,CD与BC是⊙O的切线,∠ODC=∠OBC=90°,OD=OB,∵OC=OC∴Rt△CDO≌Rt△CBO,∴∠COD=∠COB,∴∠COB=∠DAB=∠DOB,∴AD∥OC,故①正确;∵CD是⊙O的切线,∴∠CDE=∠DOE,而∠BDE=∠BOE,∴∠CDE=∠BDE,即DE是∠CDB的角平分线,同理可证得BE是∠CBD的平分线,因此E为△CBD的内心,故②正确;若FC=FE,则应有∠OCB=∠CEF,应有∠CEF=∠AEO=∠EAB=∠DBA=∠DEA,∴弧AD=弧BE,而弧AD与弧BE不一定相等,故③不正确;设AE、BD交于点G,由②可知∠EBG=∠EBF,又∵BE⊥GF,∴FB=GB,由切线的性质可得,点E是弧BD的中点,∠DCE=∠BCE,又∵∠MDA=∠DCE(平行线的性质)=∠DBA,∴∠BCE=∠GBA,而∠CFE=∠ABF+∠FAB,∠DGE=∠ADB+∠DAG,∠DAG=∠FAB(等弧所对的圆周角相等),∴∠AGB=∠CFE,∴△ABG∽△CEF,∴CE•GB=AB•CF,又∵FB=GB,∴CE•FB=AB•CF故④正确.因此正确的结论有:①②④.故选:D.二.填空题(共7小题)11.解:∵PA,PB分别为⊙O的切线,∴PA=PB,同理,DA=DC,EB=EC.∴△PDE的周长=PD+DE+PE=PD+DC+CE+PE=PD+AD+PE+BE=PA+PB=2PA=2×6=12.故答案是:12.12.解:∵CD、CE分别与⊙O相切于点D、E,∴CD=CE,∵∠DAC=∠DCA,∴AD=CD,∴AD=CE,∵AD=2,∴CE=2.故答案为:2.13.解:设正方形ABCD的边长为4a,EC=x,∵AF为半圆O的切线,∴AF=AB=4a,EC=EF=x,在Rt△ADE中,DE=4a﹣x,AE=4a+x,∴AE2=AD2+DE2,即(4a+x)2=(4a)2+(4a﹣x)2,解得x=a,∴AE=5a,DE=3a,在Rt△ADE中,sin∠DAE===.故答案为.14.解:连接OP,OB,∵AP为⊙O切线,PB为⊙O切线,∴PA=PB,∵∠APO=∠BPO,PG=PG,∴△APG≌△BPG,∴∠PGA=90°,∵△APO为直角三角形,∠APG=∠APG,∴△PGA∽△PAO,根据垂径定理,得到AG=GB,在R t△PAG中,PG==4,∵△PGA∽△AGO,∴=,∴=,∴AO=.故答案为:.15.解:∵OA=OB,∴∠OAB=∠OBA,∵∠BAC=35°,∴∠AOB=110°,∵PA,PB分别是⊙O的切线,∴∠PAO=∠PBO=90°,∵∠P+∠AOB+∠PAO+∠PBO=360°,∴∠P=70°.故答案为:70°.16.解:∵PA、PB、EF分别切⊙O于A、B、D,∴PA=PB=10cm,ED=EA,FD=DB,∴PE+EF+PF=PE+ED+PF+FD=PA+PB=20(cm);∵PA、PB为⊙O的切线,∴∠PAO=∠PBO=90°,而∠P=35°,∴∠AOB=360°﹣90°﹣90°﹣35°=145°;连OD,如图,∴∠ODE=∠ODF=90°,易证得Rt△OAE≌Rt△ODE,Rt△OFD≌Rt△OFB,∴∠1=∠2,∠3=∠4,∴∠2+∠3=∠AOB=72.5°,∠EOF=72.5°.故答案为20;145;72.5.17.解:(1)由切线长定理知:AE=EM,CM=CB;∵CD=CB,∴CM=CD=4.设AE=EM=x,则DE=4﹣x,CE=CM+EM=4+x;在Rt△CDE中,由勾股定理得:(4﹣x)2+42=(4+x)2,解得x=1;故AE=1.(2)同(1)可求得BF=FN=1,则DF=CE=5,DE=CF=3;则可证得Rt△CDE≌Rt△DCF;∴∠DCP=∠CDP,即DP=CP,∴PM=PN;故△DPC∽△NPM,且MN∥CD;设MN所在直线与AD、BC的交点为R、T,则MR⊥AD,NT⊥BC;在Rt△MRE中,ME=1,则ER=ME•cos∠DEC=,MR=ME•sin∠DEC=;过P作PG⊥MN于G,则RG=GT=2,MG=2﹣RM=;易知RE∥PG,则△REM∽△GPM,∴=()2=;∵S△REM=MR•RE=××=,∴S△PMG=×=,故S△PMN=2S△PMG=.三.解答题(共3小题)18.解:(1)∵PA、PB、DE都为⊙O的切线,∴DA=DF,EB=EF,PA=PB=6,∴DE=DA+EB,∴PE+PD+DE=PA+PB=12,即△PDE的周长为12;(2)连接OF,∵PA、PB、DE分别切⊙O于A、B、F三点,∴OB⊥PB,OA⊥PA,∠BOE=∠FOE=∠BOF,∠FOD=∠AOD=∠AOF,∵∠APB=52°,∴∠AOB=360°﹣90°﹣90°﹣52°=128°,∴∠DOE=∠FOE+∠FOD=(∠BOF+∠AOF)=∠BOA=64°.19.解:(1)∵PA、PB、DE是⊙O的切线,∴PA=PB=3cm,CE=BE,AD=DC,∴△PDE的周长=PE+DE+PD=PE+CE+CD+PD=PE+BE+AD+PD=PA+PB=3cm+3cm=6cm;(2)连接OB、OA、OE,OD,如图,∵PA、PB、OC是⊙O的切线,∴OB⊥PB,OA⊥PA,OC⊥DE,∴∠OBP=∠OPA=90°,∵∠APB=60°,∴∠BOA=120°,∵BE=CE,DC=DA,∴S△OCE=S△OBE,S△OCD=S△ODA,∴S五边AOBED=2S△ODE=2×××=4,∴图中阴影部分的面积=S五边AOBED﹣S扇形AOB=4﹣=(4﹣π)cm2.20.解:①过点D作DF⊥BC于点F,∵AB为⊙O的直径,∠A=∠B=90°,∴四边形ABFD是矩形,AD与BC是⊙O的切线,∴DF=AB=2,BF=AD=2,∵DE与⊙O相切,∴DE=AD=2,CE=BC,设BC=x,则CF=BC﹣BF=x﹣2,DC=DE+CE=2+x,在Rt△DCF中,DC2=CF2+DF2,即(2+x)2=(x﹣2)2+(2)2,解得:x=,即BC=;②∵AB为⊙O的直径,∠A=∠B=90°,∴AD∥BC,∴△ADE∽△GCE,∴AD:CG=DE:CE,AE:EG=AD:CG,∵AD=DE=2,∴CG=CE=BC=,∴BG=BC+CG=5,∴AE:EG=4:5,在Rt△ABG中,AG==3,∴EG=AG=.。
九年级数学切线长定理与三角形内切圆知识点讲解及练习【知识点精讲】(一)知识要点----切线长定理1.切线长:经过圆外一点的圆的切线上,这点和切点之间线段的长,叫做这点到圆的切线长。
如图,PA,PB即为P点到圆的切线长。
2.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
(二)知识要点----三角形内切圆1.三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心。
练习1.已知:如图,AB 为⊙O 的直径,PA 、PC 是⊙O 的切线,A 、C 为切点,∠BAC =30. (1)求∠P 的大小;(2)若AB =6,求PA 的长.【总结】切线长定理包括线段相等和角相等两个结论,利用切线长定理可以证明线段相等、角相等、弧相等以及垂直关系等。
2.如图,已知AB 是⊙O 的直径,点P 在BA 的延长线上,PD 切⊙O 于点D ,过点B 作BE ⊥PD ,交PD 的延长线于点C ,连接AD 并延长,交BE 于点E .(1)求证:AB=BE ;(2)连结OC ,如果PD=∠ABC=,求OC 的长.603.如图,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于D,过C 作CG∥AE交BA的延长线于点G.(1)求证:CG是⊙O的切线;4.如图,在平面直角坐标系xOy中,点A在第一象限,点B在x轴的正半轴上,∠OAB=90°.⊙P1是△OAB的内切圆,且P1的坐标为(3,1).(1)OA的长为__________,OB的长为__________;(2)点C在OA的延长线上,CD∥AB交x轴于点D.将⊙P1沿水平方向向右平移2个单位得到⊙P2,将⊙P2沿水平方向向右平移2个单位得到⊙P3,按照同样的方法继续操作,依次得到⊙P4,…⊙Pn.若⊙P1,⊙P2,…⊙Pn均在△OCD的内部,且⊙Pn恰好与CD相切,则此时OD的长为__________.(用含n的式子表示)【总结】三角形内切圆的圆心是三角形三条角平分线的交点,它到三角形三条边的距离都相等。
第一步:将圆的方程配成点斜式,求得圆心坐标与半径,并判断
点()00,y x M 与圆的位置关系:
若点
M 在圆上,则过点M 作圆的切线只存在一条,此时利用过
圆上一点求切线方程的公式即可求得切线方程。
若点M 在圆外,则过点M 作圆的切线一定能够作出两条。
第二步:假设点M 在圆外,并假设过点M 作圆的切线的斜率存
在,设其为k ,利用直线的点斜式方程可得方程为()00x x k y y -=-。
第三步:由于圆心C 到这条直线的距离等于半径,那根据点到直
线的距离公式可将斜率k 求出来:
若求得的k 值有两个,则将其代入该直线的方程即可求得两条切
线的方程;
若求得的k 值只有一个,那么另一条切线的斜率一定不存在,这
时,可通过画图观察得到另一条切线的方程。