电离室测量吸收剂量原理
- 格式:ppt
- 大小:617.00 KB
- 文档页数:25
电离室的工作原理
电离室是一种用于测量辐射的仪器。
它的工作原理是利用辐射与物质相互作用时所产生的电离现象,进而测量辐射的能量和强度。
电离室通常由一个金属壳体、一个电压源和一个电离室气室组成。
电离室气室内填充着一种气体(如氦气或氩气),当辐射入射到气体
中时,气体中的原子或分子会被电离,产生自由电子和正离子。
这些电荷在电场的作用下被加速,最终在电极上形成电流信号。
通过测量电离室中的电流信号,可以计算出辐射的能量和强度。
通常情况下,电离室的灵敏度和分辨率都较高,能够测量较小的辐射剂量和能量范围。
除了在核能和辐射监测等领域中应用广泛外,电离室还可以被用于医学放射治疗、天体物理学研究等领域。
- 1 -。
辐射剂量的测定系统的原理性介绍剂量测定是医学物理学科中最基础且重要的内容之一。
一、电离室剂量测定系统放射治疗成功的关键是保证放射设备输出到病人靶体积内的剂量准确。
在临床实践中,精确测量剂量是放疗标准化的重要环节。
其中,用的最多最广泛的工具是电离室(ion chamber)。
就如青龙偃月刀之于关云长,电离室是物理师们手中最重要的兵器,它可以用来做commissioning、校准辐射束、做病人治疗计划QA 等。
Courtesy of Elekta各种国际实用规范已详细描述了电离室的使用(例如AAPM51号报告、国际原子能机构398号报告)。
里面一些细节可能略有不同,但基本概念是相通的:通过将电离室测量的读数(M, measurement)乘以该电离室校准因子(ND,W)和其他修正因子,以得到吸收剂量(Dw, dose to water)。
以最精简的公式来表达这个概念,为:可是有这么简单吗?没有……我们先来看电离室的结构。
电离室主要由外部导电室壁和中心测量电极组成,室壁内是充满自由空气的空腔。
室壁和测量电极之间由高绝缘材料及防护电极分隔开,用于减小在施加极化电压时的漏电流。
一般来说,电离室内气腔的长度不超过25 mm,气腔的内直径不超过7 mm。
用作室壁的材料一般是低原子序数Z(即组织或空气等效)材料,室壁的厚度低于0.1g/ cm2。
测量电极一般用铝或石墨作为材料。
Farmer 型指形电离室的设计原理见下图:No.2平行板电离室(parallel-plate chamber)适用于测定:低能X射线(superficial)能量低于10MeV的电子线光子建成区内的吸收剂量及表面剂量Advanced Markus平行板电离室 Courtesy of PTW平行板电离室由两个平板室壁组成,其中一个作为入射窗,形成极化电极,另一个作为后壁,形成电荷信号的测量电极。
平行板电离室周围还设计有宽度超过3 mm的保护环(guard ring,防护电极),这就保证了没有电子可以通过室壁对测量信号产生影响。
radeyeg个人辐射剂量计原理个人辐射剂量计(Personal Radiation Dosimeter)是一种用于测量个人暴露于辐射环境中所受到的剂量的仪器。
它主要应用于核工业、医学(如放射治疗、核医学等)、辐射监测等领域,确保工作人员在辐射环境下的安全。
个人辐射剂量计的原理基于辐射与物质的相互作用,主要包括电离辐射(如α粒子、β粒子、γ射线)和非电离辐射(如中子、X射线)。
常见的个人辐射剂量计采用的测量技术主要有电离室法、固态核探测器法和光释光法。
1.电离室法:电离室法利用气体离子化的原理来测量辐射剂量。
个人辐射剂量计的核心部分是电离室,其中通入高纯度的惰性气体(如氦气、氩气)或空气。
当气体中发生辐射与气体相互作用时,产生的电离和电子相对剂量大小与辐射剂量成正比,可以通过电离室测量所产生的电离电流来间接估计辐射剂量。
2.固态核探测器法:固态核探测器法使用感光材料(如硅、锂钒石、Geiger-Muller计数管等)通过辐射与材料原子之间的相互作用来测量辐射剂量。
当辐射射线穿过感光材料时,会激发材料中的电子,使其跃迁到离子能级,从而形成电离,进而通过检测器来测量电子密度和能量。
3.光释光法:光释光法基于使用放射性材料激发现象来测量辐射剂量。
一些材料(如石英、釉质、玻璃等)在辐射暴露后会吸收能量并储存起来,辐射停止或从材料中取出时,存储的能量会以光的形式释放出来。
通过测量释放的光的强度与时间,可以确定辐射剂量。
这些个人辐射剂量计的原理均基于辐射与物质相互作用后产生的电离、激发或释放能量,以间接估计辐射剂量。
各种技术都有其特点和适用范围,选择合适的个人辐射剂量计取决于具体的工作环境和辐射类型。
总结起来,个人辐射剂量计原理主要有电离室法、固态核探测器法和光释光法。
电离室法通过测量电离电流来估计辐射剂量,固态核探测器法利用感光材料测量电子密度和能量,光释光法通过测量释放的光的强度与时间来确定辐射剂量。
在不同的环境下,可以选择合适的技术来确保个人在辐射环境中的安全。
电离室工作原理
电离室是一种用来测量辐射剂量的仪器,它的工作原理可以简要地描述为以下几步:
1. 辐射入射:电离室的主要功能是测量辐射剂量,通常是测量电离辐射(如γ射线、X射线等)。
辐射以能量形式进入电离室。
2. 辐射电离:高能辐射进入电离室后与气体分子相互作用,从而导致气体分子中的电子被击出。
3. 电离电流:被击出的电子会在电离室中移动,并引起电荷的累积。
正、负的空间电荷会在电离室的对电极上积累,产生一个微弱的电流。
4. 收集电流:为了测量辐射剂量,电流需要被测量。
通常,电离室中设置一个电荷放大器或电荷集电器,来放大电离电流并转化为可测的电信号。
5. 辐射剂量计算:根据测得的电信号,可以通过一系列的校正和计算步骤来估算出辐射的剂量。
总体而言,电离室通过测量辐射引起的电离电流来间接测量辐射的剂量。
这种工作原理使得电离室成为一种常用的辐射剂量测量仪器,在医疗、工业和核能等领域得到广泛应用。
第五章射线的测量射线的测量是放射治疗的基础工作,与放疗的质量、疗效密切相关。
电离辐射与物质相互作用产生的各种效应是测量各种电离辐射的基础。
广泛应用于剂量测量工作的电离室,依据的就是辐射的电离效应。
其它如辐射的热作用、化学作用以及使某些固体材料物理性质改变也都可以用于剂量测量。
其中电离室法是被国际权威性学术组织和国家技术监督部门确定的、用于放射治疗吸收剂量校准及日常监测的主要方法,本章将重点阐述电离室法测量射线的原理、方法和步骤,并对其它测量方法的原理和应用作介绍。
第一节电离室电离室是最早应用的电离辐射探测器,迄今已有近百年的历史,至今仍被广泛应用。
电离室测量吸收剂量的基本过程是,通过测量电离辐射在与物质(空气)相互作用过程中产生的电离电荷量,计算得出吸收剂量。
一、电离室基本原理如图5-1所示,在空气中入射的X或γ射线通过光电、康普顿效应或电子对过程中将部分或全部能量转换给原子内的电子,这些高速电子沿其轨迹又产生电离。
在离子收集电极的电场的作用下,正电荷向负极板运动,负电荷向正极板运动,所形成的电流可用静电计测量。
根据照射量的定义,光子在特定体积内(图中阴影区)所产的电子必需在极板离子收集区内的空气中通过电离把它们全部的能量消耗掉,并且无遗漏地将全部正负电离电荷收集起来。
然而,实际上在给定体积内产生的电子中有的会把它们的能量沉积在离子收集区之外,因而未被记录测量;另一方面,在给定体积之外产生的电子亦可能进入离子收集区内,并在其中发生电离。
一旦前者的电离损失为后者的电离贡献所补偿时,即为达到了电子平衡状态,此时测量到的电离电荷,理论上应为次级电子所产生的全部电离电苘量。
图5-1 电离室工作原理示意图自由空气电离室或标准电离室是根据上述原理而设计用于测量照射量的仪器。
这种一级标准电离室通常仅安装在国家标准实验室内,主要用来校准次级标准剂量仪,后者再用于刻度现场使用的剂量仪。
图5-2是自由空气电离室的结构图。
第3章电离辐射吸收剂量的测量第三章电离辐射吸收剂量的测量作为放疗物理师,吸收剂量的测量是个基本功,掌握本章节的内容,不仅对于考试,对于以后在工作中的实践,也是很有帮助的。
对于本章内容,需要掌握和区分照射量、比释动能、吸收剂量的概念和他们之间的联系;掌握电离室测量吸收剂量的原理;掌握吸收剂量校准的方法;记忆电离室的工作特性;了解几种吸收剂量的其他测量方法。
第一节剂量学中的辐射量及其单位主要是几个概念:1、粒子注量;2、能量注量;3、照射量;4、吸收剂量;5、比释动能;6、当量剂量;7、电子平衡另外就需要掌握照射量、吸收剂量和比释动能的关联和区别。
第二节电离室测量吸收剂量原理1、电离室测量吸收剂量的基本过程是通过测量电离辐射在与物质相互作用过程中产生的次级粒子的电离电荷量,由计算得出吸收剂量。
其实际上,电离室测量的是照射量,吸收剂量是通过计算得出的。
2、电离室测量吸收剂量原理3、指形电离室:指形电离室是依据自由空气电离室的原理,为便于常规使用而设计的。
假定空气外壳的半径等于电离辐射在空气中产生的次级电子的最大射程,满足进入气腔中的电子数与离开的相等,电子平衡存在。
空气等效是指该种物质的有效原子序数与空气有效原子序数相等。
4、电离室的工作特性:1)方向性:由于电离室本身固有的角度依赖性,电离室的灵敏度会受到电离辐射的入射方向的影响。
平行板电离室应使用其前表面垂直于射线束的中心轴,指形电离室应使其主轴线与射线束中心轴的入射方向相垂直。
2)饱和性:当入射电离辐射强度不变时,电离室的输出信号随其工作电压的变化关系(见图3-12);3)杆效应:电离室的灵敏度也会受到电离室金属杆和电缆在电离辐射场中的被照范围i的影响。
电离室的金属杆和绝缘体及电缆在辐射场中会产生微弱的电离,叠加在电离室的信号电流中形成电离室杆的漏射,称为杆效应。
对于X(r)射线,能量越大,杆效应越明显。
而对于电子束,表现不甚明显。
当电离室受照范围较小时,杆效应变化较大。
基于空腔电离理论的剂量测量系统研究电离辐射广泛应用于农业育种、辐射加工、医学诊断和治疗、工业无损检测及核能等领域。
人体在电离辐射环境中受辐照超过一定剂量,则会造成机体的损伤,损伤程度取决于电离辐射射线的类型、辐照剂量、照射条件以及机体对电离辐射的敏感度,因此辐射剂量的准确测量与否关系到放射治疗患者和从业人员的健康与安全。
空腔电离室是辐射剂量学中应用最广、最重要的辐射测量传感器之一,通常用于X射线及?射线的剂量和强度的测量。
空腔电离室原理基于空腔电离理论,即介质所吸收的辐射剂量可用介质中的气体空腔的电离量来度量。
用空腔电离室测量吸收剂量,也是将空腔的电离量转换为介质的吸收剂量。
然而实际应用中,如何利用空腔电离理论设计满足各种测量条件下的电离室,以及高精度高稳定度的微弱电流信号测量的剂量仪是剂量测量系统的两个关键技术。
论文针对CT剂量指数和剂量面积乘积测量的技术难题,基于空腔电离理论应用蒙特卡罗模拟方法,探索了电离室在不同的结构及材料下的能量响应,在理论及模拟的指导下设计了CT电离室和剂量面积乘积电离室,成功解决了电离室测量中的能量响应问题,构建了多通道CT剂量测量系统和剂量面积乘积测量系统,论文成果具有重大的研究意义和实用价值。
论文的主要研究内容有:(1)分别介绍Bragg-Gray理论、Spencer-Attix理论、Burlin模型及等效电子源理论等空腔电离理论及各种理论的适用范围,研究电离室的结构和工作原理。
(2)应用蒙特卡罗方法模拟X射线在电离室中的输运过程,研究电离室结构及材料与能量响应的关系。
(3)研制CT长杆电离室和剂量面积乘积电离室,对电离室的结构和构成材料进行研究,对模拟结果进行实验验证。
(4)结合CT电离室及剂量面积乘积电离室研究微弱信号处理方法,探讨微弱电流测试中前置放大器的原理及工艺处理技术,分析微弱电流测量的噪声模型,提高微弱电流放大测量的准确度。
(5)研制用于微弱电流检测的微弱电流信号源及用于电离室的小型高精度高压电源,为剂量仪的研制提供技术保障。