电离室测量吸收剂量原理36页PPT文档
- 格式:ppt
- 大小:706.50 KB
- 文档页数:14
辐射剂量的测定系统的原理性介绍剂量测定是医学物理学科中最基础且重要的内容之一。
一、电离室剂量测定系统放射治疗成功的关键是保证放射设备输出到病人靶体积内的剂量准确。
在临床实践中,精确测量剂量是放疗标准化的重要环节。
其中,用的最多最广泛的工具是电离室(ion chamber)。
就如青龙偃月刀之于关云长,电离室是物理师们手中最重要的兵器,它可以用来做commissioning、校准辐射束、做病人治疗计划QA 等。
Courtesy of Elekta各种国际实用规范已详细描述了电离室的使用(例如AAPM51号报告、国际原子能机构398号报告)。
里面一些细节可能略有不同,但基本概念是相通的:通过将电离室测量的读数(M, measurement)乘以该电离室校准因子(ND,W)和其他修正因子,以得到吸收剂量(Dw, dose to water)。
以最精简的公式来表达这个概念,为:可是有这么简单吗?没有……我们先来看电离室的结构。
电离室主要由外部导电室壁和中心测量电极组成,室壁内是充满自由空气的空腔。
室壁和测量电极之间由高绝缘材料及防护电极分隔开,用于减小在施加极化电压时的漏电流。
一般来说,电离室内气腔的长度不超过25 mm,气腔的内直径不超过7 mm。
用作室壁的材料一般是低原子序数Z(即组织或空气等效)材料,室壁的厚度低于0.1g/ cm2。
测量电极一般用铝或石墨作为材料。
Farmer 型指形电离室的设计原理见下图:No.2平行板电离室(parallel-plate chamber)适用于测定:低能X射线(superficial)能量低于10MeV的电子线光子建成区内的吸收剂量及表面剂量Advanced Markus平行板电离室 Courtesy of PTW平行板电离室由两个平板室壁组成,其中一个作为入射窗,形成极化电极,另一个作为后壁,形成电荷信号的测量电极。
平行板电离室周围还设计有宽度超过3 mm的保护环(guard ring,防护电极),这就保证了没有电子可以通过室壁对测量信号产生影响。
利用电离室进行射线剂量测量的实用指南介绍:射线剂量测量是放射监测和辐射防护的重要内容之一。
电离室是一种常用的射线剂量测量仪器,具有较高的准确性和可靠性。
本文将为大家介绍如何正确使用电离室进行射线剂量测量。
一、电离室的原理和结构电离室是一种利用气体中的电离现象进行射线剂量测量的仪器。
它通常由一个辐射探头和一个电子学系统组成。
辐射探头是电离室的核心部分,通常由一个电离室腔体和一个集电极构成。
电离室的电子学系统可以测量和记录电离室中产生的电离电流。
二、准备工作在使用电离室进行射线剂量测量之前,需要进行一些准备工作。
首先,需要查看电离室的证书,确保其在校准期内。
其次,检查电离室是否完好无损,电离室腔体是否完整。
还需要检查电离室的电源和电子学系统是否正常工作。
最后,确认所需测量的射线种类和能量范围,以选择合适的电离室。
三、测量步骤1. 您可以将电离室腔体暴露于待测射线源附近,然后等待一段时间,让电离室与射线源达到平衡。
2. 接下来,您需要打开电离室的电源,并将电子学系统调整到合适的工作状态。
根据电子学系统的说明书,设置放大倍数、时间间隔和显示方式等参数。
3. 开始测量前,您需要对电离室进行校零操作。
校零操作是将电离室中的电离电流调整到零的过程,以消除背景噪声。
校零操作通常需要在测量开始前进行,也可以在测量过程中进行校零操作,以消除长时间测量带来的漂移误差。
4. 一切准备就绪后,您可以开始测量了。
将电离室与待测射线源的距离保持一定的稳定,避免位置变化带来的测量误差。
根据电子学系统的要求,选择合适的测量时间间隔,并记录下测量结果。
5. 测量完成后,及时关闭电离室的电源,并将电子学系统调整到关闭状态。
将测量结果记录下来,以备后续分析和评估。
四、注意事项1. 在进行射线剂量测量时,应注意避免身体直接暴露于射线源中,以避免辐射伤害。
2. 在进行室外测量时,应避免太阳直射或雨水侵入电离室腔体,以防止测量结果的误差。
3. 在使用电离室进行测量时,应注意避免电离室与其他电磁辐射源的干扰,以确保测量结果的准确性。
第3章电离辐射吸收剂量的测量第三章电离辐射吸收剂量的测量作为放疗物理师,吸收剂量的测量是个基本功,掌握本章节的内容,不仅对于考试,对于以后在工作中的实践,也是很有帮助的。
对于本章内容,需要掌握和区分照射量、比释动能、吸收剂量的概念和他们之间的联系;掌握电离室测量吸收剂量的原理;掌握吸收剂量校准的方法;记忆电离室的工作特性;了解几种吸收剂量的其他测量方法。
第一节剂量学中的辐射量及其单位主要是几个概念:1、粒子注量;2、能量注量;3、照射量;4、吸收剂量;5、比释动能;6、当量剂量;7、电子平衡另外就需要掌握照射量、吸收剂量和比释动能的关联和区别。
第二节电离室测量吸收剂量原理1、电离室测量吸收剂量的基本过程是通过测量电离辐射在与物质相互作用过程中产生的次级粒子的电离电荷量,由计算得出吸收剂量。
其实际上,电离室测量的是照射量,吸收剂量是通过计算得出的。
2、电离室测量吸收剂量原理3、指形电离室:指形电离室是依据自由空气电离室的原理,为便于常规使用而设计的。
假定空气外壳的半径等于电离辐射在空气中产生的次级电子的最大射程,满足进入气腔中的电子数与离开的相等,电子平衡存在。
空气等效是指该种物质的有效原子序数与空气有效原子序数相等。
4、电离室的工作特性:1)方向性:由于电离室本身固有的角度依赖性,电离室的灵敏度会受到电离辐射的入射方向的影响。
平行板电离室应使用其前表面垂直于射线束的中心轴,指形电离室应使其主轴线与射线束中心轴的入射方向相垂直。
2)饱和性:当入射电离辐射强度不变时,电离室的输出信号随其工作电压的变化关系(见图3-12);3)杆效应:电离室的灵敏度也会受到电离室金属杆和电缆在电离辐射场中的被照范围i的影响。
电离室的金属杆和绝缘体及电缆在辐射场中会产生微弱的电离,叠加在电离室的信号电流中形成电离室杆的漏射,称为杆效应。
对于X(r)射线,能量越大,杆效应越明显。
而对于电子束,表现不甚明显。
当电离室受照范围较小时,杆效应变化较大。