当前位置:文档之家› 磁芯材料的介绍

磁芯材料的介绍

磁芯材料的介绍
磁芯材料的介绍

电力电子电路常用磁芯元件的设计

一、常用磁性材料的基本知识

磁性元件可以说是电力电子电路中关键的元件之一,它对电力电子装置的体积、效率等有重要影响,因此,磁性元件的设计也是电力电子电路系统设计的重要环节。磁性材料有很多种类,特性各异,不同的应用场合有不同的选择,以下是几种常用的磁性材料。

1.低碳钢

低碳钢是一种最常见的磁性材料,这种材料电阻率很低,因此涡流损耗较大,实际应用时常制成硅钢片。硅钢片是一种合金材料(通常由97%的铁和3%的硅组成),它具有很高的磁导率,并且每一薄片之间相互绝缘,使得材料的涡流损耗显著减小。磁芯损耗取决于材料的厚度与硅含量,硅含量越高、电阻率越大。这种材料大多应用于低频场合,工频磁性元件常用这种材料。

2.铁氧体

随着工作频率的提高,对磁芯损耗的要求更高,硅钢片由于制造工艺的限制,已经很难满足这种要求,铁氧体就是在这种形势下出现的。

铁氧体是一种暗灰色或者黑色的陶瓷材料。铁氧体的化合物是MeFe2O4,这里Me代表一种或几种二价的金属元素,例如,锰、锌、镍、钴、铜、铁或镁。这些化合物在特定的温度范围内表现出良好的磁性能,但是如果超出某个温度值,磁性将失去,这个温度称为居里温度(T c)。铁氧体材料非常容易磁化,并且具有相当高的电阻率。这些材料不需要像硅钢片那样分层隔离就能用在高频的应用场合。

高频铁氧体磁性材料主要可分为两大类:锰锌(MnZn)铁氧体材料和镍锌(NiZn)铁氧体材料。比较而言,NiZn材料的电阻率较高,一般认为在高频应用场合下具有较低的涡流损耗。但是最近的研究表明,如果颗粒的尺寸足够小而且均匀,在几兆赫兹范围内MnZn材料显示出较NiZn材料更为优越的特性,例如,TDK公司的H7F材料以及MAGNETICS公司的K材料就是采用这种技术,适用于兆赫兹工作频率下工作的新型铁氧体材料。

3.粉芯材料

粉芯材料是将一些合金原料研磨成精细的粉末状颗粒,然后在这些颗粒的表面覆盖上一层绝缘物质(它用来控制气隙的尺寸,并且降低涡流损耗),最后这些粉末在高压下形成各种磁芯形状。

由于原料成分的不同,粉芯材料又可分为铁粉芯、钼坡莫合金粉芯(MPP)和高磁通粉芯(铁镍磁粉芯)等材料。

铁粉芯是所有粉芯材料中最为便宜的材料,磁导率一般在4~80左右。由于颗粒之间相互都绝缘,与硅钢片相比虽然涡流损耗被大大地降低,但高频情况下由损耗导致的温升仍很高。所以铁粉芯一般用于较低开关频率的场合。铁粉芯的饱和磁感应强度一般在1特斯拉(T)左右。

MPP磁芯的相对磁导率一般在14~350,饱和磁感应强度为 0.7T左右。在现有的粉芯材料中,MPP具有损耗低、温度稳定性好的优势。此外,它也是磁导率选择范围最广的粉芯材料。但是由于镍的含量高,所以它也是最昂贵的粉芯材料。由于MPP磁芯在所有粉芯材料中磁损最低,所以它特别适合应用于反激电路,Buck/Boost以及功率因数校正电路,此外均匀分布的气隙使铜损大大降低。

高磁通粉芯是一种气隙均匀分布的磁环,由50%镍和50%铁合金粉末制成,它的相对磁导率一般在14~200。高磁通粉芯的饱和磁感应强度高达1.5T,而一般MPP为0.7T,铁氧体为0.45T。与铁粉芯相比,高磁通粉芯的磁损大大地降低,又由于高饱和磁感应强度,该磁芯使得绝大多数场合下铁粉环尺寸降低成为可能。

4.非晶及纳米晶软磁合金

非晶态金属与合金是20世纪70年代问世的一类新型材料,采用了超急冷凝固技术,从钢液到薄带成品一次成型。由于超急冷凝固,合金凝固时原子来不及有序排列结晶,得到的固态合金是长程无序结构,没有晶态合金的晶粒、晶界存在,称之为非晶合金。这种非晶合金具有优异的磁性、耐蚀性、耐磨性、高的强度、硬度和韧性,高的电阻率和机电耦合性能等。由于它的性能优异、工艺简单,从80年代开始成为国内外材料科学界的研究开发重点。目前美、日、德国已具有完善的生产规模,并且大量的非晶合金产品逐渐取代硅钢和坡莫合金及铁氧体而涌向市场。常用的非晶合金的种类有:铁基、铁镍基、钴基非晶合金以及铁基纳米晶合金。

二、磁芯材料的基本参数

(1)初始磁导率μi

初始磁导率是磁性材料的磁化曲线始端磁导率的极限值,即

H B H i lim 001

→=μμ 式中70104-?=πμH/m 为真空磁导率,H 为磁场强度(单位:A/ m ),B 为磁感应强度(单位:T )。初始磁导率i μ与温度和频率有关。

(2)有效磁导率μe

在闭合磁路中,磁芯的有效磁导率为

7e 2e 104??=A l N

L πμ 式中L 为线圈的自感量(mH );N 为线圈匝数;e A l 为磁芯常数,是磁路长度l 与磁芯截面积A e 的比值(单位:mm -1)。

(3)饱和磁感应强度B s

在指定温度(25℃或100℃)下,用足够大的磁场强度磁化磁性物质,磁化曲线接近水平线(见附图1-1)时,不再随外磁场强度增大而明显增大对应的B 值,称饱和磁感应强度B s 。

(4)剩余磁感应强度B r

铁磁物质磁化到饱和后,又将磁

场强度下降到零时,铁磁物质中残留

的磁感应强度即为B r ,称为剩余磁感

应强度,简称剩磁。

(5)矫顽磁力 H c

磁芯从饱和状态去除磁场后,需

要一定的反向磁场强度-H c ,使磁感应强度减小到零,此时的磁场强度H c 称为矫顽磁力(或保磁力)。

(6)温度系数αμ

温度系数为温度在T 1~T 2内变化时,每变化1℃对应的磁导率相对变化量

,附图1-1 磁性材料磁滞回线

即 121121T T -?-=μμμαμ , T 2 >T 1

式中1μ为温度为T 1时的磁导率, 2μ为温度为T 2时的磁导率。

(7)居里温度T c

居里温度是指材料可以在铁磁体和顺磁体之间改变的温度。低于居里温度时该物质成为铁磁体,此时和材料有关的磁场很难改变。当温度高于居里温度时,该物质成为顺磁体,磁体的磁场很容易随周围磁场的改变而改变。

(8)磁芯损耗(铁耗)P c

磁芯损耗是指磁芯在工作磁感应强度时的单位体积损耗。磁芯损耗包括:磁滞损耗、涡流损耗、殘留损耗。磁滞损耗是每

次磁化所消耗的能量,正比于磁滞回线的面

积,如附图1-2所示;涡流损耗是交变磁场

在磁芯中产生环流引起的欧姆损耗;残留损耗

是由磁化弛豫效应或磁性滞后效应引起的损

耗。前两项是磁芯损耗的主要部分。

(9)电感系数A L

电感系数是磁芯上每一匝线圈产生的自

感量,即 2

N L A L = 式中L 为磁芯线圈的自感量(单位:H ),N 为线圈匝数。

三、铁氧体磁芯的基本知识

1.材料的磁化

烧结后的铁氧体是由小的晶体组成,这种晶体的大小一般在10~20μm 的范围内,磁畴就是存在于这些晶体之中。

在没有外磁场作用时,这些磁畴排列的方向是杂乱无章的,如附图1-3(a )所示,小磁畴间的磁场是相互抵销的,对外不呈现磁性。当一个外加磁场(H )作用于该材料时,磁畴顺着磁场方向转动,加强了铁氧体内的磁场。随着外磁场的加强,转到外磁场方向的磁畴就越来越多,与外磁场同向的磁感应强度就越强,如附图1-3(b )所示。这就是说材料被磁化了。

附图1-2 磁滞损耗曲线

在这个磁化过程中,磁畴重新排列必须克服能

量势垒,因此,磁化总是滞后于磁场。所谓的“磁

滞回线”(见附图1-1),就是这种现象的结果。

如果对磁化的抵抗并不是很强时,一个特定的磁

场强度将会产生很大的感应磁场,铁氧体的磁导

率很高。磁滞回线的形状对铁氧体的其他性能有

着很强的影响,如磁损。

2.磁芯的形状

铁氧体磁芯有许多不同的形状,如附图1-4所示。这些形状各异的磁芯各有其特点,适用于制作各种磁性元件。

(1)磁环磁芯。从磁的角度而言,磁环也许是最佳选择,因为磁环的磁路是一个封闭的形状,因此铁氧体的性能可以最为充分地发挥出来。尤其是对于高磁导率的铁氧体材料,哪怕是一点点气隙都会使得磁导率显著下降。磁环主要应用于脉冲变压器、磁放大器、干扰抑制线圈(共模电感)等场合。磁环在特定功率处理能力下是最便宜的磁性元件之一,但是磁环的绕制却是最困难的。

(2)罐型磁芯。罐型磁芯最初是为通信滤波电感而设计的,磁芯几乎包围了所有的线包和骨架,这种结构很好地屏蔽了外部的电磁噪声(EMI )。罐型磁芯的成本要高于其他形状的磁芯,此外其散热性能较差,所以至今还没有适用于大功率场合的产品。

(3)E 型磁芯。E 型磁芯较罐型磁芯便宜,易于绕制,安装方便。E 型磁芯的骨架有立式和卧式两种,立式骨架占用PCB 板面积较小但高度很大,卧式骨架正好相反。E 型成为最为常用的磁芯形状。可以说EE 型磁芯和EI 型磁芯具有相同的外形,相同的尺寸,相同的骨架,仅仅在漏磁场分布存在差异,适用于制作开关电源变压器。

(4)EC 磁芯。EC 磁芯介于E 型与罐型之间,窗口面积较大(较罐型磁芯而言),有风道,利于散热。相同面积下圆形中心柱的周长比方形中心柱省11%,减少了铜损,并且绕制的时候圆形要比方形方便。

(5)PQ 磁芯。PQ 磁芯主要是为开关电源设计的,能在最小的磁心尺寸下获得最大的电感量和线包面积,

因此这种磁芯能在最小的高度与体积情况下输出附图1-3 磁化过程示意

最大的功率。

(6)其他外形磁芯。

3.磁芯加气隙

由于铁氧体磁芯的磁导率一般都很高,稍加激励就容易产生磁饱和,所以在开关电源中通常通过加气隙的办法来降低有效磁导率,使得电感能够储存更多附图1-4 常见磁芯的形状 (a )环形 (b )罐型 (c )EE (d )EC (e )PQ (f )EP (g )RM

的能量。电感储能有如下关系式:

e r

02

2221V B LI ??=μμ 式中L 为电感量,I 为电感电流,B 为磁感应强度,V e 为磁芯有效体积,μ0为真空磁导率,μr 为有效相对磁导率。

气隙的引入势必增强电感的漏磁场分布。磁性元件的漏磁场一般可分为外部漏磁场和内部漏磁场,它们主要是由漏磁通路的长度和磁动势决定的。由于内部漏磁场穿过线圈会引起额外的涡流损耗,而外部漏磁场能够产生EMI ,对附近的元件产生影响,所以气隙的引入在某种程度上恶化了电感的工作状态。

一般的说,共有五种增加气隙的方法:第一种方法是在磁芯中间垫上一层非磁物质,这样就相当于把气隙分为相等的两部分,第二种方法是通过研磨中心术强行在磁路中插入气隙;第三种方法主要是针对铁氧体磁环而言,由于磁环的特殊结构(既不能研磨又不能分离)只有通过切割的办法来插入气隙;第四种方法就是常用的磁棒;第五种方法是在磁芯加工的时候完成的,也就是常说的金属磁粉芯,包括铁粉芯、铁硅铝、铁镍钼、高磁能磁粉芯等。事实上,上述五种增加气隙的方法中,前三种可由设计者决定,后两种则决定于生产商,设计者只是通过相应的数据手册来选择适合自已的产品。

垫气隙的方法将气隙分为两个相同但是更小的气隙,并且每个气隙所承受的磁动势近似为二分之一的总安匝数。而研磨的方法把气隙集中在一处,所以这种方法漏磁场的幅值近似为垫气隙的两倍。此外,由于大气隙的缘故,它的边缘磁场穿过线圈的面积也越大,因此这种情况下的铜损要比垫气隙情况下的铜损要大。

当用铜皮绕制电感的时候,这种影响就更加严重了,因为边缘磁场具有很大的垂直分量,该分量垂直于线圈轴,也就是说垂直于铜皮的表面。

四、磁性元件损耗

磁性元件损耗主要由两部分组成:磁损(又叫铁损,指磁性材料的损耗)和铜损(指线圈中因流过电流而产生的损耗)。

(1)磁损

磁损由涡流损耗、磁滞损耗以及残留损耗组成,三部分损耗的计算公式为

Steinmetz 方程。

e βαm c o r e V B

f C P ?=

式中C m 为损耗系数,f 为工作频率,B 为工作磁感应强度幅值,V e 为磁芯面积,α、β分别为大于1的频率和磁感应损耗系数。

(2)铜损

铜损是电流通过线圈所产生的损耗。在低频场合,铜损计算是直接将电流有效值的平方乘以线圈的直流电阻得到的。随着频率的提高,趋肤效应、邻近效应等因素的影响变得越来越严重。

五、高频变压器的设计

高频变压器的设计,应当预先设定具体的电路拓扑、工作频率、输入和输出电压、输出功率、变压器的效率以及环境条件。通常以满足最坏情况设计变压器,以保证设计的变压器在规定的条件下都能满意工作。不同的电路拓扑导致高频变压器磁化工作状态不同,如推挽、半桥、全桥等功率变换器的高频变压器磁芯双向磁化,工作在磁滞回线的第一和第三象限,为双极性工作模式;而正激、反激变换器的高频变压器磁芯单向磁化,仅工作在磁滞回线的第一象限,为单极性工作模式。

1、双极性开关电源变压器的设计

(1)初始条件

工作频率f (Hz )

开关变压器初级输入最高、最低电压幅值U 1max (V )、U 1min (V ) 变压器初级激励脉冲最大持续时间t onmax (s )(与最大占空比相关) 直流电源输出电压U o (V )、电流I o (A )

输出整流电路的形式及整流二极管压降U D (V )

(2)设计步骤 附图1-5 变压器参数示意图(推挽变压器初级常为中心抽头结构) n 1n 2

T

步骤1:确定原副边绕组匝比

计算匝比首先需要计算变压器次级输出电压U 2,对于直流开关稳压电源,次级输出一般接二极管全波整流电路及电感滤波电路,因此,次级输出电压在满足正常输出电压的同时,还需要补偿整流二极管和滤波电感的压降,有

)

/2(on L D o 2T t U U U U ++= 式中U o 为变换器输出电压,U D 为输出整流二极管的通态压降(对于全波整流一般为单个二极管压降,而桥式整流电路为两个二极管压降),U L 为输出滤波电感上的直流压降。

变压器的匝比应保证最低输入电压U 1min 时,电路能够保证正常输出电压。对应于桥式整流或全波整流,次级允许的最小输出电压为

)

/2(onmax L D o min 2T t U U U U ++= 因此变压器原副边变比为 m i n 2m i n 121U U n n m ==

步骤2:确定高频变压器磁芯材料

根据变压器的工作频率和传输功率,选择合适的磁芯材料。高频功率变压器磁芯材料通常选用铁氧体R2KB 。大功率铁氧体材料性能如附表1-1所示,其磁芯损耗与磁感应强度曲线、磁芯损耗温度特性曲线分别如附图1-6和附图1-7所示。

附表1-1 大功率铁氧体材料基本性能

附图1-6 磁芯损耗与磁感应强度曲线

附图1-7 磁芯损耗温度特性曲线

步骤3:磁感应强度B 的选择

确定磁感应强度B 需要考虑两个问题:当输入电压达到最高时磁芯不饱和,变压器温升满足要求。在给定温升条件下,当磁芯损耗与铜线损耗相等时,开关电源变压器输出功率最大。设计时初选磁感应强度可根据功率P (单位W ),工作频率f (单位kHz ),平均温升τ?(单位oC ),按附图1-8查出系数K B ,然后按下式计算工作磁感应强度:

m B B K B =

式中:B 为工作磁感应强度(T ),K B 为磁感应强度系数,B m 为磁性材料最大工作磁感应强度(T )。

步骤4:确定原边与副边的绕组匝数

选定磁芯材料,确定磁芯最大的工作磁感应强度,根据近似的面积乘积(AP )法,粗略估算、并预选一个磁芯型号

34

T W C )(f

B K P A A AP ???=?= (cm 4) 式中:A

C 为磁芯有效截面积(cm 2);A W 为磁芯窗口截面积(cm 2);P T 为变压器传输功率(W );ΔB 为磁通密度变化量,双极性变换器为ΔB =2B (T );f 为开关工作频率(H Z );K 为近似系数(正激、推挽中心抽头变压器取K =0.014;全桥、半桥变压器取K =0.017)。 附图1-8 磁感应强度系数

假定变压器的效率为η,则 ηo

o T I U P =

选定磁芯后,初、次级绕组匝数n 1、n 2也随之可以确定

4C

max on min 11102-???=A B t U n m

n n 12= 式中:U 1min 单位为V ,t onmax 单位为s ,B 单位为T ,A C 单位为cm 2

步骤5:确定绕组的导线线径和股数

在选用绕组的导线线径时,要考虑导线的集肤效应。所谓集肤效应,是指当导线中流过高频交变电流时,导线横截面上的电流分布不均匀,中间电流密度小、甚至无电流,边缘部分电流密度大,使导线的有效导电面积减小,电阻增大的现象。一般用穿透深度来描述导线的集肤效应,所谓穿透深度Δ,是指导线电流密度下降到表面电流密度的0.368(即1/e )时的径向深度。穿透深度Δ与频率f 和导线物理性能的关系为

μγ

πf k =? 式中k 为导线材料的电导率温度系数,μ为导线材料的磁导率,γ为导线材料的电导率。

对于铜质电磁导线,在25oC 时有:f 66

=? (mm )

而在100oC 时有:f 75

=? (mm )

为了更有效地利用导线,减小集肤效应的影响,一般要求导线的直径小于两倍的穿透深度,即?≤2d 。如果绕组的线径大于由穿透深度所决定的最大线径时,需采用小线径的导线多股并绕或采用铜皮来绕制,铜皮的厚度要小于2倍穿透深度。

在考虑集肤效应采用多股导线并绕时,初级绕组的导线股数N p 为

W

1rm sm ax P S J I N ?= 式中I 1rmsmax 为初级最大电流有效值;J 为导线的电流密度,对于开关变压器,一般取J =3~5A/mm 2,S W 为每根导线的导电面积(mm 2)。

当考虑集肤效应采用多股导线并绕时,次级绕组的导线股数N S 为

W

m ax rm s 2S S J I N ?= 式中I 2rmsmax 是副边最大电流有效值。

步骤6:核算磁芯窗口面积

在计算出变压器的初次级匝数、导线线径及股数后,必须核算磁芯的窗口面积是否能够绕得下,或者窗口是否过大。

窗口充填系数k W 定义为线圈铜占有的总面积与磁芯窗口面积之比

W

W S 2P 1W )(A S N n N n k += k W 大小与绝缘等级、环境条件和工艺结构等因素有关,考虑到层间绝缘、骨架、屏蔽以及爬电距离等因素,一般实际窗口利用率在0.25~0.5。

如果窗口面积太小,说明磁芯太小,要选择大一型号的磁芯;如果窗口面积过大,说明磁芯太大,可选小一型号的磁芯。重新选择磁芯后,应从步骤3开始计算,直到所选磁芯型号规格基本合适。

2、单极性开关电源变压器——.正激变换器的高频变压器设计

(1)初始条件

工作频率f (Hz )

开关变压器初级输入最高、最低电压幅值U 1max (V )、U 1min (V ) 变压器初级激励脉冲最大持续时间t onmax (s )(与最大占空比相关) 直流电源输出电压U o (V )、电流I o (A )

输出整流电路的形式及整流二极管压降U D (V )

(2)设计步骤

步骤1:确定原副边绕组匝比

计算匝比首先需要计算变压器次级输出电压U 2,对于直流开关稳压电源,

次级输出一般接二极管整流电路及电感滤波电路,因此,次级输出电压在满足正常输出电压的同时,还需要补偿整流二极管和滤波电感的压降,有

)

/(on L D o 2T t U U U U ++= 式中U o 为变换器输出电压,U D 为输出整流二极管的通态压降(通常为半波整流),U L 为输出滤波电感上的直流压降。

变压器的匝比应保证最低输入电压U 1min 时,电路能够保证正常输出电压。次级允许的最小输出电压为

)

/(onmax L D o min 2T t U U U U ++= 因此变压器原副边变比为 m i n 2m i n 121U U n n m ==

步骤2:确定高频变压器磁芯材料

该步骤与双极性变压器设计方法相同。

步骤3:磁感应强度B 的选择

该步骤与双极性变压器设计方法相同。

步骤4:确定原边与副边的绕组匝数。

正激变换器通常在磁路中加气隙来降低剩余磁感应强度和提高磁芯工作的直流磁场强度,因此计算时一般仍可以按步骤3的方法确定磁感应强度增量,

即 B B =?

通常,由于正激变换器的磁芯单向磁化,工作在第一象限,工作磁感应强度变化量 ΔB 也可参考下式:

r s r m B B B B B -<-=?

式中B s 为磁芯的饱和磁通密度,B r 为剩余磁通密度。如对于材质为R2KB 的铁氧体,B s =0.51T 、B r =0.12T ,则ΔB <0.39T 。

参考双极性变压器设计步骤4,根据近似的面积乘积(AP )法,粗略估算、并预选一个磁芯型号,则初、次级绕组匝数n 1、n 2也随之可以确定:

4C

max on min 1110-????=A B t U n

m

n n 12= 式中:U 1min 单位为V ,t onmax 单位为s ,B 单位为T ,A C 单位为cm 2

步骤5:确定绕组的导线线径和股数

该步骤与双极性变压器设计方法相同。

步骤6:核算磁芯窗口面积

该步骤与双极性变压器设计方法相同。

需要说明的是,按以上设计的变压器只是一种初步的样品,变压器的最终参数往往还需要经过实际电路试验后做一定的修正。

六、电感和反激变压器的设计

电感是电力电子电路中的常用元件,在开关电源中通常分为两类:

(1)单线圈电感:如输出滤波电感(Buck )、升压电感(Boost )、反激电感(Buck-Boost )和输入滤波电感等。

(2)多线圈电感:如耦合输出滤波电感、反激变压器等。

电感通常有两种工作模式,电流连续模式(CCM )和电流断续模式(DCM )。一般情况下,开关电源中的电感在电流连续模式时线圈和磁芯的交流损耗比较小,应尽可能选择大的工作磁感应强度以减小电感体积;而在电流断续模式时,磁芯和线圈的交流损耗是主要考虑因素。

电感设计的磁芯选择同样可以采用面积法预估,当磁芯损耗不严重,磁芯饱和限制的最大磁通密度为B m ,则面积经验公式为:

34

1

m FL SP C W )(K B I LI A A AP == (cm 4) 当磁芯损耗比较严重,损耗限制的磁通摆幅为B ?时的面积经验公式为: 34

2

m FL C W )(K B II L A A AP ??== (cm 4) 其中,L 为电感量(单位H ),I SP 为最大峰值电流(单位A ),B m 为饱和限制的最大磁感应强度(单位T ),ΔI 为初级电流增量(单位A ),ΔB m 为最大磁感应强度增量(单位T ),I FL 初级满载电流有效值(A )。

K 1、K 2为校正系数,有

41W 2110-?=k J K K m ,

式中:J m 为最大电流密度(单位A/cm 2),k 1W 为初级铜面积/窗口面积,其系数如附表1-2所示。

1、电感设计

(1)初始条件

电感量L (单位H )

流过电感最大峰值电流I SP (A )

流过电感最大有效值电流I rmsm (A )

电感电流最大纹波峰峰值ΔI m (A )

(2)设计步骤

步骤1:依据电路工作频率和使用场合,选择合适的磁芯材料 步骤2:选择磁芯的最大工作磁感应强度B m ,确定最大工作磁感应强度增量ΔB m

SP m m m I I B B ?=? 步骤3:确定电感设计属于损耗限制还是饱和限制

以m 5.0B ?和纹波频率配合,查附图1-6,求得磁芯比损耗。如果比损耗远小于0.1W/cm 3,则磁芯受饱和限制,可以直接选用设定的B m 和由此得到的ΔB m ;如果比损耗远大于0.1W/cm 3,则磁芯受损耗限制,必须减小ΔB m ,可以参考附图1-6重新确定ΔB m 并重新估算实际的B m 。

步骤4:选择损耗限制或饱和限制的面积法经验公式,初选磁芯。

步骤5:计算电感线圈匝数n

附表1-2 K 1、K 2及k 1W 与电感类型的关系

4C

m m 10-???=A B I L n 式中:L 单位为H ,ΔI m 单位为A ,ΔB m 单位为T ,A C 单位为cm 2

步骤6:确定电感气隙δ

对应电感实际工作时的最大工作磁感应强度B m ,有 3m

0SP 10?=B nI μδ (mm ) 式中:I SP 为A ,m /H 10470-?=πμ,B m 单位为T

步骤7:计算绕组的线径和股数。

输出滤波电感电流最大有效值为I rmsm ,取电流密度为J ,则绕组的导电面积为

J

I S rmsm W = 式中:S W 的单位为mm 2,电流密度一般取J =3~5A/mm 2。

由于输出滤波电感电流主要是直流分量,交流分量较小,因此集肤效应影响不是很大,可以选用线径较大的导线或扁铜线来绕制,只要保证足够的导电面积就行。

步骤8:核算磁芯窗口面积

与变压器的设计一样,也要核算磁芯窗口的面积是否合适。要经过多次反复计算,直到选择合适的磁芯。

2、单极性开关电源变压器——.反激变换器的高频变压器设计

反激式电源变压器其实是一个耦合电感,它也有两种工作模式,电流连续模式(CCM )和电流断续模式(DCM )。对应于本教材的内容,本章仅介绍电流连续模式的反激式电源变压器设计方法,对于电流断续模式的设计方法,读者可以自行参考相关设计资料。

反激式电源的电路与工作波形如图2-15和图2-16所示,下面以这两个图为基础介绍电流连续工作方式下反激式电源变压器的设计原理

(1)初始条件

工作频率f (Hz )

开关变压器初级输入最高、最低电压幅值U 1max (V )、U 1min (V ) 变压器初级激励脉冲最大持续时间t onmax (s )(对应最大占空比D max ) 变压器初级最大电流峰值I 1SP (A )

直流电源输出电压U o (V )、电流I o (A )

输出整流电路的整流二极管压降U D (V )

(2)设计步骤

步骤1:确定初级电感L 1

假定原边绕组匝数为N 1,副边绕组匝数为N 2,参照图2-15和图2-16, 有 11121I I I -=?

21222I I I -=?

21

21I N N I ?=? 在0~t 1时间段: d 11

U DT I L =? ? d 11U I DT L ?= 引入电流中值I 1、I 2,电流脉动比M ,有

)(2

112111I I I +=

)(2122212I I I += 2

2112121I I I I M ?=?= 当电流临界连续时,有01121==I I 、121I I =?、222I I =?,

因此1=M 时电流临界连续,1

2

1o d 1d 12)1(2N N M f I U D D M f I DU L -== (1

步骤2:初选磁芯

以磁芯饱和限制的面积经验公式初选磁芯尺寸:

34

1

m FL 1SP 1C W )(K B I I L A A AP == (cm 4) 其中 m i n 1o o FL U I U I η= η为预估的变压器效率 步骤3:确定最大工作磁感应强度B m 和最大工作磁感应强度摆幅ΔB m 选择合适的磁芯材料,可以确定最大工作磁感应强度B m 。当反激式变压器原边或副边流过最大电流时,磁芯中的磁通密度达到最大,有: 1S P

1m m m I I B B ?=? 步骤4:计算初级匝数

对于原边匝数有: C

m 1S P 1C m m 111A B I L A B I L N =??= 式中:L 1的单位为H ,I 1SP 的单位为A ,B m 单位为T ,A C 单位为m 2 步骤5:计算次级匝数

初次级绕组匝比为 m a x m a x D o m i n 1211D D U U U N N m -?+== 则 m N N 12=

步骤6:气隙δ计算

3m 1S P

1o 10?=B I N μδ (mm )

式中:m /H 10470-?=πμ,I 1SP 的单位为A ,B m 单位为T 步骤7:线径与窗口核算

该步骤的方法与前面介绍的相同,不再赘述。

磁芯材料知识

磁芯材料知識 摘要: 1.磁芯材料基本概念 ui值磁芯的初始透磁率,表征材料對于磁力線的容納與傳導能力。(ui=B/ H) AL值:電感系數. 表征CORE成品所具備的幫助線圈產生電感的能力.其數值等于單 1.磁芯材料 基本概念 ui值 磁芯的初始透磁率,表征材料對于磁力線的容納與傳導能力。(ui=B/H) AL值:電感系數. 表征CORE成品所具備的幫助線圈產生電感的能力.其數值等于單匝電感值,單位是nH/N2 . 磁滯回線:1﹕B-H CURVES (磁滯曲線) Bms:飽和磁束密度﹐表征材料在磁化過程中﹐磁束密度趨于飽和狀態的物理量﹐磁感應強度單位﹕特斯拉=104高斯﹒ 我們對磁芯材料慢慢外加電流,磁通密度(磁感應強度)也會跟著增加,當電流加至某一程度時我們會發現磁通密度會增加很慢,而且會趨近一漸進線,當趨近這一漸進線時這個時候的磁通密度我們就稱為的飽和磁通密度(Bms) Bms高:表明相同的磁通需要較小的橫截面積,磁性元件體積小

Brms:殘留磁束密度﹐也叫剩余磁束密度﹐表征材料在磁化過程結束以后﹐外磁場消失﹐而材料內部依然尚存少量磁力線的特性﹒ Hms:能夠使材料達到磁飽和狀態的最小外磁場強度﹐單位﹕A/m=104/2π奧斯特﹒ Hc:矯頑力﹐也叫保持力﹐是磁化過程結束以后﹐外磁場消失,因殘留 磁束密度而引起的剩余磁場強度﹒因為剩余磁場的方向与磁化方向一 致﹐所以﹐必須施加反向的外部磁場﹐才可以使殘留磁束密度減小到 零﹒ 從磁滯回線我們可以看出:剩磁大,表示磁芯ui值高。磁滯回線越傾斜,表示Hms越大磁芯的耐電流大。矯頑力越大,磁芯的功率損耗大。 鐵粉芯: 鐵粉芯是磁芯材料四氧化三鐵的通俗說法,主要成分是氧化鐵,價格比較低,飽和磁感應強度在1.4T左右:磁導率范圍從22-100,初始磁導率ui值隨頻率的變化穩定性好,直流電流疊加性能好,但高頻下消耗高。 該材料可以從涂裝顏色來辨認材質,例如:26材:黃色本體/白色底面,52材:綠色本體/藍色底面。該類材料價格便宜,如果感量不很高,該材料是首選。可以根據感量大小和IDC要求,選擇所需材料,8材耐電

磁芯材料知识

磁芯材料知識 摘要:1.磁芯材料基本概念ui值磁芯的初始透磁率,表征材料對于磁力線的容納與傳導能力。(ui=B/ H)AL值:電感系數. 表征CORE成品所具備的幫助線圈產生電感的能力.其數值等于單 1.磁芯材料 基本概念 ui值 磁芯的初始透磁率,表征材料對于磁力線的容納與傳導能力。(ui=B/ H) AL值:電感系數. 表征CORE成品所具備的幫助線圈產生電感的能力.其數值等于單匝電感值,單位是nH/N2 . 磁滯回線:1﹕B-H CURVES (磁滯曲線) Bms:飽和磁束密度﹐表征材料在磁化過程中﹐磁束密度趨于飽和狀態的物理量﹐磁感應強度單位﹕特斯拉=104高斯﹒ 我們對磁芯材料慢慢外加電流,磁通密度(磁感應強度)也會跟著增加,當電流加至某一程度時我們會發現磁通密度會增加很慢,而且會趨近一漸進線,當趨近這一漸進線時這個時候的磁通密度我們就稱為的飽和磁通密度(Bms)

Bms高:表明相同的磁通需要較小的橫截面積,磁性元件體積小 Brms:殘留磁束密度﹐也叫剩余磁束密度﹐表征材料在磁化過程結束以后﹐外磁場消失﹐而材料內部依然尚存少量磁力線的特性﹒ Hms:能夠使材料達到磁飽和狀態的最小外磁場強度﹐單位﹕A/m=104/ 2π奧斯特﹒ Hc:矯頑力﹐也叫保持力﹐是磁化過程結束以后﹐外磁場消失,因殘留磁束密度而引起的剩余磁場強度﹒因為剩余磁場的方向与磁化方向一致﹐所以﹐必須施加反向的外部磁場﹐才可以使殘留磁束密度減小到零﹒ 從磁滯回線我們可以看出:剩磁大,表示磁芯ui值高。磁滯回線越傾斜,表示Hms越大磁芯的耐電流大。矯頑力越大,磁芯的功率損耗大。 鐵粉芯: 鐵粉芯是磁芯材料四氧化三鐵的通俗說法,主要成分是氧化鐵,價格比較低,飽和磁感應強度在1.4T左右:磁導率范圍從22-100,初始磁導率ui值隨頻率的變化穩定性好,直流電流疊加性能好,但高頻下消耗高。

磁性材料的基本特性

一.磁性材料的基本特性 1.磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。 材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2.软磁材料的常用磁性能参数 ?饱和磁感应强度Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列; ?剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs; ?矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等); ?磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关; ?初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp; ?居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度; ?损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r; ?在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米) 3.软磁材料的磁性参数与器件的电气参数之间的转换

磁芯参数参看

z变压器基础知识 1、变压器组成: 原边(初级primary side ) 绕组 副边绕组(次级secondary side ) 原边电感(励磁电感)‐‐magnetizing inductance 漏感‐‐‐leakage inductance 副边开路或者短路测量原边 电感分别得励磁电感和漏感 匝数比:K=Np/Ns=V1/V2 2、变压器的构成以及作用: 1)电气隔离 2)储能 3)变压 4)变流 ●高频变压器设计程序: 1.磁芯材料 2.磁芯结构 3.磁芯参数 4.线圈参数 5.组装结构 6.温升校核 1.磁芯材料 软磁铁氧体由于自身的特点在开关电源中应用很广泛。 其优点是电阻率高、交流涡流损耗小,价格便宜,易加 工成各种形状的磁芯。缺点是工作磁通密度低,磁导率 不高,磁致伸缩大,对温度变化比较敏感。选择哪一类 软磁铁氧体材料更能全面满足高频变压器的设计要求, 进行认真考虑,才可以使设计出来的变压器达到比较理 想的性能价格比。 2.磁芯结构 选择磁芯结构时考虑的因数有:降低漏磁和漏感, 增加线圈散热面积,有利于屏蔽,线圈绕线容易,装配 接线方便等。 漏磁和漏感与磁芯结构有直接关系。如果磁芯不需 要气隙,则尽可能采用封闭的环形和方框型结构磁芯。 3.磁芯参数: 磁芯参数设计中,要特别注意工作磁通密度不只是受磁化曲线限制,还要受损耗的限制,同时还与功率传送的工作方式有关。 磁通单方向变化时:ΔB=Bs‐Br,既受饱和磁通密度限制,又更主要是受损耗限制,(损耗引起温升,温升又会影响磁通密度)。工作磁通密度Bm=0.6~0.7ΔB 开气隙可以降低Br,以增大磁通密度变化值ΔB,开气隙后,励磁电流有所增加,但是可以减小磁芯体积。对于磁通双向工作而言: 最大的工作磁通密度Bm,ΔB=2Bm。在双方向变化工作模式时,还要注意由于各种原因造成励磁的正负变化的伏秒面积不相等,而出现直流偏磁问题。可以在磁芯中加一个小气隙,或者在电路设计时加隔直流电容。 4.线圈参数: 线圈参数包括:匝数,导线截面(直径),导线形式,绕组排列和绝缘安排。 导线截面(直径)决定于绕组的电流密度。通常取J为2.5~4A/mm2。导线直径的选择还要考虑趋肤效应。如必要,还要经过变压器温升校核后进行必要的调整。 4.线圈参数: 一般用的绕组排列方式:原绕组靠近磁芯,副绕组反馈绕组逐渐向外排列。下面推荐两种绕组排列形式: 1)如果原绕组电压高(例如220V),副绕组电压低,可以采用副绕组靠近磁芯,接着绕反馈绕组,原绕组在最外层的绕组排列形式,这样有利于原绕组对磁芯的绝缘安排; 2)如果要增加原副绕组之间的耦合,可以采用一半原绕组靠近磁芯,接着绕反馈绕组和副绕组,最外层再绕一半原绕组的排列形式,这样有利于减小漏感。 5.组装结构:

常用磁芯材料总结

常用磁芯材料 (一)粉芯类 1.磁粉芯 可以隔绝涡流,材料适用于较高频率;材料具有低导磁率及恒导磁特性,磁导率随频率的变化也就较为稳定。主要用于高频电感。 常用的磁粉芯有铁粉芯、坡莫合金粉芯及铁硅铝粉芯三种。 (1).铁粉芯 在粉芯中价格最低。磁导率范围从22~100; 初始磁导率me随频率的变化稳定性好;直流电流叠加性能好;但高频下损耗高。 (2).坡莫合金粉芯 坡莫合金粉芯主要有钼坡莫合金粉芯(MPP)及高磁通量粉芯 MPP主要特点是:磁导率范围大,14~550;在粉末磁芯中具有最低的损耗;温度稳定性极佳,在不同的频率下工作时无噪声产生。粉芯中价格最贵。 高磁通粉芯主要特点是:磁导率范围从14~160;在粉末磁芯中具有最高的磁感应强度,最高的直流偏压能力;磁芯体积小。 价格低于MPP。 (3).铁硅铝粉芯 铁硅铝粉芯主要是替代铁粉芯,损耗比铁粉芯低80%,可在8KHz以上频率下使用;导磁率从26~125;在不同的频率下工作时无噪声产生;具有最佳的性能价格比。主要应用于交流电感、输出电感、线路滤波器、功率因素校正电路等。 2. 软磁铁氧体 软磁铁氧体是以Fe2O3为主成分的亚铁磁性氧化物。有Mn-Zn、Cu-Zn、Ni-Zn等几类,其中Mn-Zn铁氧体的产量和用量最大,Mn-Zn铁氧体的电阻率低,一般在100KHZ以下的频率使用。Cu-Zn、Ni-Zn铁氧体在100kHz~10兆赫的无线电频段的损耗小。 由于软磁铁氧体不使用镍等稀缺材料也能得到高磁导率,粉末冶金方法又适宜于大批量生产,因此成本低,又因为是烧结物硬度大、对应力不敏感,在应用上很方便。而且磁导率随频率的变化特性稳定,在150kHz以下基本保持不变。随着软磁铁氧体的出现,磁粉芯的生产大大减少了,很多原来使用磁粉芯的地方均被软磁铁氧体所代替。 综上所述,可以选择Mn-Zn铁氧体作为磁芯的材料。 轴套材料选择

磁性材料基本特性

1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。 材料的工作状态相当于M~H曲线或 B~H曲线上的某一点,该点常称为工作点。 饱和磁感应强度 Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列; 剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs; 矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等); 磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关 初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp 居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度 损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r 在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 设计软磁器件通常包括三个步骤:正确选用磁性材料;

磁材介绍

? Spang & Co 公司分部 开关电源使用的 磁芯

简介 开关电源(SPS)的优点大家都很清 楚。这些装置中所用的各种电路也在文献中 说明得非常清楚。磁芯在开关电源电路中起 重要作用。磁芯可由多种原料经一系列工序 制成,可以有各种形状和大小,如图1所 示。 每种材料都有自己的特性。因此,必须 参考材料特性考察具体情况下对电源磁芯的 要求,从而选择适当磁芯。 本文介绍开关电源磁芯所用的各种磁 性材料、制造方法以及和电源主要部分相 关的有效磁特性。 磁芯可分为以下三种基本类型:(1) 绕帶磁芯,(2)磁粉芯,(3)铁氧体。 图1:各种磁芯。 以下 MAGNETICS 资料详细讲述另外一些磁芯资料,包括材料说明和特性,以及尺寸和特别设计资料: 铁氧体磁芯……………….…………………………….…技术公报FC-601 钼坡莫合金和高磁通磁粉芯.…………………………….技术公报MPP-400 铁硅铝磁粉芯…………….…………………………….…技术公报KMC-2.0 高磁通磁粉芯…………….…………………………….…技术公报HFPC-01 绕帶磁芯…………….…………………………….………技术公报TWC-500 切割型磁芯…………….…………………………….……技术公报MCC-100 电感器磁粉芯设计软件https://www.doczj.com/doc/7b11004938.html, 共模电感器设计软件https://www.doczj.com/doc/7b11004938.html, 目錄 绕帶磁芯 (1) 磁粉芯 (3) 铁氧体磁芯 (5)

图 2:TWC 剖视图。 绕帶磁芯 图 2 是典型绕帶磁芯的剖视图。这个磁芯由磁合金窄带制成,厚度为 1/2 密尔到 14 密尔。宽度为 1/8” 到若干英寸。金属带首先切成所需宽度,并覆盖上薄的绝缘材料涂层,然后绕制在芯棒上,一圈包着一圈,一直绕到预定厚度。最后一圈通过点焊焊接在前一圈上,防止松开。 绕制时磁芯材料受压,所以会丧失部分磁性。为了恢复这些失去的磁特性,磁芯必须在氢气炉中退火,退火温度接近 1000°C 。 *频率极限是根据处于磁通饱和或接近饱和状态下的材料获得的。频率越高越好,这样磁感应强度就越低-参见正文。 1 MAGNESIL ? 16.5 750 0.012 (3% SiFe ) 0.006 0.004 0.002 100 Hz 250 Hz 1 kHz 2 kHz SUPERMENDUR (铁钴钒合金材料铁钴钒合金材料)) ORTHONOL ? (50% Ni ) 21 940 0.004 0.002 15 500 0.004 0.002 0.001 750 Hz 1.5 kHz 1.5 kHz 4 kHz 8kHZ 坡莫合金 (80% Ni ) 非晶 2605SC (铁基) 7.4 460 15.5 370 0.004 0.002 0.001 0.0005 0.001 4 kHz 10 kHz 20 kHz 40 kHz 20 kHz 非晶 2605-S3 (铁基铁基)) 14 370 0.001 100 kHz 非晶 2714A (钴基钴基)) 5.75 205 0.001 300 kHz kHz 磁材料 饱和饱和磁感应磁感应 强度千高斯 (B m ) 表 1:绕帶磁芯材料的磁特性 居里温度 °C (T C ) 使用使用频率上限频率上限* 带厚带厚((英寸英寸)) 频率

磁芯资料

1.磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2.软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3.软磁材料的磁性参数与器件的电气参数之间的转换

各种合金金属磁芯非晶微晶磁芯介绍

各种合金金属磁芯、非晶、微晶磁芯介绍 一、性能特点: 坡莫合金金属磁芯:各类坡莫合金材料有着各自不同的,较硅钢材料与铁氧体优异的典型磁性能,有着较高的温度稳定性和时效稳定性.高初始磁导率类坡莫合金材料(IJ79,IJ85,IJ86)铁芯常制作电流互感器,小信号变压器;高矩形度类坡莫合金材料(IJ51)铁芯常制作磁放大器,双级性脉冲变压器;低剩磁类坡莫合金材料(IJ67h)铁芯常制作中小功率单极性脉冲变压器. 二、非晶磁芯: ⑴铁基非晶铁芯:在几乎所有的非晶合金铁芯中具有最高的饱和磁感 应强度(1.45~1.56T),同时具有高导磁率,低矫顽力,低损耗,低激磁电流和良好的温度稳定性和时效稳定性.主要用于替代硅钢片,作为各种形式,不同功率的工频配电变压器,中频变压器,工作频率从50Hz到10KHz;作为大功率开关电源电抗器铁芯,使用频率可达50KHz. ⑵铁镍基非晶铁芯:中等偏低的饱和磁感应强度(0.75T),高导磁率, 低矫顽力,耐磨耐蚀,稳定性好.常用于取代坡莫合金铁芯作为漏电开关中的零序电流互感器铁芯. ⑶钴基非晶铁芯:在所有的非晶合金铁芯中具有最高的磁导率,同时 具有中等偏低的饱和磁感应强度(0.65T),低矫顽力,低损耗,优异的耐磨性和耐蚀性,良好的温度稳定性和时效稳定性,耐冲击振动.主要用于取代坡莫合金铁芯和铁氧体铁芯制作高频变压器,滤波电感,磁放大器,脉冲变压器,脉冲压缩器等应用在高端领域(军用) 三、微晶磁芯: 较高的饱和磁感应强度(1.1~1.2T),高导磁率,低矫顽力,低损耗及良的稳定性,耐磨性,耐蚀性,同时具有较低的价格,在所有的金属软磁材料芯中具有最佳的性价比,用于制作微晶铁芯的材料被誉为"绿色材料".泛应用于取代硅钢,坡莫合金及铁氧体,作为各种形式的高频(20KHz100KHz)开关电源中的大中小功率的主变压器,控制变压器,波电感,储能电感,电抗器,磁放大器和饱和电抗器铁芯,EMC滤波器共电感和差模电感铁芯,IDSN微型隔离变压器铁芯;也广泛应用于各种类同精度的互感器铁芯. 环型规格范围: 磁芯最大外径:750mm 磁芯最小内径:6mm 磁芯最小片宽:5mm 磁芯最大片宽:40mm (可叠加得到更宽) 其他规格可以根据客户需求订做 四、参考说明: 坡莫合金金属磁芯,非晶,微晶磁芯电磁性能状态: 横磁热处理,低Br,有一定的恒导特性,适用于小功率单极性脉冲变压器,单端开关电源变压器,滤波电感,电抗器; 常规热处理,低Pc,极低的激磁电流;适用于中频变压器; 纵磁热处理,高Br,适用于配电变压器,中频变压器,双端开关电源变压器,大功率双极性脉冲变压器,饱和电抗器及脉冲压缩器. 摘要:结合应用实例,重点介绍了在不同应用场合选用非晶与超微晶材料的种类及其特点,并与其它磁性材料作了对比。关键词:铁基非晶材料;铁基超微晶材料;磁导率;矫顽力;损耗 五、非晶与超微晶材料的应用 磁材料120×60×40磁芯。按照 E=4.44f×Bm×N×Sc×10-4(1)

常见软磁材料

一). 粉芯类 1. 磁粉芯 磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。由于铁磁性颗粒很小(高频下使用的为0.5~5微米),又被非磁性电绝缘膜物质隔开,因此,一方面可以隔绝涡流,材料适用于较高频率;另一方面由于颗粒之间的间隙效应,导致材料具有低导磁率及恒导磁特性;又由于颗粒尺寸小,基本上不发生集肤现象,磁导率随频率的变化也就较为稳定。主要用于高频电感。磁粉芯的磁电性能主要取决于粉粒材料的导磁率、粉粒的大小和形状、它们的填充系数、绝缘介质的含量、成型压力及热处理工艺等。 常用的磁粉芯有铁粉芯、坡莫合金粉芯及铁硅铝粉芯三种。 磁芯的有效磁导率me及电感的计算公式为: me = DL/4N2S ′ 109 其中: D为磁芯平均直径(cm),L为电感量(享),N为绕线匝数,S为磁芯有效截面积(cm2)。 (1). 铁粉芯 常用铁粉芯是由碳基铁磁粉及树脂碳基铁磁粉构成。在粉芯中价格最低。饱和磁感应强度值在1.4T左右;磁导率范围从22~100; 初始磁导率mi随频率的变化稳定性好;直流电流叠加性能好;但高频下损耗高。 (2). 坡莫合金粉芯 坡莫合金粉芯主要有钼坡莫合金粉芯(MPP)及高磁通量粉芯(High Flux)。 MPP是由81%Ni, 2%Mo, 及Fe粉构成。主要特点是: 饱和磁感应强度值在7500Gs左右;磁导率范围大,从14~550; 在粉末磁芯中具有最低的损耗;温度稳定性极佳,广泛用于太空设备、露天设备等;磁致伸缩系数接近零,在不同的频率下工作时无噪声产生。主要应用于300KHz以下的高品质因素Q滤波器、感应负载线圈、谐振电路、在对温度稳定性要求高的LC电路上常用、输出电感、功率因素补偿电路等, 在AC电路中常用,粉芯中价格最贵。 高磁通粉芯HF是由50%Ni, 50%Fe粉构成。主要特点是: 饱和磁感应强度值在15000Gs左右;磁导率范围从14~160; 在粉末磁芯中具有最高的磁感应强度,最高的直流偏压能力;磁芯体积小。主要应用于线路滤波器、交流电感、输出电感、功率因素校正电路等, 在DC 电路中常用,高DC偏压、高直流电和低交流电上用得多。价格低于MPP。 (3). 铁硅铝粉芯 (Kool Mm Cores) 铁硅铝粉芯由9%Al, 5%Si, 85%Fe粉构成。主要是替代铁粉芯,损耗比铁粉芯低80%,可在8KHz以上频率下使用;饱和磁感在1.05T左右;导磁率从26~125;磁致伸缩系数接近零,

磁芯材料分析

磁性材料 一. 磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝f2 t2 / ,ρ 降低, 磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 二、软磁材料的发展及种类 1. 软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。到20世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。直至现在硅钢片在电力工业用软磁材料中仍居首位。到20年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。从40年代到60年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软磁铁氧体材料。进入70年代,随着电讯、自动控制、计算机等行业的发展,研制出了磁头用软磁合金,除了传统的晶态软磁合金外,又兴起了另一类材料—非晶态软磁合金。2. 常用软磁磁芯的种类 铁、钴、镍三种铁磁性元素是构成磁性材料的基本组元。 按(主要成分、磁性特点、结构特点)制品形态分类: (1) 粉芯类:磁粉芯,包括:铁粉芯、铁硅铝粉芯、高磁通量粉芯(High Flux)、坡莫合金粉芯(MPP)、铁氧体磁芯

磁芯材料(基础)

2.软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3.软磁材料的磁性参数与器件的电气参数的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 二、软磁材料的发展及种类 1.软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。到20世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。直到现在硅钢片在电力工业用软磁材料中仍居首位。到20年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。从40年代到60年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软磁铁氧体材料。进入70年代,随着电讯、自动控制、计算机等行业的发展,研制出了磁头用软磁合金,除了传统的晶态软磁合金外,又兴起了另一类材料—非晶态软磁合金。 2.常用软磁磁芯的种类 铁、钴、镍三种铁磁性元素是构成磁性材料的基本组元。 按(主要成分、磁性特点、结构特点)制品形态分类: (1)粉芯类:磁粉芯,包括:铁粉芯、铁硅铝粉芯、高磁通量粉芯(HighFlux)、坡莫合金粉 芯(MPP)、铁氧体磁芯 (2)带绕铁芯:硅钢片、坡莫合金、非晶及纳米晶合金 三常用软磁磁芯的特点及应用 (一)粉芯类 1.磁粉芯 磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。由于铁磁性颗粒很小(高频下使用的为0.5~5微米),又被非磁性电绝缘膜物质隔开,因此,一方面可以隔绝涡流,材料适用于较高频率;另一方面由于颗粒之间的间隙效应,导致材料具有低导磁率及恒导磁特性;又由于颗粒尺寸小,基本上不发生集肤现象,磁导率随频率的变化也就较为稳定。主

各类形状磁芯的优缺点

4、E型磁芯 与罐型磁芯相比,E型磁芯的费用要低的多,再加上绕制和组装都比较简单,这种磁芯形状现在应用最广,但是它的缺点是不能提供自我屏蔽;E型磁芯可以进行不同方向的安装,也可以几付叠加应用更大的功率;这种磁芯可以作成扁平形状(是现在平面变压器很流行的磁芯形状);也可以提供无针和插针型骨架;由于其散热非常好、可以叠加使用,一般大功率电感器和变压器都使用这种形状的磁芯。 5、EC、ETD和EER型磁芯 这些类型的磁心结构介于E型和罐型之间。和E型磁芯一样,他们能提供足够的空间供大截面的引线引出(适合现在开关电源低压大电流的趋势);这些形状的磁心散热也非常好;有于中心柱为圆柱形,与相同截面的长方体相比,单匝的绕组的长度缩短了11%,这样致使铜损也降低了11%,同时使的磁心能提供一个更高的输出功率;同时中心柱为圆柱形,与长方体中心柱相比,也避免了由于长方体棱角在绕制时破坏绕组线材绝缘的隐患。

6、PQ型磁芯 PQ型磁芯专门为开关电源用电感器和变压器设计。PQ形状的设计优化了磁芯体积、表面积和绕组绕制面积之间的比率;这种设计,使的使用最小的磁芯提供最大的电感量和最大化的绕制面积成为可能;这种设计,使得在最小的变压器体积和重量下,获得最大的输出功率,并且占用最小的PCB安装空间;可以使用一付夹子进行安装固定;这种有效的设计也使的磁芯的磁路截面积更加统一,因此这种磁芯结构也使得比其它的磁芯结构设计有更少的工作热点。 8、环形磁芯 对于制造商来说,环型磁芯是最经济的,在与其可比较的各种磁芯中,它的花费是最低的(不过个人觉得对于变压器绕制厂商的绕制成本比较高);由于使用骨架,附加的和组装的费用等于零;适合时可以使用绕线机进行绕制;它的屏蔽也是非常不错的。

磁芯的种类及应用

磁芯的种类及应用: 1.磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2.软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br?Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗 Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3.软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 一、软磁材料的发展及种类 1. 软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。到20世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。直至现在硅钢片在电力工业用软磁材料中仍居首位。到20年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。从40年代到60年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软

磁性材料特性

磁性材料 一.磁性材料的基本特性 1. 磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H 曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br∕Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。

磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度T c:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗P h及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe f2 t2 / ∝,ρ降低, 磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3. 软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 二、软磁材料的发展及种类 1.软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳

磁芯材料类别

据这个电感的电感量量以及所通过的电流,由此计算出需要的漆包线的直径和绕制的圈数,大致估算出体积,然后再选购磁芯。 1、铁粉芯。 铁粉芯是工字电感磁芯中最常用的一种软磁铁粉芯,这种磁芯一般是通过采用纯铁粉,加入绝缘剂、粘结剂然后挤压成型而成的。这类磁芯的表面电阻较小,初始导磁率为75以下,拥有很高的饱和磁通密度B,因此它主要用于功率型的磁环电感的各种开关电源上。 2、镍锌磁芯。 工字电感磁芯中应用的镍锌磁芯属于一种软磁铁氧体磁芯,它具有电阻高、导磁率偏低、初始导磁率范围在5~1500的特点。另外,由于这类镍锌磁芯具有较高的表面电阻(100MΩ以上),因此一般用于中高频电路上。 3、锰锌磁芯。 锰锌磁芯与镍锌磁芯一样,也是一种软磁磁芯,具有表面电阻低、较高的初始导磁率、很高的饱和磁通密度,所以它是100KHz左右最理想的功率电感。而且由于磁芯的初始导磁率越高,其表面电阻越低,因此它一般使用在1MHz以下电路。 4、铁氧体磁芯。 工字电感磁芯中常用的铁氧体磁芯是一种高频导磁材料,主要由铁(Fe),锰(Mn),和锌(Zn)3种金属元素组成。这种铁氧体磁芯可以增大导磁率,提高电感品质因素的特点,但是它最大特点是高渗透性,

良好的温度特性,和低衰减率。因此它是制造宽带变压器,可调电感器及其他一些从10kHz到50MHz的高频电路等应用最理想的一种材料。 工字磁芯有镍锌也有锰锌。镍锌u值低,抗饱和能力强、卷数多。锰锌u值高抗饱和能力弱些需卷数少。常见以扼流卷电感为主。磁棒属1000u/2000u中波磁棒。有扁有圆。属锰锌材料。现在工字磁芯里有高u值品种为贴片用工字磁芯,Dc/Dc较常见,材料为95/99锰锌料、u值在10000左右。镍锌材料电阻率较大,外观粗糙些有颗粒状。锰锌料电阻率低、表面光滑、有光泽。以导磁率400为中线400u以下镍锌为主400u以上锰锌为主

最新常用铁氧体磁芯资料

常用铁氧体磁芯资料

PM型磁芯PM CORES 型号尺寸Dimensions(mm) Type A B C D E F PM50 49.15±0.85 39.65±0.65 19.70±0.30 5.50±0.10 26.80±0.40 38.80±0.20 PM62 61.00±1.00 48.0min 25.00±0.70 5.30±0.30 33.80±0.60 48.80±0.50 PM74 74.00 0 57.0min 29.00±1.00 5.40±0.30 41.00±0.80 59.00±0.60 -3.0 PM87 87.00 +2.0 66.5min 31.70±1.50 8.50±0.40 48.40±0.80 70.00±0.80 -3.0 PM114 114.00 0 88.0min 42.00±1.50 5.40±0.40 63.80±0.80 92.50±0.50 -5.0 型号磁芯参数Core parameter 重量LP2 LP3 Type C1 (mm- 1) Ae (mm2) le (mm) Ve (mm3) weight (g/pr.) AL(nH/N2 ±25%) Pc(W) (max) AL(nH/N2 ±25%) Pc(W) (max) PM50 0.227 370 84.0 31000 140 7700 3.1 PM62 0.190 570 109 62000 385 9700 6.2 PM74 0.162 790 128 101000 470 10000 3.5* PM87 0.161 910 146 133000 817 13000 4.0* 13000 2.7* PM114 0.116 1720 200 344000 1886 18000 10.3* 16000 6.9* 注:AL:1kHz,0.5mA,100Ts Pc:25kHz,200mT,100℃ 100kHz,200mT,100℃ EE型磁芯 EE CORES

磁芯材料的介绍

电力电子电路常用磁芯元件的设计 一、常用磁性材料的基本知识 磁性元件可以说是电力电子电路中关键的元件之一,它对电力电子装置的体积、效率等有重要影响,因此,磁性元件的设计也是电力电子电路系统设计的重要环节。磁性材料有很多种类,特性各异,不同的应用场合有不同的选择,以下是几种常用的磁性材料。 1.低碳钢 低碳钢是一种最常见的磁性材料,这种材料电阻率很低,因此涡流损耗较大,实际应用时常制成硅钢片。硅钢片是一种合金材料(通常由97%的铁和3%的硅组成),它具有很高的磁导率,并且每一薄片之间相互绝缘,使得材料的涡流损耗显著减小。磁芯损耗取决于材料的厚度与硅含量,硅含量越高、电阻率越大。这种材料大多应用于低频场合,工频磁性元件常用这种材料。 2.铁氧体 随着工作频率的提高,对磁芯损耗的要求更高,硅钢片由于制造工艺的限制,已经很难满足这种要求,铁氧体就是在这种形势下出现的。 铁氧体是一种暗灰色或者黑色的陶瓷材料。铁氧体的化合物是MeFe2O4,这里Me代表一种或几种二价的金属元素,例如,锰、锌、镍、钴、铜、铁或镁。这些化合物在特定的温度范围内表现出良好的磁性能,但是如果超出某个温度值,磁性将失去,这个温度称为居里温度(T c)。铁氧体材料非常容易磁化,并且具有相当高的电阻率。这些材料不需要像硅钢片那样分层隔离就能用在高频的应用场合。 高频铁氧体磁性材料主要可分为两大类:锰锌(MnZn)铁氧体材料和镍锌(NiZn)铁氧体材料。比较而言,NiZn材料的电阻率较高,一般认为在高频应用场合下具有较低的涡流损耗。但是最近的研究表明,如果颗粒的尺寸足够小而且均匀,在几兆赫兹范围内MnZn材料显示出较NiZn材料更为优越的特性,例如,TDK公司的H7F材料以及MAGNETICS公司的K材料就是采用这种技术,适用于兆赫兹工作频率下工作的新型铁氧体材料。 3.粉芯材料

磁芯材质对照表

ACME P4P41P42P43 P46P5P51P52 S3 TDK PC40PC44PC90PC95 PC50PC50NICERA NC-2H 2HM5 BM272M 5M EPCOS N67,N87N92N49N49FERROXCUBE 3C85,3C903C963C923C933F33F35 3R1 DMEGC DMR40DMR44DMR2KB DMR50TDG TP4TP4A TP4S TP5 TP5A TOKIN BH2BH1 B40FDK 6H207H10MAGNETICS P R K THOMSON F1TOMITA 2F8,2G8JFE(KAWTATETSU)MB3MB4MBT1 MC2 SAMWHA PL-5,PL-7PL-11PL-F1HS-1 ISU PM7PM11 BM15 PM12FM4 FM5HITACHI ML24D ML12D FAIR-RITE 7885 FERRITE INTˇTSF-7099TSF-7060 TSF-5099 KASCHKE K2008ISKRA 45G 55G 35G 75G ACME A041A043A05A07A10A101 A102 A121A151TDK DN45 DNW45 H5B H5B2H5C2H5C4H5C3NICERA NC-5Y NC-7NC-10H 10TB 12H 15H EPCOS T57N30T35/T37T38T38T42T46FERROXCUBE 3.00E+273E25/3E27 3.00E+05 3.00E+55 3.00E+06 3.00E+07DMEGC DMR4KDC DMR5K DMR7K DMR10K DMR12K DMR15K TDG TS5TS7TS10/TS10 A TH10TS13TS15TOKIN 5H 7H 10H 12H 15H FDK 2H062H07 2H102H15MAGNETICS J W H THOMSON T6,T6A T4A,T4NEOSID F-830F-860F-938F-942TOMITA 2F1 2.00E+01 2.00E+02 2H22H1JFE(KAWTATETSU)MA055MA070MA100 MA120 MA150SAMWHA SM50SM70S SM100SM150 STEWARD 36 46 353740KRVSTINEL K82K86K87HITACHI MQ53D MP70D MP10T MP15T FAIR-RITE 7576FERRITE INTˇTSF-3000 TSF-010K FERRONICS BE B T V KASCHKE K5000K10000K12000K15000ISKRA 19G 22G 12G 32G 52G ACME N10 N2N4 N42N43 TDK DN45 NICERA WT-10 2B EPCOS T57N48N45M33FERROXCUBE 3.00E+283B7 3B46,3S5 3D3 DMEGC DMR4KDC TDG TH2SAMWHA SM43T SM23T SM8T ISU BM30 STEWARD 36 HITACHI MQ25D 凝?

相关主题
文本预览
相关文档 最新文档