一种重型卡车驾驶室后悬置的介绍
- 格式:doc
- 大小:147.50 KB
- 文档页数:3
随着重型车技术的不断升级,如何提高驾驶员的乘坐舒适性、减轻驾驶员的疲劳强度、提高车辆的安全性已经成为设计者考虑的重要因素。
目前,在欧洲重型汽车上已经广泛采用了包含空气弹簧的空气悬架和全四点振动悬置的新方法。
本文介绍一种新的驾驶室悬架形式——新型全浮式驾驶室空气悬架,并通过仿真分析说明了这种新悬架的优势。
与传统驾驶室悬架比较,该悬架不仅可有效提高驾驶员的乘坐舒适性,而且可提高驾驶室的碰撞安全性及减小驾驶室悬置点的动载荷。
重型汽车悬架系统是一个复杂的振动系统。
半挂牵引车的振动,其悬架系统由主、次悬架构成。
主悬架包括弹性系统、阻尼减振系统和导向机构;次悬架(以下称为驾驶室悬架)包括弹簧元件、减振器与导向稳定杆。
驾驶室悬架的作用舒适的驾驶室悬架可以减轻驾驶疲劳,从而使驾驶员可以将注意力集中在路面上,这无论对于随行人员、驾驶员、物流业主,还是路面行人,都有重要的安全意义;因此,设计舒适的驾驶室悬架对于长途运输业很有必要。
驾驶室悬架是用来联结驾驶室和车架的,以保证汽车的正常行驶,其主要作用包括:⑴悬挂驾驶室,承受驾驶室的质量,引导垂直运动。
⑵确保驾驶员可以感受到路面情况。
⑶优化驾驶舒适性,隔离或减小振动,减小噪声。
⑷提高安全性,承受最大冲击力,吸收碰撞能量。
⑸允许驾驶室有一定的倾斜(驾驶室在发动机上,货车独有的特征)。
驾驶室悬架一般包括独立的驾驶室前悬架和驾驶室后悬架。
每一个驾驶室悬架部分都包括弹性元件(主要作用是承受垂直载荷和缓和路面冲击)、减振装置(主要作用是加速振动的衰减)和导向机构(主要是减少转弯时驾驶室的侧倾,如纵、横向推力杆、横向稳定杆)。
传统的悬架设计1.驾驶室后悬架传统重型汽车的驾驶室后悬架采用螺旋弹簧或空气弹簧作为弹性元件,一个独立的减振器作为减振元件,几个杆件组成引导机构。
驾驶室垂直振动频率:采用空气弹簧为1.4~1.8 Hz,采用螺旋弹簧为1.8~3 Hz。
悬架系统的垂直跳跃位移为40~60 mm。
商用车驾驶室悬置系统隔振特性与优化研究一、本文概述随着商用车市场的不断发展和技术的进步,商用车驾驶室的舒适性和安全性日益受到人们的关注。
驾驶室悬置系统作为商用车的重要组成部分,其隔振特性对驾驶室的舒适性和整车的稳定性具有重要影响。
因此,对商用车驾驶室悬置系统的隔振特性进行深入研究和优化,对于提高商用车驾驶室的舒适性和整车的性能具有重要意义。
本文旨在研究商用车驾驶室悬置系统的隔振特性,并通过优化方法改善其性能。
对商用车驾驶室悬置系统的基本结构和工作原理进行介绍,明确研究对象和范围。
分析商用车驾驶室悬置系统的隔振特性,包括振动传递特性、隔振效率等方面,为后续的优化研究提供理论基础。
接着,采用先进的仿真分析方法和实验手段,对商用车驾驶室悬置系统的隔振特性进行定量评估,揭示其存在的问题和不足。
基于仿真分析和实验结果,提出商用车驾驶室悬置系统的优化方案,并通过实验验证优化效果,为商用车驾驶室悬置系统的设计和改进提供指导。
本文的研究不仅有助于深入理解商用车驾驶室悬置系统的隔振特性,而且可以为商用车的设计和制造提供理论依据和技术支持,对于推动商用车行业的进步和发展具有重要意义。
二、商用车驾驶室悬置系统隔振理论基础商用车驾驶室悬置系统的隔振特性对于提高驾驶员的舒适性和减少车辆振动对驾驶室内部构件的影响至关重要。
为了深入了解商用车驾驶室悬置系统的隔振特性,并对其进行优化研究,首先需要建立其隔振理论基础。
隔振理论的核心在于通过合适的悬置系统设计和参数调整,减少或隔离来自车辆底盘的振动传递至驾驶室。
商用车驾驶室悬置系统通常由橡胶悬置、液压悬置或空气悬置等构成,这些悬置元件具有良好的弹性和阻尼特性,能够在一定程度上吸收和衰减振动能量。
在隔振理论中,传递函数是一个关键概念,它描述了振动从输入端到输出端的传递关系。
对于商用车驾驶室悬置系统,传递函数可以通过建立系统的力学模型,结合振动分析方法来求解。
通过分析传递函数的频率响应特性,可以了解悬置系统在不同频率下的隔振效果,从而指导悬置系统的设计和优化。
摘要由于政策导向和互联网经济爆发,国内陆上物流业蓬勃发展,重型商用车成为公路运输的主力军。
长途运输中,商用车驾驶员长期处于恶劣的振动环境下,对乘员的身心健康造成不良影响,且产生的驾驶疲劳会招致发生交通事故的隐患。
商用车驾驶室悬置系统能够有效衰减传递到驾驶室的振动能量,提升整车平顺性,并能为整车动力性和经济性等性能的发挥提供良好的保障。
因此,对商用车驾驶室悬置进行研究,于客户于制造商,都大有裨益。
首先,本文详细介绍了驾驶室悬置系统的发展历程、基本结构和功能,进行了整车道路平顺性试验,对试验采集的加速度数据按照国标要求处理后,分别以悬置振动衰减率和座椅加速度乘坐值作为评价指标,对悬置隔振性能以及整车的平顺性进行了客观评价。
试验中,悬置下方的加速度传感器采集了车架端的振动信号,作为本文理论模型的振动输入。
其次,给出了驾驶室相关参数,对弹性元件和横向稳定杆等特殊元件作了特殊处理,介绍了参数线性化的理论依据及方法。
对实际模型进行简化后,按照实际参数在ADAMS软件中建立了驾驶室悬置仿真模型,并以实测的悬下振动激励作为输入进行了振动仿真,验证了模型的精准度。
再次,根据响应面试验设计方法,对设计变量制定了多组仿真方案,根据仿真采集的数据,拟合了驾驶室地板垂向加速度和质心纵向角加速度这两个振动响应量的响应面方程,并用方差分析和统计计算方法验证了方程的显著性和有效性。
最后,根据多目标优化问题基本原理对振动响应量进行优化,对拟合的响应面方程用自适应粒子群算法进行了寻优,优化后的方案经ADAMS仿真验证,最常用车速下响应量功率谱密度峰值分别下降16%和17.3%,对应加速度均方值分别下降9.4%和8%,仿真结果的目标函数最优值与粒子群算法对方程的寻优值误差为2%,其余车速下响应量功率谱密度峰值均有明显下降,说明本文的优化工作有一定效果并且优化方法可行。
关键词:重型商用车;驾驶室悬置;ADAMS;响应面设计;粒子群算法AbstractDue to the policy guidance and the outbreak of Internet economy, the domestic highway logistics industry is booming and heavy commercial vehicles are acting as the main force of road haulage. During the process of line-haul, drivers of commercial vehicles are exposed to harsh vibrations for a long time, the resulting driving fatigue brings hidden dangers of traffic accidents and both the physical and mental health of drivers can be badly damaged. The commercial vehicle cab suspension system can effectively attenuate the vibration energy transmitted to the cab, improve the ride comfort that ensure both the acceleration performance and economic performance. Therefore, to research on the commercial cab suspension system is of great benefits to both customers and manufactures.Firstly, the development history and basic structure as well as function of cab suspension were presented in detail. Ride comfort tests were carried out,and the acceleration data was calculated according to the national standard requirements, with the vibration attenuation rate and the seat acceleration respectively used as evaluation indicators, the vibration isolation performance of cab suspension and the ride comfort were evaluated objectively. In the tests, the acceleration signal collected by the sensors underneath the suspension was transmitted from frame and used as the vibration input of the theoretical model.Secondly, the relevant parameters of the cab were given. Specialized processing for special components such as elastic components and transverse stabilizers was described detailed, after which the theory and method of parameter linearization were introduced. With several simplification of the actual model, a simulation model of cab suspension was established in the ADAMS software based on actual parameters, and several vibration simulations were carried out with the collected vibration excitation as input to verify the accuracy of the ADAMS model.Then, based on response surface methodology, multiple sets of simulation were developed for the design variables. Using the result data of the simulations, two response surface equations of the vibration responses including the vertical acceleration on cab floor and the pitch acceleration at cab centroid were fitted and used. Variance analysis and statistical calculation methods were applied to verify thesignificance and validity of the equations.Finally, the vibration responses were to be optimized based on the basic theory of multi-objective optimization. The fitted response surface equations were optimized by adaptive particle swarm optimization algorithm. The optimized scheme of parameters was verified by ADAMS simulation, in which the maximum power spectrum density of two responses at 60km/h decreased by 16%.and 17.3% and acceleration decreased by 9.4% and 8% respectively. And the maximum PSD of two responses decreased significantly at the rest speed. The optimization was indicated to have certain effects and the optimization procedure was proved to be feasible with a deviation of 2% between the optimized value coming from ADAMS simulation and the one coming from PSO algorithm as indicator.Key words: Heavy commercial vehicle; Cab suspension; ADAMS; Response surface methodology; Particle swarm optimization目录摘要 (I)Abstract (III)目录 (V)第1章绪论 (1)1.1 研究背景及意义 (1)1.2 驾驶室悬置系统概述 (3)1.3 驾驶室悬置国内外研究现状 (7)1.3.1 驾驶室悬置研究现状 (7)1.3.2 研究现状评述 (9)1.4 本文主要研究内容和方法 (10)1.4.1 研究内容及方法 (10)1.4.2 技术路线 (11)第2章ADAMS多体动力学及驾驶室悬置振动的相关理论 (12)2.1 ADAMS多体动力学基本理论 (12)2.1.1 多体动力学系统的模型组成 (13)2.1.2 ADAMS多体动力学的建模理论和求解方法 (13)2.2 驾驶室悬置振动模型简化及振动原理 (18)2.3 人体对振动的反应及平顺性评价 (25)2.3.1 人体对振动的反应和基本评价方法 (25)2.3.2 商用车平顺性评价方法 (27)2.4 本章小结 (29)第3章驾驶室悬置平顺性试验 (30)3.1 本文驾驶室悬置结构简介 (30)3.2 实车平顺性试验和数据采集 (31)3.2.1 试验方法及规定 (31)3.2.2 试验设备 (32)3.3 数据处理及平顺性评价 (36)3.4 本章小结 (40)第4章驾驶室悬置结构理论分析及建模 (41)4.1 ADAMS建模方法简述 (41)4.2 建立驾驶室悬置仿真模型 (42)4.2.1 模型参数介绍 (43)4.2.2 模型简化处理 (49)4.2.3 悬置模型的最终建立 (50)4.3 振动仿真及模型验证 (53)4.3.1 模型静态验证 (53)4.3.2 振动仿真设置 (54)4.3.3 仿真结果与试验结果精度验证 (56)4.4 本章小结 (59)第5章驾驶室悬置仿真试验设计 (60)5.1 试验设计原理及意义简述 (60)5.2 试验设计优化方法概述 (61)5.2.1 常用试验优化方法简述 (61)5.2.2 试验数据统计分析原理 (64)5.3 驾驶室悬置模型的响应面试验分析 (68)5.3.1 响应面试验设计 (68)5.3.2 进行仿真试验及数据后处理 (70)5.3.3 模型拟合及显著性检验 (73)5.4 本章小结 (76)第6 章驾驶室悬置系统参数优化 (77)6.1 悬置系统的多目标优化问题描述 (77)6.2 粒子群算法原理简述 (80)6.3 优化效果验证 (83)6.4 本章小结 (89)第7 章结论 (90)7.1 全文总结 (90)7.2 研究展望 (91)致谢 (92)参考文献 (94)攻读学位期间获得的科研成果 (98)附录A:各车速下模型准确度验证 (99)附录B:本文粒子群算法MATLAB程序 (101)第1章绪论商用车驾驶室悬置系统与乘员的乘坐安全性、舒适性以及车载货物的完整性息息相关,性能良好的驾驶室悬置系统能够使得乘员和货物的安全得到保障并提供更舒适的乘坐感受,因此,对商用车驾驶室悬置系统进行研究具有足够的实际意义。
货车驾驶室的分类货车作为经济发展中不可或缺的物流运输工具,其多样性和效率也日益受到关注。
在货车的不断更新换代中,驾驶室是关键的组成部分之一,它们的不同结构和功能也对货车的整体性能产生着不同的影响。
本文即基于这一背景,介绍货车驾驶室的分类和特点。
一、桥架式驾驶室桥架式驾驶室可理解为将驾驶室设置在车体桥架之上,使得驾驶员有更加全面的视野,不会因为车体后部受限而影响到行驶安全。
同时,这种驾驶室采用独立悬挂,使得车身噪声、震动等缺陷得到有效解决。
不过,桥架式驾驶室的结构也使得它的重量大,成本较高,且布局空间较小等问题也需要特别注意。
二、前挂式驾驶室前挂式驾驶室往往将驾驶室设置在车头的前方,并通过支架连接车身。
这种结构让整车的负载更加均匀,可以降低车辆高度和重量。
并且,前挂式驾驶室还可以将活动空间放大,为驾驶员创造更加舒适的驾乘体验。
但是,其制造和安装也比较繁琐,维修成本相对较高。
三、后置式驾驶室后置式驾驶室的意思就是将驾驶室设置在整车的最后一部分,与货箱相连。
这种结构可以减少车头部分的空气阻力,降低车辆油耗和污染,同时也提高了驾驶员的安全性,因为驾驶员能够更加专注于操作后部的货物运载情况。
不过,后置式驾驶室的驾乘舒适程度较差,不太受到驾驶员的欢迎。
四、自卸式驾驶室自卸式驾驶室是一种特殊的结构,即驾驶室和货箱采用可拆卸设计,以便于在货物运输过程中快速完成车头和货箱间的连接和分离。
这种结构入手成本较高,因为需要增设较多的部件和设施,但是在货运吞吐量大和物流周期短的情况下,自卸式驾驶室也是一种更加优秀的选择,能够提高物流效率。
总的来说,货车驾驶室的分类有很多,可以根据车型、用途、结构等多方面考虑。
而在选择货车驾驶室的时,需要考虑到货物种类、装载情况、道路环境、驾驶员操作体验等多个因素,才能选择最佳的驾驶室结构和功能,为物流运输工作提供更加稳定的支持。
重型商用车驾驶室悬置系统匹配设计摘要:本文研究了重型商用车驾驶室悬置系统的匹配设计问题。
首先,介绍了驾驶室悬置系统的工作原理和功能;其次,根据汽车的结构特点和运行要求,对驾驶室悬置系统的各项参数进行了分析,并进行了系统的设计;最后,通过数学模拟和实际测试,验证了该驾驶室悬置系统的优越性。
关键词:重型商用车;驾驶室悬置系统;参数分析;匹配设计;数学模拟;实际测试正文:重型商用车作为现代交通运输的重要组成部分,其结构的设计和装备的选择直接影响着其行驶安全和舒适性。
其中,驾驶室悬置系统是重要的装备之一,其作用是通过减震、降噪、抗震等措施,保证驾驶室内的人员不会因为路面的颠簸而产生不适和安全隐患。
为了满足重型商用车的运营需求和各种路况下的安全性和舒适性要求,本文设计了一种驾驶室悬置系统匹配方案。
具体参数设计如下:1. 悬挂形式:选取气弹簧+橡胶支座的方案,可有效降低震动幅度,提高行驶舒适度。
2. 支承式样:采用三点支撑,保证驾驶室受力均衡,避免出现摆荡、倾斜等情况。
3. 悬挂自由长度:根据实际测试结果进行调整,调节悬挂长度以适应不同路况下的震动。
4. 悬挂刚度:根据负载和工作环境的不同,选取各种不同的悬挂刚度。
5. 阻尼器:选用高阻尼的氛围阻尼器,可消除驾驶室内的震动和噪声,提高舒适度和安全性。
为了验证该驾驶室悬置系统匹配方案的有效性,本文进行了数学模拟和实际测试。
通过数学模拟,我们验证了该方案的各项参数设计的合理性和合适性,可以满足各种路况下的工作需求。
同时,实际测试也证明了该方案的优越性,其舒适性和安全性都得到了有效保障。
综上所述,本文的研究为重型商用车驾驶室悬挂系统的匹配设计提供了一种有效的方案,可以提高其工作效率和舒适性,为现代交通运输事业做出积极贡献。
此外,在驾驶室悬挂系统的匹配设计中,还需要考虑车辆的负载情况。
重型商用车吨位较大,装载物品的重量也较大,因此需要在设计中充分考虑到负载的影响。
根据车辆的载重能力和配重分配情况,我们可以调整驾驶室悬挂系统的参数,从而使其适应不同的负载情况。
重型汽车瓦特杆结构驾驶室后悬置运动轨迹本文将介绍一种瓦特结构驾驶室后悬置的运动轨迹,通过对瓦特杆结构关键点进行参数化建模,然后利用ADAMS求解,以得到该结构的运动轨迹。
正文
1 导言
随着对重型汽车舒适性要求的提高,驾驶室全浮悬置已经成为主机厂的主流配置。
而全浮悬置分为前、后悬置,对于后悬置结构常见的有推力杆(panhard)导向的后悬置(关联悬置)和单横臂导向的后悬置(独立悬置)。
对于推力杆结构的后悬置,其结构本身有加剧侧倾趋势的缺点,且推力杆越短,布置的越倾斜,这种趋势越剧烈;且由于其只依靠一个点固定,在驾驶室有前后运动时,有可能发生侧偏的问题。
对于单横臂导向的后悬置结构,其主要问题是结构较复杂,占用空间大。
在底盘悬架上采用的瓦特杆导向结构可以有效避免推力杆结构侧倾的问题,而占用空间的问题可以通过合理的结构设计解决。
基于瓦特杆导向机构具有的特点,本文将介绍一款瓦特杆结构的驾驶室后悬置结构,并将基于参数化的建模的方法得到其数学函数关系,然后利用ADAMS 软件求解,以获得该种结构的运动轨迹。
2 瓦特杆运动轨迹的分析
2.1瓦特杆结构驾驶室后悬置介绍
本文介绍的瓦特杆结构驾驶室后悬置如图1所示,驾驶室后悬置主要由上支架、下支架、集成减振器的气囊和瓦特杆导向机构组成,瓦特杆结构包括序号1和3两个瓦特杆(序号1和3完全相同,安装初始角也相同)以及序号2转枢组成。
驾驶室与上支架连接,下支架与车架连接。
P0(x0,y0)
P1(x1,y1)P2(x2,y2)
P3(x3,y3)
P4(x4,y4)
图1 瓦特杆机构驾驶室后悬置图2瓦特杆机构原理图
2.2 轨迹分析
我们将上图1中瓦特杆结构抽象为原理图2,图2中P1和P4两点分别与车架相连,作为机架连接点,P0点即是转枢的旋转点,上支架能够绕该点旋转。
图2中的圆圈为铰接副,线代表杆。
该结构本质上是一个四连杆机构。
我们假设P1、P2点之间的杆长为L12,P2、P0点之间的杆长为L02,P0、P3点之间的杆长为L03,P2、P3点之间的杆长为L23,P3、P4点之间的杆长为L34,P4、P1点之间的杆长为L14。
由于上述点之间的距离为固定值,可以得到式(1)—(6):
(x1-x2)2+(y1-y2)2=L122 (1)
(x0-x2)2+(y0-y2)2=L022 (2)
(x0-x3)2+(y0-y3)2=L032 (3)
(x2-x3)2+(y2-y3)2=L232 (4)
(x3-x4)2+(y3-y4)2=L342 (5)
(x1-x4)2+(y1-y4)2=L142 (6) 式(1)—(6)中,各个点之间的距离为已知量,P1和P4两点分别与机架相连,定义坐标原点为((x1+ x4)/2, y1)=(0,0),且由于结构对称性,可以得到-x1=x4,L12= L34,L02= L03,L23,而由结构参数可得y4= y1+C(常数),即P1和P4两点坐标已知,故式(6)全部为已知量,对于求解该式为冗余项。
目标是求得P0点的轨迹,即(x0,y0)的函数关系。
将已知量代入上式(1)—(5),可以利用Maple 等计算非线性方程组的软件求得的x0、y0的函数关系,得到全部轨迹。
但该问题还可以采用ADAMS建模按照结构原理图参数建立模型求解,得到驾驶室后悬置工作范围的转枢轴线的轨迹(为全部轨迹的一段),轨迹如图3所示,由于可知,在驾驶室工作范围内,其近似为直线,稍有加剧侧倾趋势.
图3 转枢轴线轨迹曲线
由上述可知,驾驶室悬置上支架(工作范围内)在转枢旋转轴中心近似只有竖直向下的运动,因此该中心即为该驾驶后悬置的“力矩中心”[1],也即后悬置的侧倾中心。
当驾驶室侧倾时,将绕转枢旋转轴转动,其由气囊和减震器提供支撑力。
3 总结和展望
通过上述对瓦特杆轨迹的研究,得出在驾驶室后悬置工作范围内,上支架的转枢旋转轴的运动近似为直线,只有竖直运动,即该旋转轴为驾驶后悬置的侧倾中心。
驾驶室后悬置的上支架的侧倾反力由气囊和减震器提供。
本文只研究了瓦特杆转枢旋转轴线的运动轨迹,在此基础上,后续可以对其的速度、加速度特性进行研究以及瓦特杆的动力学特性进行深入探讨。