驾驶室悬置系统平顺性分析
- 格式:ppt
- 大小:761.00 KB
- 文档页数:18
动力总成悬置系统优化及稳健性分析动力总成悬置系统是指汽车中发动机、变速器和驱动轴等汽车动力总成部件的组成系统,它对车辆的性能和安全性具有重要的影响。
因此,优化动力总成悬置系统的设计和提高其稳健性是汽车设计和生产中的一个重要课题。
在动力总成悬置系统设计中,需要考虑多个方面,包括系统整体重量、系统刚度、支撑件材料选用、降低噪音、减少振动等。
为了实现这些要求,通常需要结合数值分析和实验方法进行优化设计。
在系统整体重量的优化方面,设计师可以采用新型材料或优化零部件设计等措施来减轻体重。
例如,使用降低密度但强度较高的铝合金,或采用轻量化的减震器等。
在系统刚度方面,可以通过各种方式提高系统刚度,例如增加材料厚度、设计增加支撑件数量和位置等方案,同时还可以结合实验技术和数值分析方法,优化系统的刚度。
在支撑件材料选用方面,需要考虑动力总成悬置系统所处环境的特殊性质,如温度、湿度、腐蚀等,并且应该考虑到材料成本、加工工艺性、可靠性等因素。
这些要素均需在材料选用过程中进行综合考虑。
在噪音和振动方面的优化,需要采用减震、减振等措施,例如在发动机与车身之间设计隔振器,利用减振器改善驾驶稳定性并降低噪音。
同时,还可以采用模拟试验和理论模拟等方法,以确定系统的不同工况下的振动和噪声水平,并加以适当的改善。
此外,动力总成悬置系统的稳健性分析也是一个非常关键的方面。
系统的稳健性指的是系统能够在各种不确定情况下保持良好的性能和稳定性。
在系统的稳健性分析中,需要考虑到各种可能的负载情况、失效情况和故障情况,并结合设计要求和汽车行驶情况,确定系统的最佳稳健性设计方案。
这一过程需要采用可靠性分析方法,综合评估系统的稳健性。
总之,动力总成悬置系统的优化和稳健性设计是汽车工程设计中的一个重要环节。
通过采用先进的设计方法和技术手段,可以不断提高汽车的性能和安全性,满足消费者不断增长的需求和期望。
此外,为了实现动力总成悬置系统的优化和稳健性设计,需要充分了解系统的工作原理和特性。
空气悬架客车平顺性分析与优化作者:罗凯杰张良来源:《汽车科技》2011年第04期摘要:以某空气悬置客车为原型,建立其多体动力学模型,分析悬架系统中非线性弹性与阻尼元件对平顺性能的影响,并结合ADAMS软件运算原理,提出一种适用于其求解器的插值拟合优化方法,运用灵敏度分析等手段重新匹配悬架的刚度与阻尼,以提高车辆的乘坐舒适性。
关键词:平顺性;非线性变量;插值拟合;灵敏度分析中图分类号:U463.33 文献标志码:A文章编号:1005-2550(2011)04-0037-05Ride Quality Analysis and Optimization for a Coach Equiped with Air SuspensionLUO Kai-jie,ZHANG Liang(School of Mechanical and Automotive Engineering,Hefei University of Technology,Hefei 230009,China)Abstract:Air suspension is used in many luxury coaches in order to improve ride comfortable.In this paper a multi-body dynamic coach model is build in ADAMS to analyze the nonlinear spring and damper in suspension system,and presents an interpolation fitting method suitable for ADAMS solvers to optimize these nonlinear variables.Sensitive analysis is also used to find out the key parts to the overall ride comfortable performace.Key words: ride comfortable;nonlinear variable;interpolation fitting;sensitive analysis悬架系统中的弹性与阻尼元件能有效吸收与衰减来自路面的振动并保持车身姿态的稳定,对车辆平顺性能的改善有着极大的作用,所以非线性弹性与阻尼元件在车辆的悬架系统中的应用愈发广泛。
驾驶室悬置系统对重型车辆平顺性影响的试验研究庞辉;李红艳;方宗德;运伟国;刘保锋【摘要】以某重型载货汽车驾驶室悬置系统为例,通过实车道路试验,研究了单高度阀前液压后气囊悬置、单高度阀四气囊悬置和双高度阀四气囊悬置等减振系统的振动特性及对车辆行驶平顺性的影响规律,并对试验结果进行了频域处理和分析.试验结果表明,双高度阀控制的四气囊驾驶室悬置系统的平顺性优于其它2种结构的悬置系统.【期刊名称】《汽车技术》【年(卷),期】2010(000)011【总页数】5页(P52-56)【关键词】重型载货汽车;驾驶室悬置系统;平顺性【作者】庞辉;李红艳;方宗德;运伟国;刘保锋【作者单位】陕西汽车集团有限责任公司;西北工业大学;陕西汽车集团有限责任公司;西北工业大学;陕西汽车集团有限责任公司;陕西汽车集团有限责任公司【正文语种】中文【中图分类】U463.81 前言行驶平顺性是汽车的重要性能之一[1~3],而重型车辆驾驶室悬置减振结构及其控制方式对其行驶平顺性具有重要影响。
传统的重型载货汽车驾驶室悬置系统多采用4点螺旋弹簧,这种减振结构存在的问题是偏频较高,车辆行驶平顺性和安全性难以保障。
长期以来,欧洲重型载货汽车驾驶室一直采用4点空气弹簧悬置系统(全浮式空气悬置系统),这种4点悬置方式不仅提高了传统重型载货汽车的舒适性,而且可提高碰撞安全性及降低驾驶室连接点的动态载荷。
本文以某重型载货汽车驾驶室悬置系统为研究对象,通过实车道路试验,研究了3种结构减振系统的驾驶室悬置总成及其控制方式对车辆行驶平顺性的影响规律,分析了在设计时应注意的问题和应采取的措施,为提高和改善重型车辆整车平顺性提供了依据。
2 驾驶室悬置系统简介本试验车辆的驾驶室悬置采用3种结构的减振系统,即单高度阀控制的前液压后气囊式减振系统、单高度阀控制的四气囊减振系统和双高度阀控制的四气囊减振系统。
为保证试验车辆基本条件一致性,将这3种结构的驾驶室悬置系统安装在同一重型载货汽车上。
随着现代汽车的发展,人们对于汽车的要求也已经不再局限于车辆的外观以及安全上,对于车辆的舒适性也给予了越来越多的要求,车辆的平顺性的好坏对于汽车的舒适性有着重要影响。
在传统的设计中,商用车驾驶室与车架直接相连,车辆在行驶时所受到的路面冲击将直接传递到驾驶室上,因而驾驶室的平顺性较差。
随着人们对汽车乘坐舒适性的要求不断提高,部分商用车使用橡胶垫作为驾驶室和车架的连接件,这种方式起到了一定的隔振效果,但隔振方式已不能满足现有的需要,于是通过采用驾驶室悬置隔振系统来提高车辆的平顺性。
国内为改变驾驶室的平顺性,一些企业开始采用驾驶室悬置隔振系统,利用弹簧阻尼元件构成悬置系统将驾驶室与车架相连。
北汽福田欧曼、东风集团商用车部、一汽集团商用车部、东风日产柴油重卡、陕汽德龙F2000等为代表的国产商用车已经全部采用了驾驶室悬置隔振方式来提高车辆的平顺性。
在对驾驶室平顺性的研究中发现,商用车中包括车辆结构参数、悬置隔振系统性能参数、主悬架性能参数等,这些参数选取的合适与否对于驾驶室的平顺性都有一定影响,因此如何对影响驾驶室平顺性的关键参数进行较好的选择与匹配是改善驾驶室平顺性的重要途径。
在整车设计中,驾驶室悬置系统设计是整车设计的重要组成部分。
目前,国内不少企业将驾驶室悬置隔振技术引入到商用车设计中来提高驾驶室平顺性。
所谓驾驶室悬置是指利用弹簧阻尼元件构成悬置系统,将驾驶室悬置在车架上。
目前驾驶室悬置系统按结构形式分主要包括全浮式驾驶室以及半浮式驾驶室两种。
全浮式驾驶室即驾驶室由前后左右四组弹性元件构成悬置系统将驾驶室悬置于车架之上。
全浮式驾驶室悬置系统由前、后两组悬置系统组成,前悬置结构包括螺旋弹簧、简式减振器、横向稳定杆、拉杆等,后悬置结构包括横梁、螺旋弹簧以及拉杆等。
图2—1及图2—2分别给出了全浮式驾驶室前后悬置结构。
半浮式驾驶室相对于全浮式驾驶室而言,其驾驶室前部两个支承点采用铰接方式与车架相连,后悬置结构也采用弹簧和阻尼元件构成后悬置连接到车架上。
汽车驾驶室平顺性优化设计秦民(一汽技术中心)摘要:建立汽车驾驶室刚弹耦合模型,输入随机路面激励,研究汽车驾驶室底板的振动响应;通过虚拟样机计算结果与试验进行对比,验证了模型的正确性;以驾驶室悬置的弹簧刚度、减振器阻尼为影响因素,通过虚拟DOE正交试验分析方法进行优化设计,显著改善了驾驶室平顺性.关键词:驾驶室平顺性;优化设计;刚弹耦合中图分类号:TP391.4文献标志码:AResearch on Improving the Ride Comfort of Cab for TruckQIN MinF A W R&D CenterAbstract: The simulation was carried out which was used to describe the cab floor vibration response under road random profile inputs. Modes of the cab was acquired by Nastran software. The rigid-elastic coupling cab model and multi rigid body cab model were constructed and verified. The spring and damper of the cab suspension system were optimized to improve cab ride comfort by DOE analysis.Keywords: Ride Comfort; DOE analysis; Rigid-elastic Coupling0 引言驾驶室乘坐舒适性是汽车的一个重要性能指标,如何建立一个全面描述汽车动态特性的模型,是进行舒适性仿真研究的关键. 本文首先利用大型通用软件ADAMS/View建立了某重型卡车驾驶室多刚体仿真模型,并在此基础上利用Nastran软件计算的模态结果建立刚弹耦合的多体模型. 两种模型都进行了与试验数据的对比,证明了模型的正确性,并在此基础上以驾驶室前后悬置的刚度和阻尼为因素进行了虚拟DOE正交试验分析,找到了悬置刚度、阻尼的最优水平,使乘坐舒适性得到大幅度提高.1 ADAMS驾驶室多体仿真模型1.1 驾驶室模型的建立图1是驾驶室多刚体ADAMS模型,图2是驾驶室刚弹耦合ADAMS模型. 因为驾驶室扭杆处理成Beam梁形式,并且在模型中存在弹性体,因此整个刚弹耦合模型的自由度多达49个.利用多刚体模型融和柔性体建立的刚弹耦合多体模型整个系统的自由度有所增加,增加多少取决于在Nastran模态抽取中提取的模态多少,同时有限元网格的存在也占据大量内存. 乘坐舒适性研究主要集中在低频范围,在本文中Nastran进行模态分析时座椅、驾驶员等作为集中质量考虑,上限截至频率到20Hz,包含驾驶室弹性体模型的前两阶模态.图1 驾驶室多刚体模型图2 驾驶室刚弹耦合多体模型2 模型的验证2.1 激励数据的获得在ADAMS模型中以驾驶室四个悬置与车架连接处的信号作为激励,在振动试验中加速度信号是比较容易测量的,但是直接以加速度信号作为输入在积分过程中可能出现相位问题,致使整个系统的姿态与实际存在较大差异,因此本文首先利用Matlab软件编写程序将加速度信号处理成位移信号.2.2 模型验证本文模型验证用驾驶室四个悬置与车架连接处垂直加速度为验证信号. 将多刚体模型、刚弹耦合模型以及试验所得时域信号、功率谱密度及总加权加速度均方根值进行了对比,以前悬置为例,时域对比只取一段时间信号(如图3),功率谱密度对比如图4.图3显示计算的时域加速度信号与试验结果非常接近;从图4中可以看出:刚弹耦合模型的精度比较高,另外由于在Nastran中进行模态抽取中的上限截至频率为20Hz,从图中也可以看出,在20Hz以前刚弹耦合模型的计算结果与试验结果很接近,20Hz以后弹性体模型的精度接近于多刚体模型.图3 时域信号对比图 4 功率谱密度对比3 虚拟DOE 正交试验3.1 虚拟正交试验设计虚拟仿真是为了对设计提出指导性意见. 本文以前后悬置弹簧的刚度、阻尼作为因素(见表3),每个因素三个水平,通过虚拟DOE 试验技术,以驾驶室质心处垂直加速度为输出,计算得到相对于驾驶室乘坐舒适性的每个因素的最佳水平【4】. 为了考察交互作用(包括高阶交互作用)的影响,采用)3(1327L 正交表进行虚拟试验计算.表中:K 1为前弹簧刚度;K 2为后弹簧刚度;C 11/C 12是前减振器的压缩/拉伸阻尼;C 21/C 22是后减振器的压缩/拉伸阻尼;3.2 虚拟正交试验极差分析按照)3(1327L 进行27次仿真试验,考察各个因素的不同水平对垂直振动的影响. 表4给出27次仿真驾驶室底板垂直加权加速度均方根值结果.表 3 不同因素的水平值表 4 改进百分比 4 结 论1)驾驶室模型弹性化与否,对仿真结果有较大影响; 2)利用DOE 虚拟正交试验技术提供了驾驶室悬置刚度、阻尼的优化匹配手段;3)驾驶室悬置的前后刚度、阻尼之间的交互作用(包括高阶的交互作用)非常大,驾驶室悬置设计时必须考虑交互作用的影响.参考文献:[1] 马天飞,林逸等,轻型客车NVH 特性的刚弹耦合、声固耦合仿真研究,汽车工程,2005,27(1) [2] 仲昕,杨汝清,刚弹耦合建模在汽车转向轮摆振问题的应用,机械设计与研究,2000,16(4) [3] Mechanic Dynamic Incorporation, ADAMS/V iew User’s Guide, 1997[4] Gi-Ho Lee, Jong-Hoon Lim, and Gi-T ae Kim, Improving Ride Qudlity on the Cab Suspension of a Heavy Duty Truck, Sae 962151 [5] 邬惠乐,邱毓强,汽车拖拉机试验学,北京:机械工业出版社,1980。
重型货车驾驶室悬置参数的优化与匹配分析汤少岩【摘要】重型货车行驶的路况较差,而且大功率发动机的振动较大,对驾驶员的乘坐舒适性造成很大影响.为了解决货车驾驶室振动较大的问题,提高驾驶室悬置系统的减振性能,文章在仿真软件Simulink中建立了货车驾驶室悬置系统模型,分析路面不平度对货车驾驶室造成的影响,并利用MATLAB优化工具箱,对驾驶室悬置参数进行优化匹配设计.优化后,驾驶室内座椅处垂直方向的加速度均方根值下降了13.74%,俯仰角加速度均方根值下降了12.37%.从优化的结果来看,重型货车驾驶室的悬置系统的减振性能有所提高,乘坐舒适性得到一定的改善.【期刊名称】《汽车实用技术》【年(卷),期】2017(000)010【总页数】3页(P190-192)【关键词】货车;驾驶室悬置;参数优化;乘坐舒适性【作者】汤少岩【作者单位】山东理工大学,山东淄博 255022;烟台汽车工程职业学院,山东烟台265500【正文语种】中文【中图分类】U461.4CLC NO.: U461.4 Document Code: A Article ID: 1671-7988 (2017)10-190-03 重型货车是我国主要的交通运输工具之一,在国民经济中有着举足轻重的地位。
但是,对重型货车的研究主要集中在燃油经济性以及其承载能力,乘坐舒适性较少得到车企以及市场的重视。
而随着国民经济的飞速发展,人们生活水平的提高,驾驶人员对工作的环境也要求越来越高。
舒适的驾驶环境,能够保证驾驶员的生理和心理感觉处于良好的水平,有利于提高货车的驾驶安全性以及运输的效率。
影响货车驾驶室乘坐舒适性的因素很多,例如驾驶室的平顺性、车厢空调性能、驾驶座椅等,其中影响最大的即是平顺性性能,而驾驶室的平顺性主要取决于悬置系统的刚度和阻尼。
本文则主要从优化驾驶室悬置参数的角度去探讨和研究改善乘坐舒适性的方法,然后通过MATLAB优化工具箱重新优化匹配了驾驶室悬置系统的参数,改善驾驶室的乘坐舒适性。
摘要由于政策导向和互联网经济爆发,国内陆上物流业蓬勃发展,重型商用车成为公路运输的主力军。
长途运输中,商用车驾驶员长期处于恶劣的振动环境下,对乘员的身心健康造成不良影响,且产生的驾驶疲劳会招致发生交通事故的隐患。
商用车驾驶室悬置系统能够有效衰减传递到驾驶室的振动能量,提升整车平顺性,并能为整车动力性和经济性等性能的发挥提供良好的保障。
因此,对商用车驾驶室悬置进行研究,于客户于制造商,都大有裨益。
首先,本文详细介绍了驾驶室悬置系统的发展历程、基本结构和功能,进行了整车道路平顺性试验,对试验采集的加速度数据按照国标要求处理后,分别以悬置振动衰减率和座椅加速度乘坐值作为评价指标,对悬置隔振性能以及整车的平顺性进行了客观评价。
试验中,悬置下方的加速度传感器采集了车架端的振动信号,作为本文理论模型的振动输入。
其次,给出了驾驶室相关参数,对弹性元件和横向稳定杆等特殊元件作了特殊处理,介绍了参数线性化的理论依据及方法。
对实际模型进行简化后,按照实际参数在ADAMS软件中建立了驾驶室悬置仿真模型,并以实测的悬下振动激励作为输入进行了振动仿真,验证了模型的精准度。
再次,根据响应面试验设计方法,对设计变量制定了多组仿真方案,根据仿真采集的数据,拟合了驾驶室地板垂向加速度和质心纵向角加速度这两个振动响应量的响应面方程,并用方差分析和统计计算方法验证了方程的显著性和有效性。
最后,根据多目标优化问题基本原理对振动响应量进行优化,对拟合的响应面方程用自适应粒子群算法进行了寻优,优化后的方案经ADAMS仿真验证,最常用车速下响应量功率谱密度峰值分别下降16%和17.3%,对应加速度均方值分别下降9.4%和8%,仿真结果的目标函数最优值与粒子群算法对方程的寻优值误差为2%,其余车速下响应量功率谱密度峰值均有明显下降,说明本文的优化工作有一定效果并且优化方法可行。
关键词:重型商用车;驾驶室悬置;ADAMS;响应面设计;粒子群算法AbstractDue to the policy guidance and the outbreak of Internet economy, the domestic highway logistics industry is booming and heavy commercial vehicles are acting as the main force of road haulage. During the process of line-haul, drivers of commercial vehicles are exposed to harsh vibrations for a long time, the resulting driving fatigue brings hidden dangers of traffic accidents and both the physical and mental health of drivers can be badly damaged. The commercial vehicle cab suspension system can effectively attenuate the vibration energy transmitted to the cab, improve the ride comfort that ensure both the acceleration performance and economic performance. Therefore, to research on the commercial cab suspension system is of great benefits to both customers and manufactures.Firstly, the development history and basic structure as well as function of cab suspension were presented in detail. Ride comfort tests were carried out,and the acceleration data was calculated according to the national standard requirements, with the vibration attenuation rate and the seat acceleration respectively used as evaluation indicators, the vibration isolation performance of cab suspension and the ride comfort were evaluated objectively. In the tests, the acceleration signal collected by the sensors underneath the suspension was transmitted from frame and used as the vibration input of the theoretical model.Secondly, the relevant parameters of the cab were given. Specialized processing for special components such as elastic components and transverse stabilizers was described detailed, after which the theory and method of parameter linearization were introduced. With several simplification of the actual model, a simulation model of cab suspension was established in the ADAMS software based on actual parameters, and several vibration simulations were carried out with the collected vibration excitation as input to verify the accuracy of the ADAMS model.Then, based on response surface methodology, multiple sets of simulation were developed for the design variables. Using the result data of the simulations, two response surface equations of the vibration responses including the vertical acceleration on cab floor and the pitch acceleration at cab centroid were fitted and used. Variance analysis and statistical calculation methods were applied to verify thesignificance and validity of the equations.Finally, the vibration responses were to be optimized based on the basic theory of multi-objective optimization. The fitted response surface equations were optimized by adaptive particle swarm optimization algorithm. The optimized scheme of parameters was verified by ADAMS simulation, in which the maximum power spectrum density of two responses at 60km/h decreased by 16%.and 17.3% and acceleration decreased by 9.4% and 8% respectively. And the maximum PSD of two responses decreased significantly at the rest speed. The optimization was indicated to have certain effects and the optimization procedure was proved to be feasible with a deviation of 2% between the optimized value coming from ADAMS simulation and the one coming from PSO algorithm as indicator.Key words: Heavy commercial vehicle; Cab suspension; ADAMS; Response surface methodology; Particle swarm optimization目录摘要 (I)Abstract (III)目录 (V)第1章绪论 (1)1.1 研究背景及意义 (1)1.2 驾驶室悬置系统概述 (3)1.3 驾驶室悬置国内外研究现状 (7)1.3.1 驾驶室悬置研究现状 (7)1.3.2 研究现状评述 (9)1.4 本文主要研究内容和方法 (10)1.4.1 研究内容及方法 (10)1.4.2 技术路线 (11)第2章ADAMS多体动力学及驾驶室悬置振动的相关理论 (12)2.1 ADAMS多体动力学基本理论 (12)2.1.1 多体动力学系统的模型组成 (13)2.1.2 ADAMS多体动力学的建模理论和求解方法 (13)2.2 驾驶室悬置振动模型简化及振动原理 (18)2.3 人体对振动的反应及平顺性评价 (25)2.3.1 人体对振动的反应和基本评价方法 (25)2.3.2 商用车平顺性评价方法 (27)2.4 本章小结 (29)第3章驾驶室悬置平顺性试验 (30)3.1 本文驾驶室悬置结构简介 (30)3.2 实车平顺性试验和数据采集 (31)3.2.1 试验方法及规定 (31)3.2.2 试验设备 (32)3.3 数据处理及平顺性评价 (36)3.4 本章小结 (40)第4章驾驶室悬置结构理论分析及建模 (41)4.1 ADAMS建模方法简述 (41)4.2 建立驾驶室悬置仿真模型 (42)4.2.1 模型参数介绍 (43)4.2.2 模型简化处理 (49)4.2.3 悬置模型的最终建立 (50)4.3 振动仿真及模型验证 (53)4.3.1 模型静态验证 (53)4.3.2 振动仿真设置 (54)4.3.3 仿真结果与试验结果精度验证 (56)4.4 本章小结 (59)第5章驾驶室悬置仿真试验设计 (60)5.1 试验设计原理及意义简述 (60)5.2 试验设计优化方法概述 (61)5.2.1 常用试验优化方法简述 (61)5.2.2 试验数据统计分析原理 (64)5.3 驾驶室悬置模型的响应面试验分析 (68)5.3.1 响应面试验设计 (68)5.3.2 进行仿真试验及数据后处理 (70)5.3.3 模型拟合及显著性检验 (73)5.4 本章小结 (76)第6 章驾驶室悬置系统参数优化 (77)6.1 悬置系统的多目标优化问题描述 (77)6.2 粒子群算法原理简述 (80)6.3 优化效果验证 (83)6.4 本章小结 (89)第7 章结论 (90)7.1 全文总结 (90)7.2 研究展望 (91)致谢 (92)参考文献 (94)攻读学位期间获得的科研成果 (98)附录A:各车速下模型准确度验证 (99)附录B:本文粒子群算法MATLAB程序 (101)第1章绪论商用车驾驶室悬置系统与乘员的乘坐安全性、舒适性以及车载货物的完整性息息相关,性能良好的驾驶室悬置系统能够使得乘员和货物的安全得到保障并提供更舒适的乘坐感受,因此,对商用车驾驶室悬置系统进行研究具有足够的实际意义。
汽车空气悬架系统平顺性分析及控制策略研究摘要:近年来,汽车空气悬架系统在提高行驶平顺性方面得到了广泛应用和研究。
本文以汽车空气悬架系统的平顺性为研究对象,分析了悬挂系统参数对车辆平顺性的影响,并提出了相应的控制策略。
对汽车悬挂系统的基本结构和工作原理进行了介绍,然后针对悬挂系统的非线性特性,提出了一种基于自适应控制的控制策略。
通过仿真实验验证了该策略的有效性,并与传统控制方法进行了比较。
结果表明,所提出的控制策略可以显著改善汽车空气悬架系统的平顺性能。
这些研究成果对于提高汽车悬架系统的安全性和舒适性具有重要意义,可为相关行业提供一定的参考和指导。
关键词:汽车;空气悬架系统;平顺性;控制策略引言近年来,汽车空气悬架系统在提高行驶平顺性方面得到了广泛应用和研究。
本文旨在分析汽车空气悬架系统的平顺性,并提出相应的控制策略。
首先介绍了悬挂系统的基本结构和工作原理,然后针对其非线性特性,提出了一种基于自适应控制的策略。
通过仿真实验验证,发现该策略有效改善了平顺性能。
研究成果对于提高汽车悬架系统的安全性和舒适性具有重要意义,为相关行业提供参考和指导。
1.汽车空气悬架系统的基本结构和工作原理汽车空气悬架系统是一种可以调整车辆悬挂高度和硬度的先进悬挂系统。
其基本结构包括气囊、气泵、阀门、传感器和控制单元等组成部分。
悬挂系统的工作原理是通过气囊来提供支撑力和减震效果。
当车辆在行驶过程中受到不同的路面冲击或负荷变化时,传感器会感知到这些变化并将信号传输给控制单元。
控制单元根据接收到的信号,调整气泵和阀门的工作状态,控制气囊内气压的变化,从而改变悬挂系统的刚度和高度。
通过实时调整气囊的气压,悬挂系统能够提供更好的平顺性和稳定性。
利用空气悬架系统,车主可以根据自身需求选择不同的悬挂高度和硬度。
在城市道路上,可以选择较高的悬挂高度以提高通过性和乘坐舒适性;而在高速公路上,可以选择较低的悬挂高度以提高行驶稳定性和降低风阻。
试析汽车悬架系统平顺性优化1 汽车悬架系统平顺性不确定性优化事实上,在汽车制造的过程中往往真实的作业和测量之间存在较大的误差,这些最优化参数在后期加工中具有很强的不确定性。
因此,在进行设计的过程中需要考虑到误差的影响,为此可以在设计中采用区间优化模型,对汽车的平顺性进行不确定性优化工作。
1.1 汽车平顺性优化模型1.1.1 设计变量的选取。
由于悬架弹簧和阻尼在汽车悬架系统设计中的作用,可以看出两者之间具有相互抑制的作用,因此为了保证车辆和乘员的安全统一结合就需要进行最优化设计。
其中将悬架弹簧的弹性和阻尼参数作为设计的向量X:X=[K,C]其中k代表弹簧的弹性系数,C代表阻尼系数。
1.1.2 确定目标函数。
通常情况下,我们将震动的物理量作为汽车行驶的平顺性的评价指标。
其中以车身加速度均方根最为常用。
当加速度均方根较大时往往会给人带来不舒服甚至是健康受到损坏的影响。
为此,我们确立有关的目标函数:f(X):1.1.3 建立约束条件。
为了保证能够给驾驶带来良好的平顺性,这就需要轿车的悬架的设置相对较软,将静挠度h设置较大,同时受到结构的限制,需要对其进行合理的控制,因此在对悬架的弹性进行设计的约束为:式中:m表示相对弹簧的等效悬挂质量;hR、hL分别表示悬架的静挠度的上、下设计极限值。
通常来说,阻尼比ζ能够用来评价震动的衰减速度的。
设计区间:式中:C标示阻尼系数;ζL、ζR分别表示阻尼比ζ的上、下约束。
由于当系统的固有频率so得到降低的时候可以有效地减小车身振动的加速度,有利于建设汽车的舒适性。
需要保证固有频率满足:式中:SOL、SOR分别为固有频率的上、下约束。
悬架的限位行程[Dd]受到结构的影响不能够过大,通常维持在7~9cm之间。
为了确保悬架撞击有限位块的概率不超过0.3%;同时当车轮相对动载荷大于1时,车轮会出现和地面脱离的状况带来安全隐患。
当车轮相对动载较大时就会对地面造成损坏。
因此就需要将车轮脱离地面的可能性降低保持在不超过0.15%的范围内。