当前位置:文档之家› 基于模拟乘法器MC1496的混频器设计

基于模拟乘法器MC1496的混频器设计

基于模拟乘法器MC1496的混频器设计
基于模拟乘法器MC1496的混频器设计

基于模拟乘法器MC1496的混频器设计

摘要

集成模拟乘法器是继集成运算放大器后最通用的模拟集成电路之一,是一种多用途的线性集成电路。可用作宽带、抑制载波双边平衡调制器,不需要耦合变压器或调谐电路,还可以作为高性能的SSB乘法检波器,AM调制/解调器、FM解调器、混频器、倍频器、鉴相器等,它与放大器相结合还可以完成许多的数学运算,如乘法、除法、乘方、开方等。

本设计主要应用集成模拟乘法器MC1496实现以上功能。

模拟乘法器的主要技术指标是工作象限、线性度和馈通度。工作象限是指容许输入变量的符号范围。只容许ux和uy均为正值的相乘器称为一象限的,而容许ux和uy都可以取正、负值的则称为四象限的。线性度是指相乘器的输出电压uo与输入电压ux(或uy)成线性的程度。馈通度是指两个输入信号中一个为零时,另一个在输出端输出的大小。混频是将载波为高频的已调信号,不失真地变换为载波为中间的已调信号,必须保持①调制类型,调制参数不变,即原调制规律不变。②频谱结构不变,各频率分量的相位大小,相互间隔不变。

由于设计和制作增益高, 选择性好, 工作频率较原载频低的固定中频放大器比较容易, 所以采用混频方式可大大提高接收机的性能。此设计就是利用仿真软件,采用模拟相乘器实现混频电路的。

关键词:MATLAB,模拟乘法器,混频电路

DESING OF MIXER BASED ON THE ANALOG MULTIPLIER MC1496

Abstract

After the integrated operational amplifier in the integrated analog multiplier is one of the most common analog integrated circuit, is a kind of multi-purpose linear integrated circuits.Modulator can be used as a broadband, suppressed carrier bilateral balance, don't need coupling transformer

or tuned circuit, also can be used as a high-performance SSB multiplication detector, AM, FM demodulator, mixer/modem modulation, frequency multiplier, and phase discriminator, combining

it with amplifier can also do many mathematical operation, such as multiplication, division, chengfang, root, etc.

This design mainly used integrated analog multiplier MC1496 achieve above functions. Analog multiplier is the main technique index quadrant, linearity and feed through work.Work quadrant refers to allow the input variable symbol scope.Only allow both ux and uy positive multiplier is called a quadrant, and allow the ux and uy can take the positive and negative is known as the four quadrants.Linearity refers to the multiplication of the input voltage and output voltage uo ux (or uy) into linear degree.Feed through degree is refers to the two input signals of a

is equal to zero, the other in the size of the output terminal output.Mixing is the carrier for the high frequency modulated signal, no distortion for the carrier to transform to the middle of the modulated signal, must be kept in (1) modulation type, modulation parameters are the same, namely the original modulation law remains the same.The phase of each frequency component of the spectrum structure remains the same, (2) the size and the spacing between the same.

Due to the design and production of high gain, good selectivity, and working frequency was lower than those of the original carrier frequency fixed intermediate frequency amplifier is easy, so the mixing method can greatly improve the performance of the receiver.This design is the use of simulation software, using analog multiplier to realize mixing circuit..

Key words:MA TLAB, Analog multiplier, mixing circuit

1.绪论

混频技术在高频电子线路和无线电技术中应用的相当广泛。在调制过程中,输入的基带信号都要经过频率的转换变成高频的已调信号。在解调过程中,接收的已调高频信号也要经过频率转换,变成对应的中频信号。混频器也是超外差接收机中的关键部件。直放式接收机是高频小信号检波,工作频率变化范围大时,工作频率对高频通道的影响比较大(频率越高,放大量越低,反之频率低,增益高),而且对检波性能的影响也较大,灵敏度较低。采用超外差技术,将接收信号混频到一固定中频,放大量基本不受接收频率的影响,这样,频段内信号的放大一致性好,灵敏度可以做得很高,选择性也较好。因为放大功能主要放在中放,因此可以用良好的滤波电路。采用超外差接收使得调整方便,放大量、选择性主要由中频部分决定,且中频较高频信号低,性能指标容易得到满足。混频器在一些发射设备中也是必不可少的。在频分多地址信号的合成、微波接力通信、卫星通信等系统中也有其重要地位。此外,混频器也是许多电子设备、测量仪器(如频率合成器、频谱分析仪)的重要组成部分。

本实验中通过MC1946构成的混频器来对接收信号进行频率转换,变成需要的中频信号。

2.实验原理

2.1混频器原理

变频电路的基本功能是保持已调信号的调制规律不变,仅改变其载波频率处理过程。

用模拟乘法器实现混频,只要在Ux端和Uy端分别加上两个不同的频率信号,相差一中频,再经过带通滤波器取出中频信号,其原理框图如图1。

图1 混频器原理框图

混频电路的输入是载频为fo的高频已调波信号u s(t)和频率为fL的本地正弦波信号(标为本振信号)u L(t),输出是中频为f I的已调波信号u I(t),通常取f I=f L-f C。

以输入是普通调幅信号为例,若,本振信号为

,则输出中频信号为。

可见,调幅信号频谱从中心频率为fc处平移到中心频率为fi处,频谱宽度不变,包络形状不变。图2是相应的频谱图。

图2(a)混频前(b)混频后

2.2模拟乘法器MC1596的工作原理

模拟乘法器是对两个模拟信号(电压或电流)实现相乘功能的的有源非线性器件。主要功能是实现两个互不相关信号相乘,即输出信号与两输入信号相乘积成正比。它有两个输入端口,即X和Y输入端口。

在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。采用集成模拟乘法器实现上述功能比采用分离器件如二极管和三极管要简单的多,而且性能优越。集成模拟乘法器的常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。

根据双差分对模拟相乘器基本原理制成的单片集成模拟相乘器MC1496是四象限的乘法器。其内部电路如图3所示:其中V1、V2与V3、V4组成双差分放大器V5、V6组成的单差分放大器用以激励V1~V4; V7、R1、V8、R2、V9、R3和R5 等组成多路电

流源电路;V7、R5、R1为电流源的基准电路;V8、V9分别供给V5、V6管恒值电流Io/2,R5为外接电阻,可用以调节Io的大小;由V5、V6 、两管的发射极引出接线端2和3,外接电阻RY,利用RY的负反馈作用,以扩大输入电压u2的动态范围;Rc为外接负载电阻。引脚8与10接输入电压Ux,1与4接另一输入电压Uy.。

MC1496的管脚排列如图4所示,其符号如图5所示。

图3 MC1496内部电路

图4 MC1496引脚排列图5模拟乘法器电路符号

2.3调幅波原理

设载波信号的表达式为

调制信号的表达式为

则乘法器输出的DSB调幅信号的表达式为

2.4带通滤波器原理

滤波器是一种对信号有处理作用的器件或电路。其主要作用是让有用信号尽可能无衰减的通过,对无用信号尽可能大的衰减。带通滤波器允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声,即能通过高于频率ωc L且低于频率ωc H的信号,频率从零到ωc L以及频率从ωc H到无穷大均为阻带。

3.电路仿真及代码

3.1电路图

由Multisim11程序得到仿真电路图如图6。

图6 混频电路

3.2程序代码

在Matlab中用如下代码(如图7)对该电路中各信号波形进行仿真。t=0:0.00000001:0.001;

U0=0.05; %载波信号振幅

f0=10^6 ; %载波信号频率

w0=2*f0*pi;

m=0.3; %调制度

f1=2000; %调制信号频率

w1=2*pi*f1;

U1=0.2;

Uam=U0*(1+m*cos((w1).*t)).*cos((w0).*t); %AM 已调信号f2=1456000; %本振信号频率w2=2*pi*f2;

U2=0.2; %本振信号电压u3=U2*cos((w2).*t); %本振信号表达式

u4=Uam;

u5=u4.*u3; %两个信号相乘,设相乘系数为k=1 w3=w2-w0; %经带通滤波器的中心频率

u6=1/2*U0*U2*cos((w1).*t).*cos((w3).*t);%中频信号表达式

plot(t,Uam);title('AM已调信号波形');pause;

plot(t,u3);title('本振信号');pause;

plot(t,u5);title('经乘法器后的信号');pause;

plot(t,u6);title('中频信号');

4.实验分析

4.1调幅电路

幅度调制电路按输出功率的高低,可分为高电平调幅电路和低电平调幅电路。低电平调幅电路包括:(1)简单的二极管调幅电路;(2).平衡调制器;(3)环形调制器。高电平调幅电路根据调制信号控制方式的不同,可分为基极调幅和集电极调幅。

m称为调幅指数即调幅度,是调幅波的主要参数之一,它表示载波电压振幅受调制信号控制后改变的程度,一般m越大,调制幅度越深。当m=0时,表示未调幅;当m=1时,调制系数的百分比达到100%;当m>1时,已调波的包络形状与调制信号的不一样,产生严重的包络失真,所以一般取0

4.2模拟乘法器

模拟乘法器是一种完成两个模拟信号(连续变化的电压或电流)相乘作用的电子器件,通常具有两个输入端和一个输出端,电路符号如图11所示。

图7 模拟乘法器电路符号

若输入信号为Ux, Uy,则输出信号Uo为:

Uo=k Uy Ux

式中: k为乘法器的增益系数或标尺因子,单位为

一个理想的乘法器中,其输出电压与在同一时刻两个输入电压瞬时值的乘积成正比,而且输入电压的波形、幅度、极性和频率可以是任意的。

对于一个理想的乘法器,当Ux、Uy中有一个或两个都为零时,但在实际乘法器中,由于工作环境、制造工艺及元件特性的非理想性,当Ux=0,Uy=0时,Uo不为0,通常把这时的输出电压称为输出失调电压;当Ux=0,Uy不为0(或Uy=0,Ux不为0)时,Uo不为0,这是由于Uy(或Ux)信号直接流通到输出端而形成的,称这时的输出电压为Uy(或Ux)的输出馈通电压。输出是调电压和输出馈通电压越小越好。此外,实际乘法器中增益系数K并不能完全保持不变,这将引起输出信号的非线性失真,在应用时需加注意。

经过乘法器后的波形如下图所示:

4.3混频电路

由模拟乘法器和带通电路组成,输出中频信号。其波形如下图所示:

4.3.1混频增益

混频增益Kvc是评价混频器性能的重要指标。混频增益是指混频器输出中频信号电压振幅对输入高频信号电压振幅的比值。在相同输入信号情况下,分贝数越大,表明混频增益越高,混频器将输入信号变换为输出中频信号的能力越强,接收机的灵敏度越高。

本实验中,Kvc=Ui/Us=0.005/0.05=0.1,

用分贝数表示Kvc=20lg(Ui/Us)(dB)= -20d

4.3.2噪声系数

混频器的噪声系数Nf定义为Nf=输入信噪比(信号频率)/输出信噪比(中频频率)。

4.3.3变频压缩(抑制)

理论上,在混频器中,输出与输入信号幅度成线性关系。而在实际中,由于非线性器件的限制,当输入信号增加到一定程度时,中频输出信号的幅度与输入不再成线性关系。如图12。

图8

4.3.4选择性

混频器在理论上只输出中频信号,但实际会混杂很多干扰信号。而在本次实验中,得到的输出波形良好,说明此混频器的高频输入、中频输出回来有良好的选择性,即回路有较理想的谐振曲线,有效抑制了中频以外的不需要的干扰。

4.3.5干扰

4.3.

5.1组合频率干扰

组合频率干扰主要分为干扰噪声和寄生通道干扰,此处主要讨论干扰噪声,即有用信号和本振产生的组合频率干扰

(1)产生的原因:

输入到混频器的有用信号与本振信号,由于非线性作用,除了产生有用的中频外,还产生许多无用的组合频率分量,如果它们中的有些频率分量正好接近中频(或落在中频通带内),则这些成分将和有用中频同时经过中放加到检波器上。通过检波器的非线性特性,这些接近中频的组合频率与有用中频差拍检波,产生差拍信号(可听音频),形成干扰哨声。如二极管电路

i=a0+a1v+a2v2+a3v3+...

中频输出电平/dB

电 平

当v=vc+vL时,代入即可得到电流中包含的频率分量为:

当(可听视频)时,他们将和有用信号fL同时经过中放到达检波器,检波器的非线性作用产生差拍信号(△F)形成干扰哨声。

(2)形成的条件:

一般所以上式可为:

此式说明:

a、当fL选定后,只要fc接近此时所计算的值,即能产生干扰哨声。

b、若p、q取不同的正整数,或产生干扰的输入信号频率有限多个,但当有p+q>5时,幅度已很小可以忽略

如当fc=918时,fL=918+456=1383 ,2fc- fL =1836-1383=453 ,△F=456-453=12在中频通带以外,不会形成干扰。

又如,当fc=931KHz时,本振频率fL=(931+456)=1396KHz这时P=1,q=2所对应的组合频率分量为 fpq=2fc-fL=2×931-1396=466KHz ,它与有用中频频率只差1KHz,显然可以通过中频放大器进入检波器,与有用中频fI=465KHz找信号作用后产生△F=466-465=1KHz的差拍信号,在输出端产生1KHZ的干扰哨叫声。所以为了避免干扰,应合理选择电台的发射载波频率,使组合频率在中放通带以外。

c、由知。当p=0,q=1时,fc= fI这种干扰最强。所以为了避免这种干扰,应使在接收频段之外,如465在535-1605外。

(3)克服方法:

a、选定合理的Q点,减少滤波分量。

b、限制Uc(t)的幅度。

c、选合理的fI

4.3.

5.2非线性失真

包络失真和强信号阻塞(u态),交叉调制(三次方以上各项),互相调制(平方项以上),混频器、放大器中均有存在。

克服方法:

①选平方律特性的器件

②Q合理选,使其工作在平方律区域

③加负反馈扩大动态范围

5.心得体会

经过本次课程设计,我体会到平时的理论知识大概有印象,但到具体的计算时,总发觉很难,而且理论知识学的也不踏实,有的地方分析起来很吃力。以后一定要认真的对待。本次课程设计我应用了Matlab软件来仿真电路,发现以后要多动手,当仿真结果出现时,真的很高兴。我还对乘法器有了进一步的了解。作为一个电子方面的大学生,在今后的工作中难免需要很强的实践动手能力,所以这次课程设计实践对我来说是很值得珍惜的好机会。这次课程设计,虽然短暂,但却给了我一次自主设计电路的机会。在设计过程中,以前书本上的内容第一次完完全全的在实际中实现,并且遇到了书本中不曾学到的情况。通过本次设计,留给我印象最深的是要设计一个成功的电路,必须要有耐心,要有坚持的毅力。在整个电路的设计过程中,花费时间最多的是各个单元电路的连接及电路的细节设计上。在设计过程中,我们仔细比较分析其原理以及可行的原因,最后还是在与组员的反复讨论下,使整个电路可稳定工作。实习过程中,我深刻的体会到在设计过程中,需要反复实践,其过程很可能相当烦琐,有时花很长时间设计出来的电路还是需要重做,那时心中未免有点灰心,有时还特别想放弃,此时更加需要静下心,查找原因。在摸索该如何设计电路使之实现所需功能的过程中,特别有趣,培养了我的设计思维,增加了实际操作能力。在让我体会到了设计电路的艰辛的同时,更让我体会到成功的喜悦和快乐。

6.参考文献

[1]王卫东《高频电子电路(第2版)》电子工业出版社

[2]林春方《高频电子线路》电子工业出版社

[3]薛山《Matlab基础教程》清华大学出版社

混频器的设计与仿真知识讲解

混频器的设计与仿真

目录 前言 0 工程概况 0 正文 (1) 3.1设计的目的及意义 (1) 3.2 目标及总体方案 (1) 3.2.1课程设计的要求 (1) 3.2.2 混频电路的基本组成模型及主要技术特点 (1) 3.2.3 混频电路的组成模型及频谱分析 (1) 3.3工具的选择—Multiusim 10 (3) 3.3.1 Multiusim 10 简介 (3) 3.3.2 Multisim 10的特点 (3) 3.4 混频器 (3) 3.4.1混频器的简介 (3) 3.4.2混频器电路主要技术指标 (4) 3.5 混频器的分类 (4) 3.6详细设计 (5) 3.6.1混频总电路图 (5) 3.6.2 选频、放大电路 (5) 3.6.3 仿真结果 (6) 3.7调试分析 (9) 致谢 (9) 参考文献 (10) 附录元件汇总表 (10)

混频器的设计与仿真 前言 混频器在通信工程和无线电技术中,应用非常广泛,在调制系统中,输入的基带信号都要经过频率的转换变成高频已调信号。在解调过程中,接收的已调高频信号也要经过频率的转换,变成对应的中频信号。特别是在超外差式接收机中,混频器应用较为广泛,如AM 广播接收机将已调幅信号535KHZ-一1605KHZ要变成为465KHZ中频信号,电视接收机将已调48.5M一870M 的图像信号要变成38MHZ的中频图像信号。移动通信中一次中频和二次中频等。在发射机中,为了提高发射频率的稳定度,采用多级式发射机。用一个频率较低石英晶体振荡器作为主振荡器,产生一个频率非常稳定的主振荡信号,然后经过频率的加、减、乘、除运算变换成射频,所以必须使用混频电路,又如电视差转机收发频道的转换,卫星通讯中上行、下行频率的变换等,都必须采用混频器。由此可见,混频电路是应用电子技术和无线电专业必须掌握的关键电路。 工程概况 混频的用途是广泛的,它一般用在接收机的前端。除了在各类超外差接收机中应用外在频率合成器中为了产生各波道的载波振荡,也需要用混频器来进行频率变换及组合在多电路微波通信中,微波中继站的接收机把微波频率变换为中频,在中频上进行放大,取得足够的增益后,在利用混频器把中频变换为微波频率,转发至下一站此外,在测量仪器中如外差频率计,微伏计等也都采用混频器。因此,做有关混频电路的课题设计很能检验对高频电子线路的掌握程度;通过混频器设计,可以巩固已学的高频理论知识。混频器是频谱线性搬移电路,能够将输入的两路信号进行混频。 具体原理框图如图2-1所示。

实验一 交叉耦合滤波器设计与仿真(材料详实)

实验一 交叉耦合滤波器设计与仿真 一、 实验目的 1.设计一个交叉耦合滤波器 2.查看并分析该交叉耦合滤波器的S 参数 二、 实验设备 装有HFSS 13.0软件的笔记本电脑一台 三、 实验原理 具有带外有限传输零点的滤波器,常常采用谐振腔多耦合的形式实现。这种形式的特点是在谐振腔级联的基础上,非相邻腔之间可以相互耦合即“交叉耦合”,甚至可以采用源与负载也向多腔耦合,以及源与负载之间的耦合。交叉耦合带通滤波器的等效电路如下图所示。在等效电路模型中,e1表示激励电压源,R1、R2分别为电源内阻和负载电阻,ik (k=1,2,3,…,N )表示各谐振腔的回路电流,Mij 表示第i 个谐振腔与第k 个谐振腔之间的互耦合系数(i,j=1,2,…,N ,且i ≠j)。在这里取ω0=1,即各谐振回路的电感L 和电容C 均取单位值。Mkk (k=1,2,3,…,N )表示各谐振腔的自耦合系数。 n 腔交叉耦合带通滤波器等效电路如下图所示: ...1F 1/2H 1/2H 1/2H 1/2H 1/2H 1/2H 1H 1F 1F 1F ...i 1 i 2 i k i N i N M N ,1M k 1M kN M N 1 ,2-M 12 M k 2M N k 1 ,-M N N ,1-e 1 R 1 R 2 1F 1H 这个电路的回路方程可以写为 ?? ? ??? ? ?? ? ???????????????????????? ? ?? ???++=????????????????????---------N N N N N N N N N N N N n N N N N N i i i i i R s jM jM jM jM jM s jM jM jM jM jM s jM jM jM jM jM s jM jM jM jM jM s R e 13212,1321,11,31,21,131 ,3231321,22312 11,11312110000M Λ ΛM M ΛM M M ΛΛΛM 或者写成矩阵方程的形式:I R M sU ZI E )(0++==j

模拟乘法器及其应用

模拟乘法器及其应用

摘要 模拟乘法器是一种普遍应用的非线性模拟集成电路。模拟乘法器能实现两个互不相关的模拟信号间的相乘功能。它不仅应用于模拟运算方面,而且广泛地应用于无线电广播、电视、通信、测量仪表、医疗仪器以及控制系统,进行模拟信号的变换及处理。在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。采用集成模拟乘法器实现上述功能比采用分立器件如二极管和三极管要简单的多,而且性能优越。 Analog multiplier is a kind of widely used nonlinear analog integrated multiplier can be achieved between two unrelated analog multiplication is not only applied in the simulation operation aspect, and widely used in radio, television, communications, measuring instruments, medical equipment and control system, the analog signal conversion and the high frequency electronic circuit, amplitude modulation, synchronous detection, mixing, frequency doubling, frequency, modulation and demodulation process, the same as can be seen as two signal multiplication or contain multiplication function is realized by using integrated analog multiplier than using discrete components such as diodes and transistors are much more simple, and superior performance.

ADS射频电路课程设计——混频器设计与仿真

混频器的设计与仿真 设计题目:混频器的设计与仿真 学生姓名: 学院: 专业: 指导老师: 学号: 日期: 2011年 12 月 20 日

目录 一、射频电路与ADS概述 (3) 1、射频电路概述 (3) 2、ADS概述 (3) 二、混频器的设计 (7) 1.混频器的基本原理 (7) 2、混频器的技术指标 (9) 三、混频器的设计 (9) 1、3 D B定向耦合器的设计 (9) 1.1、建立工程 (9) 1.2、搭建电路原理图 (10) 1.3、设置微带线参数 (11) 1.4、耦合器的S参数仿真 (12) 2、完整混频器电路设计 (17) 3、低通滤波器的设计................................... 2错误!未定义书签。 四、混频器性能仿真 (23) 1、混频器功能仿真 (23) 1.1、仿真原理图的建立 (23) 1.2功能仿真 (25) 2、本振功率的选择 (27) 3、混频器的三阶交调点分析 (28) 3.1、三阶交调点的测量 (28) 3.2、三阶交调点与本振功率的关系 (31) 4、混频器的输入驻波比仿真 (31) 五、设计总结 (33)

一、 射频电路与ADS 概述 1、 射频电路概述 射频是指超高频率的无线电波,对于工作频率较高的电路,人们经常称为“高频电路”或“射频(RF )电路”或“微波电路”等等。 工程上通常是指工作频段的波长在10m ~ 1mm 或频率在30MHz ~ 300GHz 之间的电路。此外,有时还含有亚毫米波( 1mm ~0.1mm 或300GHz ~ 3000GHz )等。 一方面,随着频率升高到射频频段,通常在分析DC 和低频电路时乐于采用的基尔霍夫定律、欧姆定律以及电压电流的分析工具,已不精确或不再适用。分布参数的影响不容忽略。另一方面,纯正采用电磁场理论方法,尽管可以很好的全波分析和计及分布参数等的影响,但很难触及高频放大器、VCO 、混频器等实用内容。所以,射频电路设计与应用已成为信息技术发展的关键技术之一。 2、ADS 概述 ADS 电子设计自动化(EDA 软件全称为 Advanced Design System ,是美国安捷伦(Agilent )公司所生产拥有的电子设计自动化软件;ADS 功能十分强大,包含时域电路仿真 (SPICE-like Simulation)、频域电路仿真 (Harmonic Balance 、Linear Analysis)、三维电磁仿真 (EM Simulation)、通信系统仿真(Communication System Simulation)和数字信号处理仿真设计(DSP );支持射频和系统设计工程师开发所有类型的 RF 设计,从简单到复杂,从离散的射频/微波模块到用于通信和航天/国防的集成MMIC ,是当今国内各大学和研究所使用最多的微波/射频电路和通信系统仿真软件软件。 2.1 ADS 的仿真设计方法 ADS 软件可以提供电路设计者进行模拟、射频与微波等电路和通信系统设计,其提供的仿真分析方法大致可以分为:时域仿真、频域仿真、系统仿真和电磁仿真;ADS 仿真分析方法具体介绍如下: 2.1.1 高频SPICE 分析和卷积分析(Convolution ) 高频SPICE 分析方法提供如SPICE 仿真器般的瞬态分析,可分析线性与非线性电路的瞬态效应。在SPICE 仿真器中,无法直接使用的频域分析模型,如微带线带状线等,可于高频SPICE 仿真器中直接使用,因为在仿真时可于高频SPICE )()/(1038Hz f s m f c ?==λ

微带低通滤波器的设计与仿真

微带低通滤波器的设计与仿真 分类: 电路设计 嘿嘿,学完微波技术与天线,老师要求我们设计一个微带元器件,可以代替实验室里的元器件,小弟不才,只设计了一个低通滤波 器。现把它放到网上,以供大家参考。 带低通滤波器的设计 一、题目 第三题:低通滤波器的设计 f < 800MHz ;通带插入损耗 ;带外 100MHz 损耗 ;特性阻抗 Z0=50 Ohm 。 二、设计过程 1、参数确定:设计一个微带低通滤波器,其技术参数为 f < 800MHz ;通带插入损耗;带外100MHz 损耗;特性阻抗Z0=50 Ohm 。 介质材料:介电常数 £r = 2.65,板厚 1mm 。 2、设计方法:用高、底阻抗线实现滤波器的设计,高阻抗线可以等效为串联电感,低阻抗线可以等效为并联电容,计算各阻抗线的 宽度及长度,确保各段长度均小于 X /8(入为带内波长)。 3、设计过程: (1)确定原型滤波器:选择切比雪夫滤波器, ?s = fs/fc = 1.82 , ?s -1 = 0.82及Lr = 0.2dB , Ls >= 30,查表得N=5,原型滤波器的归 一化元件参数值如下: g1 = g5 = 1 .3394, g2 = g4 = 1.3370,g3 = 2.1660,gL= 1 .0000。 该滤波器的电路图如图 1 所示: O H 技术参数: 仿真软件: HFSS 、 ADS 或 IE3D 介质材料: 介电常数 £ r = 2.65板厚1mm

(2)计算各元件的真实值:终端特性阻抗为Z0=50?,则有 C1 = C5 =g1/(2*pi*f0*Z0) = 1.3394/(2*3.1416*8*10^8*50) = 5.3293pF , C3 = g3/(2*pi*f0*Z0) = 2.1660/(2*3.1416*8*10^8*50)= 8.6182pF , L2 = L4 = Z0*g2/(2* pi*f0) = 50*1.3370/(2*3.1416*8*10^8) = 13.2994nH。 (3)计算微带低通滤波器的实际尺寸: 设低阻抗(电容)为Z0I = 15?。 经过计算可得W/d = 12.3656, £ e = 2.443,贝U 微带宽度W1 = W3 = W5 = W = 1.000*12.3656 = 12.3656mm , 各段长度I1 = I5 = Z0I*V pl *C1 = 15* 3*10A11/sqrt(2.4437)*5.3293*10A-12 =15.3412mm, I3 = Z0I*V pl*C3 = 15* 3*10A11/sqrt(2.4437)*8.6182*10A-12 =24.8088mm, 可知各段均小于入/8符合要求。 设高阻抗(电感)为Z0h = 95? 。 经过计算可得W/d =0.85,£ e = 2.0402则 微带宽度W2 = W4 = W =1.0000*0.85 =0.85mm , 各段长度l2 = l4 = Vph*L2/Z0h = 29.4031mm , 带内波长入=Vpl/f = 3*10^11/(sqrt(2.0402)*8*10^8) = 262.5396mm,入/8 = 32.8175mm 可知各段均小于入/8符合要求。

8.模拟乘法器的应用-乘积型混频器

模拟乘法器的应用 ——乘积型混频器 学号:200800120228 姓名:辛义磊仪器编号:30 一、实验目的 1、掌握集成模拟乘法器的工作原理及其特点 2、进一步掌握集成模拟乘法器(MC1596/1496)实现振幅调制、同步检波、混频、倍频的电路调整与测试方法 二、实验仪器 低频信号发生器 高频信号发生器 频率计 稳压电源 万用表 示波器 三、实验原理与实验电路 集成模拟乘法器是继集成运算放大器后最通用的模拟集成电路之一,是一种多用途的线性集成电路。可用作宽带、抑制载波双边带平衡调制器,不需要耦合变压器或调谐电路,还可作为高性能的SSB乘法检波器、AM调制解调器、FM解调器、混频器、倍频器、鉴相器等,它与放大器相结合还可以完成许多数学运算,如乘法、除法、乘方、开放等。 MC1496的内部电路继引脚排列如图所示

MC1496型模拟乘法器只适用于频率较低的场合,一般工作在1MHz以下的频率。双差分对模拟乘法器MC1496/1596的差值输出电流为 MC1595是差值输出电流为 式中,错误!未找到引用源。为乘法器的乘法系数。 MC1496/1596使用时,VT 1至VT 6 的基极均需外加偏置电压。 实验电路 四、实验步骤

检查电路无误后接通电源,完成如下操作: 1、 当本振信号的频率为43 .4=L f MHz 、振幅为5 .0≤-p p V V ,输入信号的频率 为4 =C f MHz ,振幅为50 ≤-p p V mV 时,观察并测绘输入输出信号波形,记 录I L C f f f 、、。 2、当本振信号的频率为43.4=L f MHz 、振幅为5.0≤-p p V V ,输入信号的振幅为 50 ≤-p p V mV 时,改变输入信号频率C f (在3.9-4.1MHz 之间,每隔200kHz 测量 一次),测量输出信号的频率和幅度,记录在表格中,并由此计算带通滤波器的 通频带宽度。 f c 3.9MHz 4.0MHz 4.1MHz f 4.43 MHz 4.43 MHz 4.43 MHz v 500mV 500mV 500mV 3、保持两输入信号的频率及本振信号幅度不变,改变输入信号振幅V sm (峰峰值在40-100mV 之间变化)的大小,逐渐测量输入V sm 和中频输出V im 。将测量及计算结果填入表格中,并完成下列任务: ①计算混频增益A vc 。将混频电压增益A vc 定义为变频器中频输出电压幅值与输入信号幅值之比,以分贝表示为sm vc V V A Im lg 20= ②作出V sm 和V im 的关系曲线 V sm 40 mV 60 mV 80 mV 100mV V im 60mV 85mV 100mV 120mV 五、思考题

FPGA_ASIC-基于FPGA的正交数字混频器的设计与验证

基于FPGA的正交数字混频器的设计与验证 摘 要:本文研究了用DDS加乘法器实现正交数字混频器的设计及其完整的验证方法,用DDS产生的正/余弦正交本振序列与模拟信号通过A/D采样数字化后的数字序列相乘,再通过数字低通滤波实现数字混频。其中DDS采用正弦和余弦波形幅值存储功能依靠片内EAB 实现,省去了片外ROM,符合片上系统(SoC)的思想;用MATLAB软件增强QUARTUS的仿真功能,得到的仿真结果完整而且直观。 关键词:FPGA;NCO;DDS;MATLAB 中图分类号:TN773 Design and Certification of Quadrature NCO Based on FPGA Abstrct: The paper mainly studies the design and certification of quadrature NCO realized by DDS and multiplication based on FPGA, sin and cos sequences are produced by DDS, and the two output sequences then multiplicate with the input digital sequence, after by LPF we can get the results of quadrature NCO. in which, the wave amplitude are stored in memory of on-chip EAB. The emulational function of QUARTUS are enganced by MATLAB, and the result is rounded and intuitionistic. Key Words: FPGA;NCO;DDS;MATLAB 1 概述 数字混频器是数字通讯中调制解调单元必不可少的部分,同时也是各种数字频率合成器和数字信号发生器的核心。随着数字通信技术的发展,对传送数据的精度和速率要求越来越高。如何得到可数字的高精度的高频载波信号是实现高速数字通信系统必须解决的问题,利用FPGA(现场可编程逻辑门阵列)实现数字混频具有设计灵活、精确度高、频率高和稳定性好等优点,可以产生各种调制信号,广泛应用于通信、遥测、电子对抗和仪表工业等领域。 数字混频可采用CORDIC加累加器或DDS加乘法器实现,由于DDS加乘法器实现比较简捷因此得到普遍应用, DDS产生正/余弦正交本振序列与模拟信号通过A/D采样数字化后的数字序列相乘,再通过数字低通滤波实现数字混频。 2 DDS的实现 2.1 DDS的原理与设计 DDS的作用是产生正交的正弦和余弦样本。正(余)弦样本可以用实时计算的方法产生,但这只适用于信号采样频率很低的情况。在软件无线电超高速信号采样频率的情况下,用实时计算的方法实现比较困难。此时,产生正弦波样本的最有效、最简便的方法就是查表法,即事先根据各个正弦波相位计算好相位的正弦值,并按相位角度作为地址存储该相位的正弦值数据,因此,DDS采用图1所示的顶层电路。其基本功能包括:接收频率控制字FSW进行相位累加;以相位累加器的输出为地址,对存有正 (余) 弦幅度值的存储器进行寻址。输出的离散幅度码即为DDS的输出结果,用查表法实现DDS的性能指标取决于查表的深度和宽度,即取决于表示相位数据的位数和表示正弦值数据的位数。 假设存储器有1024个波形数据,系统时钟频率FCLK为1.024MHZ,相位累加器字长N=10:当频率字FSW=1,在系统时钟作用下,相位累加器累加1024个系统时钟后溢出,即经过1024个系统时钟输出波形循环一周,系统输出频率FOUT=FCLK/1024=1KHZ。当频率字FSW=2,相位累加器累加512个系统时钟后溢出,即经过512个系统时钟输出波形循环一周,系统输出频率 FOUT=FCLK/512=2KHZ。可见,输出频率FOUT与系统时钟频率FCLK关系为FOUT=FSW*FCLK/2N,从存储器中读出数据的过程是对存储器所存储波形的再次采样,一个周期查表的点数即为采样点数,根据奈奎斯特定理,每个周期至少采样2点才能重构波形,这样理论上最大输出频率

混频器设计

混频器设计 简介 无线收发机射频前端在本质上主要完成频率变换的功能,接收机射频前端将 接收到的射频信号装换成基带信号,而发射机射频前端将要发射的基带信号转换成射频信号,频率转换功能就是由混频器完成的。 本文设计应用于无线传感器网络(Wireless Sensor Network,简称WSN)的混频器,无线传感器网络是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳的自组织网络系统,其目的是协作的感知、采集和处理网络覆盖区域中感知对象的信息,并发送给观察者。这就要求所设计的混频器具有很低的功耗。同时,混频器是一种非线性电路,是接收机中输入射频信号最强的模块,这就对混频器的线性度提出了严格的要求。而混频过程通常会引入很大的噪声,考虑到LNA 的增益有限,混频器噪声也是要考虑的关键指标。由于所设计的接收机采用的是低中频的结构,中频频率只有2MHz,所以混频器的隔离度也是关键的指标。 结构选择及原理分析 结构选择 本接收机采用的结构为低中频结构,中频频率只有2MHz,LO 信号泄漏到RF 端口可能造成自混频及信号阻塞等问题。LO 信号泄漏到IF 端口,会对中频信号形成阻塞,同时LO 的噪声也将提高整体的噪声系数。而RF 信号馈通到LO端会造成自混频现象。双平衡的吉尔伯特混频器具有很好的隔离度,故本设计采用该结构。 本设计中频频率很低,开关对噪声(包括热噪声和1/ 噪声)是限制混频器噪声性能的主要因素,可以在不影响驱动级偏置电流的情况下减小流过开关对的偏置电流来减小混频器的噪声系数。可以通过在开关对的源极注入一个固定的偏置电流来实现。 线性度是混频器的一个重要指标,通常可以采用在驱动级晶体管的源极串一个无源元件形成串联反馈来提高驱动级的线性度。电阻作源简并元件会引入热噪声,而电阻本身会产生压降。电感和电容作源简并元件不会引入额外的噪声,而且对高频谐波成分和交调成分具有一定的抑制作用。因此通常选择电感作为源简并元件。但是本设计并没有采用结构,考虑到本设计的偏置电流很低,转换增益低,源简并技术将进一步降低转换增益,同时电感占用很大的芯片面积,不利于降低成本,故不可采用。根据Zigbee 协议,WSN 接受信号范围为-85 -20dBm,为了达到系统的线性度的要求,可以在低噪放级采用可调结构,这样使输入混频器的最大信号为-20dBm,降低了对混频器线性度的要求,有助于降低整个系统的功耗,但增加了LNA 的设计难度。 混频器的负载通常有三种形式:电阻作负载、晶体管作负载和LC 并联谐振电路作负载。晶体管作负载会引入非线性,而LC 并联谐振电路作负载虽具有很多的优势,但电感占用的芯片面积很大,不宜采用。电阻作负载不会引入非线性,同时具有很宽的带宽,但电阻上会引入直流压降,为了不使开关对和驱动级中的晶体管离开饱和区,电阻的取值不能太大,考虑到转换增益,电阻的取值将需要特别注意。而且这种负载不具有滤波的特性,因此不能衰减混频过程中产生的毛刺以及LO-IF、RF-IF 馈通成分。所以,本设计采用一个电容与电阻并联组成一个低通滤波网络来滤除高频成分。 综上所述,本设计所采用的结构如图4.1 所示。

巴特沃斯滤波器的设计与仿真

信号与系统课程设计 题目巴特沃斯滤波器的设计与仿真 学院英才实验学院 学号2015180201019 学生姓名洪 健 指导教师王玲芳

巴特沃斯滤波器的设计与仿真 英才一班 洪健 2015180201019 摘 要:工程实践中,为了得到较纯净的真实信号,常采用滤波器对真实信号进行处理。本文对巴特沃斯模拟滤波器的幅频特性、设计方法及设计步骤进行了研究,并利用Matlab 程序和Multisim 软件,设计了巴特沃斯模拟滤波器,并分析了巴特沃斯模拟滤波器的幅频特性。利用 Matlab 程序绘制了巴特沃斯模拟滤波器的幅频特性曲线,并利用Matlab 实现了模拟滤波器原型到模拟低通、高通、带通、带阻滤波器的转换。通过Multisim 软件,在电路中设计出巴特沃斯滤波器。由模拟滤波器原型设计模拟高通滤波器的实例说明了滤波器频率转换效果。同时通过电路对巴特沃斯滤波器进行实现,说明了其在工程实践中的应用价值。 关键词:巴特沃斯滤波器 幅频特性 Matlab Multisim 引言 滤波器是一种允许某一特定频带内的信号通过,而衰减此频带以外的一切信号的电路,处理模拟信号的滤波器称为模拟滤波器。滤波器在如今的电信设备和各类控制系统里应用范围最广,技术最为复杂,滤波器的好坏直接决定着产品的优劣。滤波器主要分成经典滤波器和数字滤波器两类。从滤波特性上来看,经典滤波器大致分为低通、高通、带通和带阻等。 模拟滤波器可以分为无源和有源滤波器。 无源滤波器:这种电路主要有无源元件R、L 和C 组成。有源滤波器:集成运放和R、C 组成,具有不用电感、体积小、重量轻等优点。集成运放的开环电压增益和输入阻抗均很高,输出电阻小,构成有源滤波电路后还具有一定的电压放大和缓冲作用。但集成运放带宽有限,所以目前的有源滤波电路的工作频率难以做得很高。 MATLAB 是美国MathWorks 公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB 和Simulink 两大部分。 Multisim10 是美国NI 公司推出的EDA 软件的一种,它是早期EWB5.0、Multisim2001、Multisim7、Multisim8、Multisim9等版本的升级换代产品,是一个完全的电路设计和仿真的工具软件。该软件基于PC 平台,采用图形操作界面虚拟仿真了一个如同真实的电子电路实验平台,它几乎可以完成实验室进行的所有的电子电路实验,已被广泛应用于电子电路的分析,设计和仿真等工作中,是目前世界上最为流行的EDA 软件之一。 本文主要对低通模拟滤波器做主要研究,首先利用MATLAB 软件对巴特沃斯滤波器幅频特性曲线进行研究,并计算相应电路参数,最后利用Multisim 软件实现有源巴特沃斯滤波器。 正文 1巴特沃斯低通滤波器 巴特沃斯(Butterworth)滤波器的幅频特性如该幅频特性的特点如下: ① 最大平坦性。可以证明,在ω=0处,有最大值|H(0)|=1,幅频特性的前2n-1阶导数均为零。这表示它在ω=0点附近是很平坦的。 ② 幅频特性是单调下降的,相 频 特 性 也 是 单 调 下降的。因此, 巴特沃斯滤波器对有用信号产生的幅值畸变和相位畸变都很小。 ③ 无论阶数n是什么数,都会通过C = ,并且此时|()|H j ,而且n 越大,其幅频响应就越逼近理想情况。

混频器仿真实验报告

混频器仿真实验报告 一.实验目的 (1)加深对混频理论方面的理解,提高用程序实现相关信号处理的能力; (2)掌握multisim实现混频器混频的方法和步骤; (3)掌握用muitisim实现混频的设计方法和过程,为以后的设计打下良好的基础。 二.实验原理以及实验电路原理图 (一).晶体管混频器电路仿真 本实验电路为AM调幅收音机的晶体管混频电路,它由晶体管、输入信号源V1、本振信号源V2、输出回路和馈电电路等组成,中频输出465KHz的AM波。 电路特点:(1)输入回路工作在输入信号的载波频率上,而输出回路则工作在中频频率(即LC选频回路的固有谐振频率fi)。(2)输入信号幅度很小,在在输入信号的动态范围内,晶体管近似为线性工作。(3)本振信号与基极偏压Eb共同构成时变工作点。由于晶体管工作在线性时变状态,存在随U L周期变化的时变跨导g m(t)。 工作原理:输入信号与时变跨导的乘积中包含有本振与输入载波的差频项,用带通滤波器取出该项,即获得混频输出。 在混频器中,变频跨导的大小与晶体管的静态工作点、本振信号的幅度有关,通常为了使混频器的变频跨导最大(进而使变频增益最大),总是将晶体管的工作点确定在:U L=50~200mV,I EQ=0.3~1mA,而且,此时对应混频器噪声系数最小。 (二).模拟乘法器混频电路 模拟乘法器能够实现两个信号相乘,在其输出中会出现混频所要求的差频(ωL-ωC),然后利用滤波器取出该频率分量,即完成混频。

与晶体管混频器相比,模拟乘法器混频的优点是:输出电流频谱较纯,可以减少接收系统的干扰;允许动态范围较大的信号输入,有利于减少交调、互调干扰。 三.实验内容及记录 (一).晶体管混频器电路仿真 1、直流工作点分析 使用仿真软件中的“直流工作点分析”,测试放大器的静态直流工作点。 注:“直流工作点分析”仿真时,要将V1去掉,否则得不到正确结果。因为V1与晶体管基极之间无隔直流回路,晶体管的基极工作点受V1影响。若在V1与Q1之间有隔直流电容,则仿真时可不考虑V1的存在。 2、混频器输出信号“傅里叶分析” 选取电路节点8作为输出端,对输出信号进行“傅里叶分析”,参数设置为: 基频5KHz,谐波数为120,采用终止时间为0.001S,线性纵坐标请对测试结果进行分析。在图中指出465KHz中频信号频谱点及其它谐波成分。 注:傅里叶分析参数选取原则:频谱横坐标有效范围=基频×谐波数,所以这里须进行简单估算,确定各参数取值。

简单二阶低通滤波器设计与仿真

二阶低通滤波器部分 1、设计任务 信号放大后,需要进行滤波,滤除干扰,温度信号是一个缓慢变化的信号,在此需要设计出一个截止频率为10Hz 左右的低通放大器。因二阶低通滤波器的频率特性比一阶低通滤波器好,故决定采用由型号为OP07的运算放大器组成的二阶低通滤波器,OP07运放特点:OP07具有非常低的输入失调电压,所以OP07在很多应用场合不需要额外的调零措施,具有低温度漂移特性。另外,需要求滤波电路的幅频特性在通带内有最大平坦度,要求品质因数Q=0.707. 2、电路元件参数计算和电路设计: 根据二阶低通滤波器的基础电路进行设计,如图3.1所示。 图3.1二阶低通滤波器的基础电路 该电路(1)、传输函数为:)()()(i o s V s V s A =2 F F )()-(31sCR sCR A A V V ++= (2)、通带增益 :F 0V A A = (3)、截止频率:RC f c π21=其中RC 1c =ω称为特征角频率 (4)品质因数:O A Q -= 31, Q 是f=fc 时放大倍数与通带内放大倍数之比 注: 时,即当 3 03 F F <>-V V A A 滤波电路才能稳定工作。 由O A Q -=31=0.707得放大倍数586.1==O VF A A 一般来说,滤波器中电容容量要小于F μ,电阻器的阻值至少要Ωk 级。 由RC f c π21==10Hz,取C=0.5F μ,计算得R ≈31.8Ωk 又因为集成运放要求两个输入端的外接电阻对称,可得:R R R A VF 2//)1(11=-

求得:Ω=k R 1.1721 电路仿真与分析: (1)采用EDA 仿真软件multisim 13.0对有源二阶低通滤波器进行仿真分析、调试,从而对电路进行优化。Multisim 仿真电路图如图3.2所示 图3.2二阶低通滤波器仿真电路图 (2)通过仿真软件中的万用表验证电路是否符合要求: 设输入电压有效值为1V 当f=1Hz 时,输出如图3.3所示。 图3.3 由图可知,在通带内有增益585.1==VF O A A ,与理论值1.586相近 当Hz f f c 10==时,输出如图3.4所示。

高频课程设计—混频器

《通信电子线路》课程设计说明书 混频器 院、部:电气与信息工程学院 学生姓名:卢卓然 指导教师:张松华职称副教授 专业:电子信息工程 班级:电子1201班 学号: 1230340104 完成时间:2014.12.22 2014年12月

摘要 模拟相乘器的主要技术指标是工作象限、线性度和馈通度。工作象限是指容许输入变量的符号范围。只容许ux和uy均为正值的相乘器称为一象限的,而容许ux和uy都可以取正、负值的则称为四象限的。线性度是指相乘器的输出电压uO与输入电压ux(或uy)成线性的程度。馈通度是指两个输入信号中一个为零时,另一个在输出端输出的大小。 混频是将载波为高频的已调信号,不失真地变换为载波为中间的已调信号。在通信接收机中, 混频电路的作用在于将不同载频的高频已调波信号变换为同一个固定载频(一般称为中频)的高频已调波信号, 而保持其调制规律不变。例如, 在超外差式广播接收机中, 把载频位于535 kHz~1605kHz中波波段各电台的普通调幅信号变换为中频为465kHz的普通调幅信号, 把载频位于88 MHz~10.8MHz的各调频台信号变换为中频为10.7MHz的调频信号, 把载频位于四十几兆赫至近千兆赫频段内各电视台信号变换为中频为38 MHz的视频信号。由于设计和制作增益高, 选择性好, 工作频率较原载频低的固定中频放大器比较容易, 所以采用混频方式可大大提高接收机的性能。此设计就是利用仿真软件,采用模拟相乘器实现混频电路的。 关键词:模拟相乘器;混频电路

ABSTRACT The mixer in communication engineering and radio technology, application is very extensive, in modulation system, the input of baseband signal are throughfrequency conversion into a high frequency modulated signal. In the demodulation process, the received modulated high frequency signal afterfrequency conversion, into intermediate frequency signals corresponding to.Especially in the superheterodyne receiver, mixer is widely used, such as AMradio receiver will be amplitude modulated signal 535KHZ- a 1605KHZ to become 465KHZ IF signal, image signal television receiver will have a 870M48.5M to become 38MHZ of intermediate frequency image signal. In mobile communication, a frequency and the two frequency etc.. In the transmitter, in order to improve the stability of transmitting frequency, uses the multistagetype transmitter. With a low frequency of the quartz crystal oscillator as the main oscillator, generating the main oscillation signal of a frequency is verystable, and then through the frequency plus or minus, multiply, divide intoradio frequency, we must use a mixer circuit, such as converting TV transposer transceiver channel, the uplink, downlink frequency in satellitecommunication transform, must be in the mixer. Thus, mixing circuit is the key module of Applied Electronic Technology and professional radio must master. Key words anlog mixer; mixer circuit

实验四 集成电路模拟乘法器的应用

实验四集成电路模拟乘法器的应用 模拟乘法器是利用晶体管的非线性特性,经过电路上的巧妙设计,在输出中仅保留两路输入信号中由非线性部分产生的信号的乘积项,从而获得良好的乘积特性的集成器件。在高频电子线路中,振幅调制、同步检波、混频、倍频、鉴频、鉴相等调制与解调的过程,均可视为两个信号相乘或包含相乘的过程。采用集成模拟乘法器实现上述功能比采用分立器件如二极管和三极管要简单的多,而且性能优越。所以目前在无线通信、广播电视等方面应用较多。集成模拟乘法器的常见产品有BG314、F1595、F1596、MC1495、MC1496、LM1595、LM1596等。本实验仅介绍MC1496集成模拟乘法器。 一、实验目的 1.了解模拟乘法器(MC1496)的组成结构与工作原理,掌握其调整与特性参数的测量方法。 2.掌握利用乘法器实现振幅调制(AM与DSB)、同步检波、混频、倍频等几种频率变换电路的原理及设计方法。 3.学会综合地、系统地应用已学到模电、数电与高频电子线路的知识,掌握对振幅调制、同步检波、鉴频、混频和倍频电路的设计与仿真技能,提高独立解决问题的能力。二、实验设备与仪器 高频实验箱 WHLG-2 一台 数字双踪示波器 TDS-1002 一台 高频信号发生器 WY-1052 一台 数字万用表一块 三、实验任务与要求 1、模拟乘法器1496的构成、基本原理说明 ①集成模拟乘法器的内部结构 MC1496集成模拟乘法器的内部电路结构和引脚排列如图4-1所示。 图4-1 MC1496的内部电路及引脚图

MC1496是双平衡四象限模拟乘法器。其中V1、V2与V3、V4组成双差分放大器,V5、V6组成的单差分放大器用以激励V1~V4。V7、V8及其偏置电路组成差分放大器V5、V6的恒流源。引脚8与10接输入电压C u ,1与4接另一输入电压t u ,输出电压o u 从引脚6与12输出。引脚2与3外接电阻R E ,对差分放大器V5、V6产生串联电流负反馈,以扩展输入电压y u 的线性动态范围。引脚14为负电源端(双电源供电时)或接地端(单电源供电时),引脚5外接电阻R5。用来调节偏置电流I 5及镜像电流I 0的值。 ② 集成模拟乘法器的1496偏置电压与电流的确定 ● 静态偏置电压的确定 静态偏置电压的设置应保证各个晶体管工作在放大状态,即晶体管的集—基极间的电压应大于或等于2V ,小于或等于最大允许工作电压。根据MC1496的特性参数,对于图4-1所示的内部电路,应用时,静态偏置电压(输入电压为0时)应满足下列关系,即: 12641108,,u u u u u u === ?? ? ?? ≥-≥≥-≥≥-≥V u u u V V u u u u V V u u u u V 7.2),(157.2),(),(152),(),(1554141108108126 ● 静态偏置电流的确定 一般情况下,晶体管的基极电流很小,对于图4-1,三对差分放大器的基极电流I 8、I 10、I 1和I 4可以忽略不计,因此器件的静态偏置电流主要由恒流源的值确定。当器件为单电源工作时,引脚14接地,5脚通过一电阻R 5接正电源(+U CC 的典型值为+12V ),由于I 0是I 5的镜像电流,所以改变电阻R 5可以调节I 0的大小,即: 当器件为双电源工作时,引脚14接负电源-U EE (一般接-8V),5脚通过一电阻R 5接地,因此,改变R 5也可以调节I 0的大小,即: 则: 当V EE =-8V ,I 5=1mA 时,可算得: R 5={(8-0.75)/(1X10-3 )}-500=6.75K Ω 取标称电阻,则R5=6.8K Ω 根据MC1496的性能参数,器件的静态电流小于4mA ,一般取mA I I 150==左右。 此时,器件的总耗散功率可由下式估算: ) ()(214551465u u I u u I P D -+-= PD 应小于器件的最大允许耗散功率(33mW )。 ● 负载电阻RC 的选择 Ω +-= ≈5007.0550R V u I I CC Ω +--= ≈5007.0550R V u I I EE Ω--= 5007 .05 5I V R EE

基于Matlab的模拟滤波器设计与仿真

基于Matlab的模拟滤波器设计与仿真 0 引言建立在拉普拉斯变换基础之上的模拟滤波器的理论和设计方法已 经发展得相当成熟,且有若干典型滤波器供人们选择,如巴特沃斯(But- terworth)滤波器、切比雪夫(Chebyshev)滤波器等。但是关于滤波器实现的电路 元件参数的选取和计算却是件繁琐的工作。在此提出基于Ma-tlab 将电路参数 计算程序化的方法,并通过效果仿真达到优化电路参数的目的,而且程序具有 扩展功能。l 模拟滤波器的设计流程模拟低通滤波器的设计指标有ap,Ωp,as,Ωs,其中Ωp和Ωs分别为通带截止频率和阻带截止频率;ap 是 通带Ω中最大衰减系数;as 是阻带Ω≥Ωs的最小衰减系数ap 和Ωs一般用dB 表示。在此希望幅度平方函数满足给定的技术指标ap,Ωp,as,Ωs。(1)巴特沃斯滤波器幅频特性模的平方为:式中:N 为滤波器的阶数;wc 滤波器截止 角频率。(2)切比雪夫滤波器式中:ε决定通带内起伏大小的波纹参数;TN 为 第一类切比雪夫多项式:LC 一端口网络的T 型电路和∏型电路对应不同的 Ha(s)函数的连分式展开形式。在设计时,先求出归一化低通元件值,然后反演 出电路元件实际值。2 运用Matlab 编程实现的模拟电路设计并仿真(1)无源单 端口模拟滤波器的设计举例技术指标:通带内允许起伏:-1 dB,O≤Ω≤2 π×104rad/s;阻带衰减:≤-15dB,2 π×2×104rad/s≤Ω+∞:信源内阻Rs 和负载电阻RL 相等,均取600 Ω。运用Matlab 语言进行编程计算出如图1 所示 巴特沃斯T 型和∏型电路图的电路元件参数。图2 为切比雪夫T 型和∏型电路 图的电路元件参数。 图3 为设计巴特沃斯T 型和∏型电路图输出电压幅频特性Matlab 仿真图。 图4 为切比雪夫输出电路幅频特性Matlab 仿真图。 tips:感谢大家的阅读,本文由我司收集整编。仅供参阅!

相关主题
文本预览
相关文档 最新文档