混频器的设计与仿真知识讲解
- 格式:doc
- 大小:268.50 KB
- 文档页数:14
混频器设计与应用技术混频器(Heterodyne Mixer)是一种常用于射频(RF)和微波(microwave)电路中的器件,用于将不同频率的信号进行混频处理。
本文将介绍混频器的设计原理、主要类型以及广泛应用的技术。
一、混频器设计原理混频器的设计原理基于频率混合的特性,利用非线性元件,如二极管或场效应晶体管(FET),将两个不同频率的信号进行混合。
通过混频器的非线性特性,原始信号的频率被转换成新的频率,即中频(intermediate frequency, IF)。
二、混频器的主要类型1. 非平衡混频器非平衡混频器是最简单和常见的混频器类型之一。
它通常由一个二极管和匹配网络组成。
非平衡混频器具有较低的转换增益和较高的转换损耗,适用于一些要求简单性能的应用场景。
2. 平衡混频器平衡混频器是由两个对称的非线性电路组成,可以抵消输入信号中的互调失真。
平衡混频器具有较好的抗互调能力和较高的转换增益,适用于一些性能要求较高的应用场景。
3. 双平衡混频器双平衡混频器是在平衡混频器的基础上增加了额外的平衡结构,可以进一步提高抗互调能力和转换增益。
双平衡混频器通常用于一些对性能要求非常高的应用,如通信系统中的高动态范围接收机。
4. 有源混频器有源混频器是将放大器与混频器集成在一起的混频器。
它具有较高的增益和较低的噪声性能,适用于需求较高的射频接收机和通信系统。
三、混频器的应用技术1. 超外差接收技术超外差接收技术是混频器的一种重要应用技术,用于将接收到的射频信号转换成中频信号进行后续处理。
通过使用合适的混频器和滤波器,可以实现高灵敏度、高选择性的无线通信接收系统。
2. 雷达系统混频器在雷达系统中广泛应用。
雷达系统通过发射和接收射频信号来探测目标。
混频器用于将接收到的回波信号和本振信号进行混频处理,提取出目标的距离、速度和角度等信息。
3. 通信系统在通信系统中,混频器用于频率转换、频谱分析和信号调制等关键步骤。
混频器的设计与仿真设计题目:混频器的设计与仿真学生姓名:学院:专业:指导老师:学号:日期: 2011年12 月20 日目录一、射频电路与ADS概述 (3)1、射频电路概述 (3)2、ADS概述 (3)二、混频器的设计 (7)1.混频器的基本原理 (7)2、混频器的技术指标 (9)三、混频器的设计 (9)1、3 D B定向耦合器的设计 (9)1.1、建立工程 (9)1.2、搭建电路原理图 (10)1.3、设置微带线参数 (11)1.4、耦合器的S参数仿真 (12)2、完整混频器电路设计 (17)3、低通滤波器的设计 ................................................................ 2错误!未定义书签。
四、混频器性能仿真 (23)1、混频器功能仿真 (23)1.1、仿真原理图的建立 (23)1.2功能仿真 (25)2、本振功率的选择 (27)3、混频器的三阶交调点分析 (28)3.1、三阶交调点的测量 (28)3.2、三阶交调点与本振功率的关系 (31)4、混频器的输入驻波比仿真 (31)五、 设计总结 (33)一、 射频电路与ADS 概述1、 射频电路概述射频是指超高频率的无线电波,对于工作频率较高的电路,人们经常称为“高频电路”或“射频(RF )电路”或“微波电路”等等。
工程上通常是指工作频段的波长在10m ~ 1mm 或频率在30MHz ~ 300GHz 之间的电路。
此外,有时还含有亚毫米波( 1mm ~0.1mm 或300GHz ~ 3000GHz )等。
一方面,随着频率升高到射频频段,通常在分析DC 和低频电路时乐于采用的基尔霍夫定律、欧姆定律以及电压电流的分析工具,已不精确或不再适用。
分布参数的影响不容忽略。
另一方面,纯正采用电磁场理论方法,尽管可以很好的)()/(1038Hz f s m f c ⨯==λ全波分析和计及分布参数等的影响,但很难触及高频放大器、VCO、混频器等实用内容。
通信电子中的混频器设计与实现混频器是通信电子系统中常用的重要组件,它能够将两个不同的信号混合在一起,并产生新的频率信号。
混频器的应用范围很广,从基于微波的通信电子系统到基于射频的调制解调器都需要使用混频器。
本文将从混频器的基础知识、工作原理和设计实现三个方面来介绍混频器。
基础知识混频器的核心组件是二极管,它能够将两个信号进行非线性混合,产生一个包含原信号频率之和和差的新信号。
在混频器中,一个信号称为本振信号,另一个信号称为射频信号。
本振信号的频率在混频器中是固定的,而射频信号的频率是需要混频的信号。
混频器的输出信号称为中频信号,它的频率通常在几十千赫兹到几百兆赫兹之间,这是通讯电子系统能够处理的频率范围。
混频器的工作原理混频器的工作原理可以分为以下几个步骤:1. 在混频器的输入端口,本振信号和射频信号经过耦合器相结合。
2. 二极管的非线性特性会导致信号的幅度被混合在一起。
3. 混频器的输出信号将包含频率为本振频率、射频频率、本振频率加上射频频率和本振频率减去射频频率的信号。
4. 混频器为了提高输出信号质量和频率准确度,会在输出信号上添加一个滤波器。
设计实现混频器的设计需要考虑多种因素,包括本振频率选择、二极管特性评估、匹配和精度要求等。
以下是一些常见的混频器设计技巧:1. 选择合适的二极管:二极管的选择与设计的频段密切相关,必须对二极管的特性进行评估并选择适当的二极管。
2. 频率匹配:为了提高混频器的效率,必须使输入端口和输出端口的阻抗相互匹配。
本振和输入信号之间的匹配非常重要,以保证最好的混频效率。
3. 滤波器选择:滤波器用于过滤混频器输出信号中的杂散信号。
同时,选择更好的滤波器将提高混频器输出信号的质量和频率准确度。
4. 精度控制:混频器在设计和调试过程中需要进行精度控制。
意味着必须对本振和射频的频率进行准确的测量,并针对结果进行必要的校准,以获得最好的混频结果。
总结混频器是通信电子系统中常用的重要组件,它扮演了将射频信号转换为中频信号的重要角色。
混频器仿真实验混频器的作用是在保持已调信号的调制规律不变的前提下,使信号的载波频率升高(上变频)或下降(下变频)到另一个频率。
一、晶体管混频器电路仿真本实验电路为AM调幅收音机的晶体管混频电路,它由晶体管、输入信号源V1、本振信号源V2、输出回路和馈电电路等组成,中频输出465KHz的AM波。
电路特点:(1)输入回路工作在输入信号的载波频率上,而输出回路则工作在中频频率(即LC选频回路的固有谐振频率fi)。
(2)输入信号幅度很小,在在输入信号的动态范围内,晶体管近似为线性工作。
(3)本振信号与基极偏压Eb共同构成时变工作点。
由于晶体管工作在线性时变状态,存在随U L周期变化的时变跨导g m(t)。
工作原理:输入信号与时变跨导的乘积中包含有本振与输入载波的差频项,用带通滤波器取出该项,即获得混频输出。
在混频器中,变频跨导的大小与晶体管的静态工作点、本振信号的幅度有关,通常为了使混频器的变频跨导最大(进而使变频增益最大),总是将晶体管的工作点确定在:U L=50~200mV,I EQ=0.3~1mA,而且,此时对应混频器噪声系数最小。
1、直流工作点分析使用仿真软件中的“直流工作点分析”,测试放大器的静态直流工作点。
注:“直流工作点分析”仿真时,要将V1去掉,否则得不到正确结果。
因为V1与晶体管基极之间无隔直流回路,晶体管的基极工作点受V1影响。
若在V1与Q1之间有隔直流电容,则仿真时可不考虑V1的存在。
2、混频器输出信号“傅里叶分析”选取电路节点8作为输出端,对输出信号进行“傅里叶分析”,参数设置为:基频5KHz,谐波数为120,采用终止时间为0.001S,线性纵坐标请对测试结果进行分析。
在图中指出465KHz中频信号频谱点及其它谐波成分。
注:傅里叶分析参数选取原则:频谱横坐标有效范围=基频×谐波数,所以这里须进行简单估算,确定各参数取值。
二、模拟乘法器混频电路模拟乘法器能够实现两个信号相乘,在其输出中会出现混频所要求的差频(ωL-ωC),然后利用滤波器取出该频率分量,即完成混频。
目录前言 (1)工程概况 (1)正文 (2)3.1设计的目的及意义 (2)3.2 目标及总体方案 (2)3.2.1课程设计的要求 (2)3.2.2 混频电路的基本组成模型及主要技术特点 (2)3.2.3 混频电路的组成模型及频谱分析 (2)3.3工具的选择—Multiusim 10 (3)3.3.1 Multiusim 10 简介 (3)3.3.2 Multisim 10的特点 (3)3.4 混频器 (3)3.4.1混频器的简介 (4)3.4.2混频器电路主要技术指标 (4)3.5 混频器的分类 (5)3.6详细设计 (5)3.6.1混频总电路图 (5)3.6.2 选频、放大电路 (5)3.6.3 仿真结果 (6)3.7调试分析 (9)致谢 (9)参考文献 (9)附录元件汇总表 (10)混频器的设计与仿真前言混频器在通信工程和无线电技术中,应用非常广泛,在调制系统中,输入的基带信号都要经过频率的转换变成高频已调信号。
在解调过程中,接收的已调高频信号也要经过频率的转换,变成对应的中频信号。
特别是在超外差式接收机中,混频器应用较为广泛,如AM 广播接收机将已调幅信号535KHZ-一1605KHZ要变成为465KHZ中频信号,电视接收机将已调48.5M一870M 的图像信号要变成38MHZ的中频图像信号。
移动通信中一次中频和二次中频等。
在发射机中,为了提高发射频率的稳定度,采用多级式发射机。
用一个频率较低石英晶体振荡器作为主振荡器,产生一个频率非常稳定的主振荡信号,然后经过频率的加、减、乘、除运算变换成射频,所以必须使用混频电路,又如电视差转机收发频道的转换,卫星通讯中上行、下行频率的变换等,都必须采用混频器。
由此可见,混频电路是应用电子技术和无线电专业必须掌握的关键电路。
工程概况混频的用途是广泛的,它一般用在接收机的前端。
除了在各类超外差接收机中应用外在频率合成器中为了产生各波道的载波振荡,也需要用混频器来进行频率变换及组合在多电路微波通信中,微波中继站的接收机把微波频率变换为中频,在中频上进行放大,取得足够的增益后,在利用混频器把中频变换为微波频率,转发至下一站此外,在测量仪器中如外差频率计,微伏计等也都采用混频器。
混频器仿真模拟一 混频器原理介绍混频是将已调波中载波频率变换为中频频率,而保持调制规律不变的频率变换过程。
本地振荡信号())(1012752cos 2003mv f l ⨯⨯=π调幅信号为 ))(108102cos())10102cos(1(2033mv fs ⨯⨯⨯⨯⨯+=ππ。
经过混频器之后,信号会实现线性的搬移.调幅信号经过频率的线性搬移之后,由高频区移动至中频区,再采用滤波器将中频段的信号取出,即可得到465KHZ 中频段的调幅信号。
实验电路图如下(其中调幅信号由Multisim 中信号源提供)实验结果如下(其本中第一路为调幅输入信号,第二路为本地振荡信号,第三路为混频之后的输出信号)采用Multisim 中的傅里叶分析仪对输入输出信号进行频谱分析,可以观察到信号的输入和输出时的频谱搬移变化。
频谱图如下:第一幅为输入时的频谱图(调幅信号为))(108102cos())10102cos(1(2033mv fs ⨯⨯⨯⨯⨯+=ππ),第二幅为进过混频后输出的频率图二 参数分析(1)静态工作点的变化对输出的影响三极管静态工作点的位置决定了信号进行非线性变化之后高次分量,合理的静态工作点会有效的排除一些不必要的干扰。
在本实验中通过改变电阻R3可以改变静态工作点。
对参数R3进行扫描分析,图形如下(2)输入的本地信号幅度对输出的影响混频器的正常工作条件除了合理的静态工作点之外,还要求本地振荡信号的幅度远远大于射频信号的幅度(一般为十倍关系),但是本地振荡信号的幅度过大也会影响到混频的效果。
如下分别列出了本地振荡信号的幅度过大和过小两种情况下的混频输出结果。
1.本地载波输入过小(为20mv)2.本地载波过大(为2v)输入信号过小时,对于混频器来说信号的强度不够,输出信号的信噪比就不够,便容易引起失真;但是输入过大,如上述第二幅波形图所示,会引起严重的失真。
二极管的瞬时工作点取决于直流偏置电压,本地载波以及输入的调幅,时变静态工作点是由于直流偏置电压,本地载波决定,当输入信号远远小于本地振荡时,晶体管便不再是一个静态工作点随本地振荡信号变化而变化的线性元件,从而导致输出失真。
选课时间段:周五3、4、5序号:实验报告课程名称:通信电路上机实验实验名称:混频器设计及仿真学生姓名:***学生学号:********实验日期:5月24日混频器的设计及仿真一、 设计要求及主要指标1、 LO 本振输入频率:1.45MHz ,RF 输入频率:1MHz ,IF 中频输出频率:450KHz 。
2、 LO 本振输入电压幅度:5V ,RF 输入电压幅度:0.5V 。
3、 混频器三个端口的阻抗为50Ω。
4、 本实验采用二极管环形混频器进行设计,二极管采用DIN4148。
二、 实验电路图三、实验波形图图12R 的输出电压ifV 波形图22R 两端电压IF V 的频谱图频谱图分析:由输出的频谱图可见,环形混频器的输出电压中主要的组合频率分量为:0.45MHZ ,2.45MHz ,3.35 MHz ,5.35 MHz ,6.24 MHz ,8.25 MHz ,9.15 MHz 等等。
其中0.45MHZ 为差频输出信号,2.45MHz 为和频输出信号。
图3 输入RF 信号电压in V 波形图图4 输入RF 信号电流in I 波形图由图2可知:输出的中频(0.45MHZ )幅度为:mV V if 2.153=由图3,图4可知输入电压,电流的幅值分别为: mV V in 8.270=mA I in 47.4=通过以上数据求出混频器的混频增益为: dB A C 95.48.2702.153log20== 输出的中频功率为:mW R V P LIFIF 2347.0212==RF 信号的输入功率为: mW I V P in in in 60524.021==所以有混频器的混频损耗为: dB P P L IFinC 11.4log10== 对于RF 输入端可得到输入阻抗为: Ω==6.60ininin i V R表1 输入\输出电压及电流值通过MATLAB仿真我们可以得到输入、输出功率(dBm)的关系图,如图5所示。
模拟电路混频器设计在模拟电路设计中,混频器是一个重要的组件,用于将不同频率的信号进行混合。
本文将介绍模拟电路混频器的设计原理和步骤,以及一些常见的混频器电路结构。
一、设计原理在模拟电路中,混频器是将两个或多个不同频率的信号进行非线性运算,产生新的频率组合的电路。
混频器广泛应用于无线通信系统、雷达系统、视频处理等领域。
混频器的主要原理是利用非线性元件(如二极管、晶体管)的非线性特性,将输入信号的频率进行线性非线性转换,产生输出信号。
在混频器中,输入信号通常有两路,分别为射频信号(RF)和本地振荡信号(LO)。
混频器的输出信号一般为中频信号(IF)。
根据输入和输出信号的频率关系,混频器可分为上变频和下变频两种。
二、设计步骤下面以单二极管环形混频器为例,介绍混频器的设计步骤。
1. 选择工作频率首先确定混频器的工作频率范围,根据具体需求选择射频和本地振荡信号的频率。
2. 确定器件参数根据所选的工作频率,选择合适的二极管。
常用的二极管有硅二极管和砷化镓二极管,其特性参数包括最大工作频率、截止频率、反向击穿电压等。
3. 绘制电路图根据混频器的电路结构,绘制混频器的电路图。
对于单二极管环形混频器,电路图包括二极管、匹配网络和偏置电源。
4. 设计匹配网络在混频器中,匹配网络的设计非常重要。
它主要用于确保输入输出的阻抗匹配,提高混频器的性能。
匹配网络的设计需要考虑负载阻抗、源阻抗、谐振频率等因素。
5. 确定偏置电源混频器中的二极管需要合适的偏置电源,以确保其处于合适的工作状态。
偏置电源的设计需考虑二极管的导通和截止状态。
6. 进行仿真和验证完成混频器的设计后,进行电路仿真和验证。
利用电路仿真软件,验证混频器的性能指标,如增益、带宽等。
三、常见的混频器电路结构除了单二极管环形混频器,常见的混频器电路结构还包括平衡混频器、同步混频器、开关混频器等。
每种电路结构都有其特点和适用范围。
平衡混频器采用互补输入电路,可以大大降低非线性失真,适用于高要求的应用场景。
实验三混频器的设计与仿真
班级电子(3)座号姓名
一.实验目的
1、了解微波混频器的原理及其设计方法。
2、学习使用ADS软件进行微波电路的设计,优化,仿真。
二.实验内容
1、使用ADS软件设计一个微带混频器,并对其参数进行优化、仿真。
2、根据软件设计的结果绘制电路版图,并加工成电路板。
三.微带滤波器的技术指标
1、射频:3.6GHZ
2、本振:3.8GHZ
3、噪音系数:<15
四.ADS软件的使用
本节内容是介绍使用ADS软件设计微带带通滤波器的方法:包括原理图绘制,电路参数的优化、仿真,版图的仿真等。
五.混频器的设计
设计一个90°平衡混频器,具体内容包括3dB分支桥定向耦合器设计、低通滤波器电路设计、输入输出匹配电路设计、混频器总电路特性测试:变频增益,隔离度、IF输出功率,输出频谱等
六.生成混频器的原理图
在原理图设计窗口中选择混频电路的工具栏,窗口左侧的工具栏变为右图所示,在工具栏中点击选择耦合线Mcfil,并在右侧的绘图区放置选择微带线MLIN ,以及控件MSUB 分别放置在绘图区中
选择画线工具将电路连接好,
混频器件参数后的原理图
设计完整的电路图
定向耦合器设计
七.观察仿真曲线。
混频器的ADS优化设计与仿真张翠芳【摘要】在射频系统中,混频器可以将较高频率的输入信号变换为较低频率的输出信号,以便对信号进行后续的调整和处理,一般通过混频二极管实现频率的变换。
文章主要采用ADS软件对接收电路中的混频部分进行性能上的优化设计,运用软件的HARMONICBALANCE仿真器中的参数扫描(Sweep)功能和扫描控制器进行仿真,得到三阶交调图和最理想的本振功率。
通过ADS对射频混频器的仿真,得到了混频器的一些重要性能指标,大大提高了设计效率,缩短设计周期,并对混频器的参数进一步优化,提高了混频器性能。
%The RF system, The mixer can transform the high frequency input signal into lower frequency output signal, In order to more easily to adjust and process signal. Usually by frequency mixing diode to transform frequency, this paper mainly use the ADS software to perform the mixing part of receiving circuit, Using the Scan (Sweep) function parameters of the HARMONIC and scanning controller to simulation, get the first three into the figure and the most ideal vibration power, improve the design efficiency greatly, shorten the design cycle, and the parameters of the mixer further optimization toimt~rove the. miY~r n~rf,~rm【期刊名称】《电子与封装》【年(卷),期】2011(011)010【总页数】3页(P28-30)【关键词】ADS;混频器;输出功率;驻波比【作者】张翠芳【作者单位】太原科技大学,太原030006【正文语种】中文【中图分类】TN62混频器是射频系统中用于频率变换的部件,具有广泛的应用领域,其具有可以将输入信号频率升高或降低而不改变原信号的特性。
,cos ,cos t V v t V v LO LO LO RF RF RF ωω==DL RF R R vi i +=-2232)(22141πω-+=-t K R R v i i LO DL RF实验名称:混频器设计及仿真一、实验目的1、理解和掌握二极管双平衡混频器电路组成和工作原理。
2、理解和掌握二极管双平衡混频器的各种性能指标。
3、进一步熟悉电路分析软件。
二、实验原理混频器作为一种三端口非线性器件,它可以将两种不同频率的输入信号变为一系列的输出频谱,输出频率分别为两个输入频率的和频、差频及其谐波。
两个输入端分别为射频端RF 和本振LO 。
输出端称为中频端IF 。
基本原理图如图:本实验采用二极管环形混频器如图:由于RF LOV V >>,二极管主要受到大信号LO V 控制,四个二极管均按开关状态工作, 将二极管用开关等效,开关函数表示为:)(1t K LO ω,因此在LO v 正半周期间开关闭合,上下回路方程为:0)(,0)(233322=---+-=---+L D LO RF L D LO RF R i i R i v v R i i R i v v ,求得: , 与之相应的开关函数)(1t K LO ω,因此一般形式为: ,与之相应的开关函数)(1t K LO ω,因此一般形式为:,同理分析得在LO v 负半周期间有:专业:信息对抗(12083511) 学生姓名:刘美琪(12083103) 实验名称:混频器设计及仿真)(22132t K R R v i i L DL RFω+=-)(22132t K R R v i i L DL RFω+=-所以通过L R 的总电流为:...]3cos 34cos 4[cos 22)()(3241+-+-=---=t t t R R V i i i i i LO LO LO D L RF o ωπωπω所以知:双平衡混频器的输出电流中仅包括 的组合频率分量,而抵消了RF LO ωω,即p 为偶数的众多组合频率分量。
混频器的设计与仿真目录前言 0工程概况 0正文 (1)3.1设计的目的及意义 (1)3.2 目标及总体方案 (1)3.2.1课程设计的要求 (1)3.2.2 混频电路的基本组成模型及主要技术特点 (1)3.2.3 混频电路的组成模型及频谱分析 (1)3.3工具的选择—Multiusim 10 (3)3.3.1 Multiusim 10 简介 (3)3.3.2 Multisim 10的特点 (3)3.4 混频器 (3)3.4.1混频器的简介 (3)3.4.2混频器电路主要技术指标 (4)3.5 混频器的分类 (4)3.6详细设计 (5)3.6.1混频总电路图 (5)3.6.2 选频、放大电路 (5)3.6.3 仿真结果 (6)3.7调试分析 (9)致谢 (9)参考文献 (10)附录元件汇总表 (10)混频器的设计与仿真前言混频器在通信工程和无线电技术中,应用非常广泛,在调制系统中,输入的基带信号都要经过频率的转换变成高频已调信号。
在解调过程中,接收的已调高频信号也要经过频率的转换,变成对应的中频信号。
特别是在超外差式接收机中,混频器应用较为广泛,如AM 广播接收机将已调幅信号535KHZ-一1605KHZ要变成为465KHZ中频信号,电视接收机将已调48.5M一870M 的图像信号要变成38MHZ的中频图像信号。
移动通信中一次中频和二次中频等。
在发射机中,为了提高发射频率的稳定度,采用多级式发射机。
用一个频率较低石英晶体振荡器作为主振荡器,产生一个频率非常稳定的主振荡信号,然后经过频率的加、减、乘、除运算变换成射频,所以必须使用混频电路,又如电视差转机收发频道的转换,卫星通讯中上行、下行频率的变换等,都必须采用混频器。
由此可见,混频电路是应用电子技术和无线电专业必须掌握的关键电路。
工程概况混频的用途是广泛的,它一般用在接收机的前端。
除了在各类超外差接收机中应用外在频率合成器中为了产生各波道的载波振荡,也需要用混频器来进行频率变换及组合在多电路微波通信中,微波中继站的接收机把微波频率变换为中频,在中频上进行放大,取得足够的增益后,在利用混频器把中频变换为微波频率,转发至下一站此外,在测量仪器中如外差频率计,微伏计等也都采用混频器。
因此,做有关混频电路的课题设计很能检验对高频电子线路的掌握程度;通过混频器设计,可以巩固已学的高频理论知识。
混频器是频谱线性搬移电路,能够将输入的两路信号进行混频。
具体原理框图如图2-1所示。
图2-1具体原理框图正文3.1设计的目的及意义(1)加深对混频理论方面的理解,提高用程序实现相关信号处理的能力(2)掌握multisim实现混频器混频的方法和步骤(3)掌握用muitisim实现混频的设计方法和过程,为以后的设计打下良好的基础(4)加深对高频知识的理解3.2 目标及总体方案3.2.1课程设计的要求将频率为10MHZ的输入信号,和频率为16.465MHZ的本振信号,利用MC1496模拟乘法器进行混频,再利用中周得到频率为464KHZ的输出信号。
由于我们的设计是通过软件模拟来实现,所用的软件版本中没有MC1496芯片,在方案里我选用相乘器来代替。
3.2.2 混频电路的基本组成模型及主要技术特点混频,工程上也称变频,是将信号的频率由一个数值变成另一个数值的过程,实质上也是频谱线性搬移过程,完成这种功能的电路就称为混频电路或变频电路。
3.2.3 混频电路的组成模型及频谱分析(1)混频器的组成模型图图3-1混频器组成模型图(2)混频电路的基本原理)(t U s 为输入信号,)(t U c 为本振信号。
)(t U i 输出信号。
当st sm U t U ψ=cos )(s则)()()(t U U t U c t s p =ct cm st sm U U ψψ=cos cos ct st Am ψψ=cos cos 其中:cm sm U U Am =对上式进行三角函数的变换则有:ct st p Am t U ψψ=cos cos )(1])cos()[cos(21t t Am s c s c ψ-ψ+ψ+ψ=从上式可推出,(t)p U 含有两个频率分量的和量和差量。
若选频网络是理想上边带滤波器则输出为t Am t U s c i )cos(21)(ψ+ψ=,若选频网络是理想下边带滤波器则输出:t Am t U s c i )cos(21)(ψ-ψ=。
在工程应用中,我们多选用的是差频分量。
通过对设计题目的分析,要想得到465KHZ 的输出信号,是不可能通过一次混频直接得到的。
必须要在经过二次混频。
通过分析:第一次混频会出现两个频率分量:26.465MHZ 和6.465MHZ 的输出信号。
我在这里选择了6.465MHZ 的输出信号作为二次混频的输入信号,选择6.93MHZ 的信号作为二次混频的本振信号。
这样在最终的相乘器输出端里就含有我们所需要的465KHZ 的信号。
3.3工具的选择—Multiusim 103.3.1 Multiusim 10 简介Multisim 是美国国家仪器(NI )有限公司推出的以Windows 为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。
它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。
工程师们可以使用Multisim 交互式地搭建电路原理图,并对电路进行仿真。
Multisim 提炼了SPICE 仿真的复杂内容,这样工程师无需懂得深入的SPICE 技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。
通过Multisim 和虚拟仪器技术,PCB 设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。
NI Multisim 软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。
凭借NI Multisim ,您可以立即创建具有完整组件库的电路图,并利用工业标准SPICE 模拟器模仿电路行为。
借助专业的高级SPICE 分析和虚拟仪器,您能在设计流程中提早对电路设计进行的迅速验证,从而缩短建模循环。
与NI LabVIEW 和SignalExpress 软件的集成,完善了具有强大技术的设计流程,从而能够比较具有模拟数据的实现建模测量。
3.3.2 Multisim 10的特点●通过直观的电路图捕捉环境, 轻松设计电路 ●通过交互式SPICE 仿真, 迅速了解电路行为 ●借助高级电路分析, 理解基本设计特征●通过一个工具链, 无缝地集成电路设计和虚拟测试 ●通过改进、整合设计流程, 减少建模错误并缩短上市时间3.4 混频器3.4.1混频器的简介输出信号频率等于两输入信号频率之和、差或为两者其他组合的电路。
混频器通常由非线性元件和选频回路构成。
变频(或混频),是将信号频率由一个量值变换为另一个量值的过程。
具有这种功能的电路称为变频器(或混频器)。
一般用混频器产生中频信号:混频器将天线上接收到的信号与本振产生的信号混频:2/)]cos()[cos(cos cos βαβαβα-++=可以这样理解,α为信号频率量,β为本振频率量,产生和差频。
当混频的频率等于中频时,这个信号可以通过中频放大器,被放大后,进行峰值检波。
检波后的信号被视频放大器进行放大,然后显示出来。
由于本振电路的振荡频率随着时间变化,因此频谱分析仪在不同的时间接收的频率是不同的。
当本振振荡器的频率随着时间进行扫描时,屏幕上就显示出了被测信号在不同频率上的幅度,将不同频率上信号的幅度记录下来,就得到了被测信号的频谱。
3.4.2混频器电路主要技术指标(1)变频增益ge射频输入功率电平与混频器中频输出功率电平之比称为变频增益ge(2)变频压缩点变频压缩点用来表示混频器的非线性失真程度。
混频器在射频输入电平远小于本振电平时,混频器处于线性运行状态下。
此时,中频输出随输入射频电平的增长而线性地增长。
但是,当射频输入增加到一定程度后,中频输出随射频输入增加的速度变慢,混频器开始进入饱和状态。
(3)三阶互调阻断点三阶互调阻断点又称为三阶截点或三阶交点,它是表征混频器线性性能的指标。
混频器非线性特性中的立方项会引起互调失真,输入功率每增加1db,互调失真功率就要增加3db,随输入按照3:1的速度上升,而正常接收射频所产生的中频输出是按照1:1的速度上升。
当互调输出功率电平与中频输出功率电平相等时,通信机无法进行正常通信。
三阶截点所对应的射频输入功率,是混频器的非线性互调失真使收信机无法正常收信时的最大射频输入功率,工程上用ip3(dbm)表示。
可见,ip3越大,表明混频器的线性运行范围越宽。
(4)噪声系数nf混频器的噪声系数nf可以用输入、输出信号功率和噪声的比值的对数来定义(5)隔离度隔离度是表征混频器内部电路平衡度的一个指标,即表示混频器各端口之间泄露和窜透的大小。
3.5 混频器的分类(1)根据所用器件不同,混频器主要有:(1)晶体管混频器;(2)二极管混频器;(3)场效应管混频器;(4)差分对混频器。
(2)根据电路结构分有:(1)单管混频器; (2)平衡混频器; (3)环形混频器。
3.6详细设计3.6.1混频总电路图图3-2混频总电路图3.6.2 选频、放大电路5图3-3选频、放大电路这是一个典型的带通滤波器,他是选用有源二阶低通滤波器和有源二阶高通滤波器的串联来实现带通滤波功能的。
这个选频网络不仅有很好的选频特性,同时也具备放大功能。
(1) 低通滤波器的具体参数分析:●通带放大倍数:75.1135310151112=+=+=R R A up●品质因数: 8.025.1131==-=up A Q●通带截止频率:KHZ RCf p 55021==π (2) 高通滤波器的具体参数分析:●通带放大倍数:75.1212315931112=+=+=R R A up ●品质因数: 8.025.1131==-=up A Q●通带截止频率:KHZ RCf p 35021==π 带通滤波器的通频带:350KHZ —550KHZ 3.6.3 仿真结果图3-4一次混频后的波形图3-5二次混频后的波形图3-6二次混频后的傅里叶分析图由幅频特性可以看出有四个主要的频率分量有:465KHZ、13.395MHZ、19.535MHZ、33.395MHZ。
下边依次对其中的三个干扰频分量进行分析:之所以会出现13.395MHZ的干扰分量是因为在二次混频的时候,我们输入的频率为6.465MHZ的输入信号和二次混频的频率为6.93MHZ的本振信号之间的干扰产生的。
出现19.353MHZ 的干扰分量是因为在第一次混频的时候由于频率为10MHZ 的输入信号与一次混频的频率为16.465MHZ 的本振信号之间产生的干扰,因为在一次混频与二次混频之间没有加选频网络,导致这一干扰信号随着二次混频的输入信号一同输入到了二次混频的相乘电路当中。