1.2.2第二课时 分段函数与映射
- 格式:ppt
- 大小:1.20 MB
- 文档页数:36
1.2.2 第2课时 分段函数及映射教学目的:(1)了解映射的概念及表示方法.(2)会利用映射的概念来判断“对应关系”是否是映射,感受对应关系在刻画函数和映射概念中的作用,提高对数学高度抽象性和广泛应用性的进一步认识.教学重点:映射的概念教学难点:映射概念的理解教学过程:一、复习回顾,新课引入1.函数的常用表示法2.分段函数分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,而不是几个函数;(2)分段函数的定义域是所有区间的并集,值域是各段函数值域的并集;(3)分段函数的求解策略:分段函数分段解.3.复习初中常见的对应关系(1)对于任何一个实数a ,数轴上都有唯一的点P 和它对应.(2)对于坐标平面内任何一个点A ,都有唯一的有序数对(x ,y )和它对应.(3)对于任意一个三角形,都有唯一确定的面积和它对应.(4)班级的座位都有唯一的同学与之对应.4.函数的定义设A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个x , 在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f :为从集合A 到集合B 的函数.二、师生互动,新课讲解:函数是“两个数集间的一种确定的对应关系”.当我们将数集扩展到任意的集合时,就可以得到映射的概念.例如,欧洲的国家构成集合A ,欧洲各国的首都构成集合B ,对应关系f :国家a 对应它的首都b .这样,对于集合A 中的任意一个国家,按照对应关系f ,在集合B 中都有唯一确定的首都与之对应.我们将对应B A f →:称为映射.一般地,我们有:映射定义:设A ,B 是两个非空集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有惟一确定的元素y 与之对应,那么就称对应B A f →:为从集合A 到集合B 的一个映射(mapping),记作:f A B →.练习 判断下列对应是不是从A 到B 的映射?解:图甲不是映射,因为集合A 中的一个元素对应了集合B 中的两个元素;图乙是映射,符合映射的定义;图丙是映射,虽然,集合B 中有的元素没有A 中的元素与之对应,但仍符合映射的定义; 图丁不是映射,因为集合A 中的每一个元素都要对应集合B 中的元素,但是A 中的元素1,2--没有对应B 中的元素.说明:①函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种的对应就叫 映射.②这两个集合有先后顺序,A 到B 的射与B 到A 的映射是截然不同的.其中f 表示具体的对应法则,可以用汉字叙述.③“都有唯一”什么意思?包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思.例1 以下给出的对应是不是从集合A 到B 的映射?(1)集合A ={P |P 是数轴上的点},集合B =R ,对应关系f :数轴上的点与它所代表的实数对应.(2)集合A ={P |P 是平面直角坐标系中的点},集合B ={(x ,y )|x ∈R ,y ∈R },对应关系f :平面直角坐标素中的点与它的坐标对应.(3)集合A ={x |x 是三角形},集合B ={x |x 是圆},对应关系f :每一个三角形都对应它的内切圆;(4)集合A ={x |x 是新华中学的班级},集合B ={x |x 是新华中学的学生},对应关系f :每一个班级都对应班里的学生.解:(1)按照建立数轴的方法可知,数轴上的任意一点,都有唯一的实数与之对应,所以这个对应f :A →B 是从集合A 到B 的一个映射.(2)按照建立平面直角坐标系的方法可知,平面直角坐标系上的任意一点,都有唯一的一个实数与之对应,所以这个对应f :A →B 是从集合A 到B 的一个映射.(3)由于每一个三角形只有一个内切圆与之对应,所以这个对应f :A →B 是从集合A 到B 的一个映射.(4)新华中学的每一个班级里的学生都不止一个,即与一个班级对应的学生不止一个, 所以这个对应f :A →B 不是从集合A 到B 的一个映射.变式训练1:(1)A =R ,{|0}B y y =>,:||f x y x →=;(2){|2,}A x x x =≥∈*N ,{}|0,B y y y =≥∈N ,2:22f x y x x →=-+;(3){|0}A x x =>,{|}B y y =∈R ,:f x y →=上述三个对应 是A 到B 的映射.【答案】(2)例2 判断下列对应是否是从集合A 到集合B 的映射:(1)A =R ,B ={x |x >0},f :x →|x |;(2)A =N ,B =*N ,f :x →|x -2|;(3)A ={x |x >0},B=R ,f :x →x 2.解: (1)0∈A ,在法则f 下,0→|0|=0∉B ,故该对应不是从集合A 到集合B 的映射;(2)2∈A ,在法则f 下,2→|2-2|=0∉B ,故该对应不是从集合A 到集合B 的映射;(3)对于任意x ∈A ,依法则f :x →x 2∈B ,故该对应是从集合A 到集合B 的映射.变式训练2:设集合{02}M x x =≤≤,{02}N y y =≤≤,从M 到N 有四种对应如下图所示:其中能表示为M 到N 的函数关系的有__________.【答案】②③例3 甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2km ,甲10时出发前往乙家.如图,表示甲从出发到乙家为止经过的路程y (km )与时间x (分)的关系.试写出()y f x =的函数解析式.【解析】理解题意,根据图像待定系数法求解析式.解:当[0,30]x ∈时,直线方程为115y x =,当[40,60]x ∈时,直线方程为1210y x =-, 1[0,30],15()2(30,40),1[40,60].210x x f x x x x ⎧⎪∈⎪∴=∈⎨⎪∈⎪-⎩点评:建立函数的解析式是解决实际问题的关键,把题中文字语言描述的数学关系用数学符号语言表达.要注意求出解析式后,一定要写出其定义域.变式训练3:画出分段函数f (x )=2,0,2,02,11,22x x x x x ⎧⎪-≤⎪<<⎨⎪⎪+≥⎩的图象,并求出函数的值域.解:画出分段函数f (x )=2,0,2,02,11,22x x x x x ⎧⎪-≤⎪<<⎨⎪⎪+≥⎩的图象,如下图所示:由图可知,值域为[2,+∞).三、 课堂小结,巩固反思(1)理解映射的概念;(2)映射与函数的区别与联系.四、 布置作业:A 组:1.已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A. 1B. 1或32C. 1,32或D. 【答案】D2.在映射中B A f →:,{(,)|,}A B x y x y ==∈R ,且),(),(:y x y x y x f +-→, 则与A 中的元素)2,1(-对应的B 中的元素为( )A.)1,3(-B.)3,1(C.)3,1(--D.)1,3(【答案】A 3.下列各组函数中,表示同一函数的是( )A.1,x y y x ==B.y y ==C.,y x y =D.2||,y x y ==【答案】C4.下列图象中不能作为函数图象的是( )【答案】B5.设集合A 和B 都是自然数集合N ,映射f :A →B 把集合A 中的元素n 映射到集合B 中的元素2n +n ,则在映射f 下,B 中的20对应在A 的是( )A.2B.3C. 4D.5 【答案】C6.函数y =_____________ .【答案】(),0-∞B 组:如图,用长为1的铁丝弯成下部为矩形,上部为半圆形的框架,若半圆半径为x ,求此框架围成的面积y 与x 的函数式y =f (x ),并写出它的定义域.解:由题意AB =2x ,弧CD =πx ,于是AD =12π2x x --,因此,y =2x •12π2x x --+2π2x , 即函数的解析式为y =﹣2π42x x ++. 又由20,12π02x x x >⎧⎪⎨-->⎪⎩得0<x <1π2+, 故函数的定义域为(0,1π2+).。
1.2.2 第2课时分段函数及映射●三维目标1.知识与技能(1)通过具体实例,了解简单的分段函数,并能简单应用;(2)纠正认为“y=f(x)”就是函数的解析式的片面错误认识;(3)了解映射的概念及表示方法.2.过程与方法(1)重视基础知识的教学、基本技能的训练和能力的培养;(2)启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造性地解决问题;(3)通过教师指导发现知识结论,培养学生的抽象概括能力和逻辑思维能力.3.情感、态度与价值观(1)培养辨证地看待事物的观念和数形结合的思想;(2)使学生认识到事物间是有联系的,对应、映射是一种联系方式;(3)激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神.●重点难点重点:分段函数的概念.难点:分段函数的表示及映射的概念(1)重点的突破:首先以两个例题为依据,通过学生的研习,组内讨论等活动,让学生先从感性上认识分段函数,再结合生活中的其他实例充分理解分段函数是一个函数,而不是几个函数.最后通过习题,利用师生合作探究的方式,让学生掌握分段函数问题的解法,在此过程中培养学生分析问题和归纳总结的能力,强化训练学生数形结合、分类讨论的思想意识,突出重点的同时化解分段函数的表示这一难点;(2)难点的解决:在映射概念引入时,可先从学生熟悉的对应入手,选择一些具体的生活例子,然后列举一些数学例子,分为一对多、多对一、多对多、一对一四种情况,让学生认真观察、比较,再引导学生发现其中一对一和多对一的对应是映射,逐步归纳概括出映射的基本特征,让学生的认识从感性认识到理性认识,体会出映射是函数的推广,函数是一种特殊的映射.2.了解映射的概念.(易混点) 【问题导思】在现实生活中,常常使用表格描述两个变量之间的对应关系.比如:国内邮寄信函(本埠),每封信函的重量和对应邮资如下表: 信函重量m /g 0<m ≤20 20<m ≤40 40<m ≤60 60<m ≤80 80<m ≤100 邮资M /元 0.801.602.403.204.00(1)邮资M 是信函重量m 的函数吗?若是,其解析式是什么? 【提示】 据函数定义知M 是m 的函数,其解析式为:M =⎩⎪⎨⎪⎧0.80,m ∈(0,20]1.60,m ∈(20,40]2.40,m ∈(40,60]3.20,m ∈(60,80]4.00,m ∈(80,100](2)在(1)中有几个函数?为什么?【提示】 一个.因为(1)中的函数虽然有5个不同的部分,但不是5个函数,只不过在定义域的不同子集内,对应关系不同而已.如果函数y =f (x ),x ∈A ,根据自变量x 在A 中不同的取值范围,有着不同的对应关系,则称这样的函数为分段函数.【问题导思】在某次数学测试中,高一(1—)班的60名同学都取得了较好的成绩,把该班60名同学的名字构成集合A ,他们的成绩构成集合B .1.A 中的每一个元素,在B 中有且只有一个元素与之对应吗? 【提示】 是的.2.从集合A 到集合B 的对应是函数吗?为什么? 【提示】 不是.因为集合A 不是数集. 映射设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.例1.已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤-12x ,-1<x <2x 22,x ≥2.(1)求f ⎝⎛⎭⎫f ⎝⎛⎭⎫32的值; (2)若f (a )=2,求a 的值.【思路探究】 (1)求f ⎝⎛⎭⎫32→求f ⎝⎛⎭⎫f ⎝⎛⎭⎫32 (2)就(a )的取值范围分三种情形分别求解. 【自主解答】 (1)∵-1<32<2,∴f ⎝⎛⎭⎫32=2×32=3. 又3>2,∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫32=f (3)=92. (2)当a ≤-1时,由f (a )=2,得a +2=2,a =0,舍去; 当-1<a <2时,由f (a )=2,得2a =2,a =1;当a ≥2时,由f (a )=2,得a 22=2,a =2或a =-2(舍去).综上所述,a 的值为1或2. 变式训练 已知n ∈N *,且f (n )=⎩⎪⎨⎪⎧n -2, n ≥10f (n +5), n <10,则f (4)=________.【解析】 由分段函数定义,f (4)=f (4+5)=f (9)=f (9+5)=f (14)=14-2=12 【答案】 12例2. 画出函数y =|x +1|+|x -3|的图象,并写出该函数的值域. 【思路探究】 y =|x +1|+|x -3|――→绝对值定义零点分段法去绝对值――→分段分段函数―→作图【自主解答】由y =|x +1|+|x -3|={ -2x +2,x ≤-14,-1<x ≤32x -2,x >3∴函数图象如图由图象易知函数的值域为[4,+∞) 变式训练下列图形是函数y =⎩⎪⎨⎪⎧x 2,x <0x -1,x ≥0的图象的是( )【解析】 由于f (0)=0-1=-1,所以函数图象过点(0,-1);当x <0时,y =x 2,则函数图象是开口向上的抛物线在y 轴左侧的部分.因此只有图形C 符合.【答案】 C例3.下列对应关系中,哪些是从集合A 到集合B 的映射? (1)A =B =N *,对应关系f :x →y =|x -3|;(2)A =R ,B ={0,1},对应关系f :x →y ={ 1,x ≥00,x <0; (3)设A ={矩形},B ={实数},对应关系f :矩形的面积. 【思路探究】 紧扣映射概念中的“任意一个”“唯一”即可判断.【自主解答】 (1)集合A 中的3,在f 作用下得0,但0∉B ,即3在集合B 中没有相对应的元素,所以不是映射.(2)对于集合A 中任意一个非负数都唯一对应元素1,对于集合A 中任意一个负数都唯一对应元素0,所以是映射.(3)对于每一个矩形,它的面积是唯一确定的,所以f 是从集合A 到集合B 的映射. 变式训练已知点(x ,y )在映射f 作用下对应的元素是(2x ,x +y ),则(1,3)在f 作用下对应的元素是( )A.⎝⎛⎭⎫12,52 B .(2,4) C .(3,5)D .(4,6)【解析】 由题意知,x →2x ,y →x +y ,故(1,3)在f 作用下对应的元素是(2,4).【答案】 B与分段函数有关的实际问题的解法典例 (12分)如图1-2-4在边长为4的正方形ABCD 的边上有一点P ,图1-2-4沿着折线BCDA 由点B (起点)向A (终点)运动.设点P 运动的路程为x ,△APB 的面积为y .试求:(1)y 与x 之间的函数关系式; (2)画出y =f (x )的图象.【思路点拨】 当点P 在线段BC 上时△APB 的面积随点P 的变化而变化,当点P 在线段CD 上时,△APB 的面积是一个定值,当点P 在线段AD 上时,△APB 的面积随点P 的变化而变化,可见应分三段考虑面积计算.【规范解答】 (1)①当点P 在线段BC 上运动时, S △APB =12×4x =2x (0≤x ≤4).2分②当点P 在线段CD 上运动时, S △APB =12×4×4=8(4<x ≤8).4分③当点P 在线段AD 上运动时,S △APB =12×4×(12-x )=24-2x (8<x ≤12).6分∴y 与x 之间的函数关系式为y =⎩⎪⎨⎪⎧2x ,0≤x ≤48,4<x ≤824-2x ,8<x ≤12.8分(2)画出y =f (x )的图象,如图所示:12分思维启迪1.本题因点P 所在的位置不同,得到的面积表达式不同,因而应分段计算,得出分段函数表达式.2.解决这类问题的关键点是根据自变量的取值情况决定其对应的运算法则,即保持自变量的取值范围与对应法则的一致性,一般需要分类讨论求解.课堂小结1.分段函数求值要先找准自变量所在的区间;分段函数的定义域、值域分别是各段函数的定义域、值域的并集.2.判断一个对应是不是映射,先看第一集合A :看集合A 中的每一个元素是否都有对应元素,若有,再看对应元素是否唯一;至于集合B 中的元素不作任何要求.当堂达标1.已知集合A ={a ,b },B ={0,1},则下列对应不是从A 到B 的映射的是( )【解析】 在映射中允许“多对一”,但不允许“一对多”. 【答案】 C2.下列图形是函数y =-|x |(x ∈[-2,2])的图象的是( )【解析】 ∵x ∈[-2,2],故函数y =-|x |在x =±2处均有意义,排除C 、D 两选项.又当x =1时,y =-1<0,从而排除A 选项,故选B.【答案】 B3.已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≥0-2x +1,x <0,则f (1)+f (-1)=________.【解析】∵f (1)=2×1+1=3,f (-1)=-2×(-1)+1=3,∴f (1)+f (-1)=3+3=6. 【答案】 64.已知函数f (x )=1+|x |-x2(-2<x ≤2).(1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域.【解】 (1)当0≤x ≤2时,f (x )=1+x -x2=1,当-2<x <0时,f (x )=1+-x -x2=1-x .∴f (x )={ 10≤x ≤21-x-2<x <0.(2)函数f (x )的图象如图所示,(3)由(2)知,f (x )在(-2,2]上的值域为[1,3).。